首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Personal 48-hr exposures to formaldehyde and acetaldehyde of 15 randomly selected participants were measured during the summer/autumn of 1997 using Sep-Pak DNPH-Silica cartridges as a part of the EXPOLIS study in Helsinki, Finland. In addition to personal exposures, simultaneous measurements of microenvironmental concentrations were conducted at each participant's residence (indoor and outdoor) and workplace. Mean personal exposure levels were 21.4 ppb for formaldehyde and 7.9 ppb for acetaldehyde. Personal exposures were systematically lower than indoor residential concentrations for both compounds, and ambient air concentrations were lower than both indoor residential concentrations and personal exposure levels. Mean workplace concentrations of both compounds were lower than mean indoor residential concentrations. Correlation between personal exposures and indoor residential concentrations was statistically significant for both compounds. This indicated that indoor residential concentrations of formaldehyde and acetaldehyde are a better estimate of personal exposures than are concentrations in ambient air. In addition, a time-weighted exposure model did not improve the estimation of personal exposures above that obtained using indoor residential concentrations as a surrogate for personal exposures. Correlation between formaldehyde and acetaldehyde was statistically significant in outdoor microenvironments, suggesting that both compounds have similar sources and sinks in ambient urban air.  相似文献   

3.
4.
Personal 48-hr exposures of 15 randomly selected participants as well as microenvironment concentrations in each participant's residence and workplace were measured for 16 carbonyl compounds during summer-fall 1997 as a part of the Air Pollution Exposure Distributions within Adult Urban Populations in Europe (EXPOLIS) study in Helsinki, Finland. When formaldehyde and acetaldehyde were excluded, geometric mean ambient air concentrations outside each participant's residence were less than 1 ppb for all target compounds. Geometric mean residential indoor concentrations of carbonyls were systematically higher than geometric mean personal exposures and indoor workplace concentrations. Additionally, residential indoor/outdoor ratios indicated substantial indoor sources for most target compounds. Carbonyls in residential indoor air correlated significantly, suggesting similar mechanisms of entry into indoor environments. Overall, this study demonstrated the important role of non-traffic-related emissions in the personal exposures of participants in Helsinki and that comprehensive apportionment of population risk to air toxics should include exposure concentrations derived from product emissions and chemical formation in indoor air.  相似文献   

5.
Abstract

An ozone (O3) exposure assessment study was conducted in Toronto, Ontario, Canada during the winter and summer of 1992. A new passive O3 sampler developed by Harvard was used to measure indoor, outdoor, and personal O3 concentrations. Measurements were taken weekly and daily during the winter and summer, respectively. Indoor samples were collected at a total of 50 homes and workplaces of study participants. Outdoor O3 concentrations were measured both at home sites using the passive sampler and at 20 ambient monitoring sites with continuous monitors. Personal O3 measurements were collected from 123 participants, who also completed detailed time-activity diaries. A total of 2,274 O3 samples were collected. In addition, weekly air exchange rates of homes were measured.

This study demonstrates the performance of our O3 sampler for exposure assessment. The data obtained are further used to examine the relationships between personal, indoor (home and workplace), and outdoor O3 concentrations, and to investigate outdoor and indoor spatial variations in O3 concentrations. Based on home outdoor and indoor, workplace, and ambient O3 concentrations measured at the Ontario Ministry of the Environment (MOE) sites, the traditional microenvironmental model predicts 72% of the variability in measured personal exposures. An alternative personal O3 exposure model based on outdoor measurements and time-activity information is able to predict the mean personal exposures in a large population, with the highest R2 value of 0.41.  相似文献   

6.
Indoor and outdoor NO2 concentrations were measured and compared with simultaneously measured personal exposures of 57 office workers in Brisbane, Australia. House characteristics and activity patterns were used to determine the impacts of these factors on personal exposure. Indoor NO2 levels and the presence of a gas range in the home were significantly associated with personal exposure. The time-weighted average of personal exposure was estimated using NO2 measurements in indoor home, indoor workplace, and outdoor home levels. The estimated personal exposures were closely correlated, but they significantly underestimated the measured personal exposures. Multiple regression analysis using other nonmeasured microenvironments indicated the importance of transportation in personal exposure models. The contribution of transportation to the error of prediction of personal exposure was confirmed in the regression analysis using the multinational study database.  相似文献   

7.
Abstract

Personal 48-hr exposures of 15 randomly selected participants as well as microenvironment concentrations in each participant’s residence and workplace were measured for 16 carbonyl compounds during summer–fall 1997 as a part of the Air Pollution Exposure Distributions within Adult Urban Populations in Europe (EXPOLIS) study in Helsinki, Finland. When formaldehyde and acetaldehyde were excluded, geometric mean ambient air concentrations outside each participant’s residence were less than 1 ppb for all target compounds. Geometric mean residential indoor concentrations of carbonyls were systematically higher than geometric mean personal exposures and indoor workplace concentrations. Additionally, residential indoor/outdoor ratios indicated substantial indoor sources for most target compounds. Carbonyls in residential indoor air correlated significantly, suggesting similar mechanisms of entry into indoor environments. Overall, this study demonstrated the important role of non-traffic-related emissions in the personal exposures of participants in Helsinki and that comprehensive apportionment of population risk to air toxics should include exposure concentrations derived from product emissions and chemical formation in indoor air.  相似文献   

8.
In the US EPA's 1998 Baltimore Epidemiology-Exposure Panel Study, a group of 16 residents of a single building retirement community wore personal monitors recording personal fine particulate air pollution concentrations (PM2.5) for 27 days, while other monitors recorded concurrent apartment, central indoor, outdoor and ambient site PM2.5 concentrations. Using the Baltimore panel study data, we develop a Bayesian hierarchical model to characterize the relationship between personal exposure and concentrations of PM2.5 indoors and outdoors. Personal exposure is expressed as a linear combination of time spent in microenvironments and associated microenvironmental concentrations. The model incorporates all available monitoring data and accounts for missing data and sources of uncertainty such as measurement error and individual differences in exposure. We discuss the implications of using personal versus ambient PM2.5 measurements in characterization of personal exposure to PM2.5.  相似文献   

9.
Epidemiological studies of particulate matter (PM) routinely use concentrations measured with stationary outdoor monitors as surrogates for personal exposure. Despite the frequently reported poor correlations between ambient concentrations and total personal exposure, the epidemiologic associations between ambient concentrations and health effects depend on the correlation between ambient concentrations and personal exposure to ambient-generated PM. This paper separates personal PM exposure into ambient and nonambient components and estimates the outdoor contribution to personal PM exposures with continuous light scattering data collected from 38 subjects in Seattle, WA. Across all subjects, the average exposure encountered indoors at home was lower than in all other microenvironments. Cooking and being at school were associated with elevated levels of exposure. Previously published estimates of particle infiltration (Finf) were combined with time-location data to estimate an ambient contribution fraction (alpha, mean = 0.66+/-0.21) for each subject. The mean alpha was significantly lower for subjects monitored during the heating season (0.55+/-0.16) than for those monitored during the nonheating season (0.80+/-0.17). Our modeled alpha estimates agreed well with those estimated with the sulfur-tracer method (slope = 1.08; R2 = 0.67). We modeled exposure to ambient and nonambient PM with both continuous light scattering and 24-hr gravimetric data and found good agreement between the two methods. On average, ambient particles accounted for 48% of total personal exposure (range = 21-80%). The personal activity exposure was highly influenced by time spent away from monitored microenvironments. The median hourly longitudinal correlation between central site concentrations and personal exposures was 0.30. Although both alpha and the nonambient sources influence the personal-central relationship, the latter seems to dominate. Thus, total personal exposure may be poorly predicted by stationary outdoor monitors, particularly among persons whose PM exposure is dominated by nonambient exposures, for example, those living in tightly sealed homes, those who cook, and children.  相似文献   

10.
ABSTRACT

Indoor and outdoor NO2 concentrations were measured and compared with simultaneously measured personal exposures of 57 office workers in Brisbane, Australia. House characteristics and activity patterns were used to determine the impacts of these factors on personal exposure. Indoor NO2 levels and the presence of a gas range in the home were significantly associated with personal exposure. The time-weighted average of personal exposure was estimated using NO2 measurements in indoor home, indoor workplace, and outdoor home levels. The estimated personal exposures were closely correlated, but they significantly underestimated the measured personal exposures. Multiple regression analysis using other nonmeasured microenvironments indicated the importance of transportation in personal exposure models. The contribution of transportation to the error of prediction of personal exposure was confirmed in the regression analysis using the multinational study database.  相似文献   

11.
A personal air quality model (PAQM) has been developed to estimate the effect of being indoors on total personal exposure to outdoor-generated air pollution. Designed to improve air toxics risk assessment, PAQM accounts for individual hourly activity patterns, indoor-outdoor differences, physical exercise level, and geographic location for up to 56 different population groups. Unique hourly activity profiles are specified for each population group; group members are assigned each hour to one of up to 10 different indoor and outdoor microenvironments. To illustrate PAQM use, we apply it to two example cases: a long-term example representative of situations where pollutant health impact is related to integrated exposure (as in the case of potentially carcinogenic air toxics) and a short-term example representative of situations where health impact is related to acute exposure to peak concentrations (as with ozone).

Case study results illustrate that personal exposure, and thus health risk, attributable to outdoor-generated air pollution is sensitive to indoor-outdoor differences and population mobility. Where health impact is related to long-term integrated exposure (e.g., air toxics), exposure and subsequent risk are likely to be lower than that estimated by previous modeling techniques which do not account for such effects.  相似文献   

12.
Principal component analyses (varimax rotation) were used to identify common sources of 30 target volatile organic compounds (VOCs) in residential outdoor, residential indoor and workplace microenvironment and personal 48-h exposure samples, as a component of the EXPOLIS-Helsinki study. Variability in VOC concentrations in residential outdoor microenvironments was dominated by compounds associated with long-range transport of pollutants, followed by traffic emissions, emissions from trees and product emissions. Variability in VOC concentrations in environmental tobacco smoke (ETS) free residential indoor environments was dominated by compounds associated with indoor cleaning products, followed by compounds associated with traffic emissions, long-range transport of pollutants and product emissions. Median indoor/outdoor ratios for compounds typically associated with traffic emissions and long-range transport of pollutants exceeded 1, in some cases quite considerably, indicating substantial indoor source contributions. Changes in the median indoor/outdoor ratios during different seasons reflected different seasonal ventilation patterns as increased ventilation led to dilution of those VOC compounds in the indoor environment that had indoor sources. Variability in workplace VOC concentrations was dominated by compounds associated with traffic emissions followed by product emissions, long-range transport and air fresheners. Variability in VOC concentrations in ETS free personal exposure samples was dominated by compounds associated with traffic emissions, followed by long-range transport, cleaning products and product emissions. VOC sources in personal exposure samples reflected the times spent in different microenvironments, and personal exposure samples were not adequately represented by any one microenvironment, demonstrating the need for personal exposure sampling.  相似文献   

13.
To examine factors influencing long-term ozone (O3) exposures by children living in urban communities, the authors analyzed longitudinal data on personal, indoor, and outdoor O3 concentrations, as well as related housing and other questionnaire information collected in the one-year-long Harvard Southern California Chronic Ozone Exposure Study. Of 224 children contained in the original data set, 160 children were found to have longitudinal measurements of O3 concentrations in at least six months of 12 months of the study period. Data for these children were randomly split into two equal sets: one for model development and the other for model validation. Mixed models with various variance-covariance structures were developed to evaluate statistically important predictors for chronic personal ozone exposures. Model predictions were then validated against the field measurements using an empirical best-linear unbiased prediction technique. The results of model fitting showed that the most important predictors for personal ozone exposure include indoor O3 concentration, central ambient O3 concentration, outdoor O3 concentration, season, gender, outdoor time, house fan usage, and the presence of a gas range in the house. Hierarchical models of personal O3 concentrations indicate the following levels of explanatory power for each of the predictive models: indoor and outdoor O3 concentrations plus questionnaire variables, central and indoor O3 concentrations plus questionnaire variables, indoor O3 concentrations plus questionnaire variables, central O3 concentrations plus questionnaire variables, and questionnaire data alone on time activity and housing characteristics. These results provide important information on key predictors of chronic human exposures to ambient O3 for children and offer insights into how to reliably and cost-effectively predict personal O3 exposures in the future. Furthermore, the techniques and findings derived from this study also have strong implications for selecting the most reliable and cost-effective exposure study design and modeling approaches for other ambient pollutants, such as fine particulate matter and selected urban air toxics.  相似文献   

14.
Human exposures to criteria and hazardous air pollutants (HAPs) in urban areas vary greatly due to temporal-spatial variations in emissions, changing meteorology, varying proximity to sources, as well as due to building, vehicle, and other environmental characteristics that influence the amounts of ambient pollutants that penetrate or infiltrate into these microenvironments. Consequently, the exposure estimates derived from central-site ambient measurements are uncertain and tend to underestimate actual exposures. The Exposure Classification Project (ECP) was conducted to measure pollutant concentrations for common urban microenvironments (MEs) for use in evaluating the results of regulatory human exposure models. Nearly 500 sets of measurements were made in three Los Angeles County communities during fall 2008, winter 2009, and summer 2009. MEs included in-vehicle, near-road, outdoor, and indoor locations accessible to the general public. Contemporaneous 1- to 15-min average personal breathing zone concentrations of carbon monoxide (CO), carbon dioxide (CO2), volatile organic compounds (VOCs), nitric oxide (NO), nitrogen oxides (NOx), particulate matter (<2.5 μm diameter; PM2.5) mass, ultrafine particle (UFP; <100 nm diameter) number, black carbon (BC), speciated HAPs (e.g., benzene, toluene, ethylbenzene, xylenes [BTEX], 1,3-butadiene), and ozone (O3) were measured continuously. In-vehicle and inside/outside measurements were made in various passenger vehicle types and in public buildings to estimate penetration or infiltration factors. A large fraction of the observed pollutant concentrations for on-road MEs, especially near diesel trucks, was unrelated to ambient measurements at nearby monitors. Comparisons of ME concentrations estimated using the median ME/ambient ratio versus regression slopes and intercepts indicate that the regression approach may be more accurate for on-road MEs. Ranges in the ME/ambient ratios among ME categories were generally greater than differences among the three communities for the same ME category, suggesting that the ME proximity factors may be more broadly applicable to urban MEs.
Implications:Estimates of population exposure to air pollutants extrapolated from ambient measurements at ambient fixed site monitors or exposure surrogates are prone to uncertainty. This study measured concentrations of mobile source air toxics (MSAT) and related criteria pollutants within in-vehicle, outdoor near-road, and indoor urban MEs to provide multipollutant ME measurements that can be used to calibrate regulatory exposure models.  相似文献   

15.
In order to provide reliable pollutant and meteorological exposure estimates for an epidemiological study of asthmatics residing in two Houston neighborhoods, a dedicated three-tier air monitoring system was established. This consisted of fixed site ambient air monitoring at the center of each study area, a mobile van performing simultaneous indoor and outdoor measurements at selected residences of study participants, and a limited amount of direct personal monitoring for half of the participants. Monitored pollutants Included all criteria pollutant gases, as well as aeroallergens, aldehydes, TSP, and IP. Laboratory analyses provided concentrations of sulfate, nitrate, and trace elements. Continuous measurements of several meteorological parameters also were obtained. Intensive quality assurance and data validation efforts resulted in a high percentage of valid data for most pollutants. Ozone was the only measured pollutant that exceeded the NAAQS during the six-month (May to October) study period. The monitoring scheme allowed important pollutant concentration differences to be detected between day and night, between Indoors and outdoors, and among various indoor environments. The use of these monitoring data in combination with personal activity and household characteristics data to generate estimates of personal exposures for the epidemiological analysis will be described in a subsequent paper.  相似文献   

16.
Personal exposures and microenvironmental concentrations of benzene were measured in the residential indoor, residential outdoor and workplace environments for 201 participants in Helsinki, Finland, as a component of the EXPOLIS-Helsinki study. Median benzene personal exposures were 2.47 (arithmetic standard deviation (ASD)=1.62) μg m−3 for non-smokers, 2.89 (ASD=3.26) μg m−3 for those exposed to environmental tobacco smoke in any microenvironment and 3.08 (ASD=10.04) μg m−3 for active smokers. Median residential indoor benzene concentrations were 3.14 (ASD=1.51) μg m−3 and 1.87 (ASD=1.93) μg m−3 for environments with and without tobacco smoke, respectively. Median residential outdoor benzene concentrations were 1.51 (ASD=1.11) μg m−3 and median workplace benzene concentrations were 3.58 (ASD=1.96) μg m−3 and 2.13 (ASD=1.49) μg m−3 for environments with and without tobacco smoke, respectively. Multiple step-wise regression identified indoor benzene concentrations as the strongest predictor for personal benzene exposures of those not exposed to tobacco smoke, followed sequentially by time spent in a car, time in the indoor environment, indoor workplace concentrations and time in the home workshop. Relationships between indoor and outdoor microenvironment concentrations and personal exposures showed considerable variation between seasons, due to differences in ventilation patterns of homes in these northern latitudes. Automobile use-related activities were significantly associated with elevated benzene levels in personal and indoor measurements when tobacco smoke was not present, which demonstrates the importance of personal measurements in the assessment of exposure to benzene.  相似文献   

17.
In researching health effects of air pollution, pollutant levels from fixed-site monitors are commonly assigned to the subjects. However, these concentrations may not reflect the exposure these individuals actually experience. A previous study of ozone (O3) exposure and lung function among shoe-cleaners working in central Mexico City used fixed-site measurements from a monitoring station near the outdoor work sites as surrogates for personal exposure. The present study assesses the degree to which these estimates represented individual exposures. In 1996, personal O3 exposures of 39 shoe-cleaners working outdoors were measured using an active integrated personal sampler. Using mixed models, we assessed the relationship between measured personal O3 exposure and ambient O3 measurements from the fixed-site monitoring station. Ambient concentrations were approximately 50 parts per billion higher, on average, than personal exposures. The association between personal and ambient O3 was highly significant (mixed model slope p < 0.0001). The personal/ambient ratio was not constant, so use of the outdoor monitor would not be appropriate to rank O3 exposure and evaluate health effects between workers. However, the strong within-worker longitudinal association validates previous findings associating day-to-day changes in fixed-site O3 levels with adverse health effects among these shoe-cleaners and suggests fixed-site O3 monitors may adequately estimate exposure for other repeated-measure health studies of outdoor workers.  相似文献   

18.
BACKGROUND, AIM AND SCOPE: All across Europe, people live and work in indoor environments. On average, people spend around 90% of their time indoors (homes, workplaces, cars and public transport means, etc.) and are exposed to a complex mixture of pollutants at concentration levels that are often several times higher than outdoors. These pollutants are emitted by different sources indoors and outdoors and include volatile organic compounds (VOCs), carbonyls (aldehydes and ketones) and other chemical substances often adsorbed on particles. Moreover, legal obligations opposed by legislations, such as the European Union's General Product Safety Directive (GPSD) and Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), increasingly require detailed understanding of where and how chemical substances are used throughout their life-cycle and require better characterisation of their emissions and exposure. This information is essential to be able to control emissions from sources aiming at a reduction of adverse health effects. Scientifically sound human risk assessment procedures based on qualitative and quantitative human exposure information allows a better characterisation of population exposures to chemical substances. In this context, the current paper compares inhalation exposures to three health-based EU priority substances, i.e. benzene, formaldehyde and acetaldehyde. MATERIALS AND METHODS: Distributions of urban population inhalation exposures, indoor and outdoor concentrations were created on the basis of measured AIRMEX data in 12 European cities and compared to results from existing European population exposure studies published within the scientific literature. By pooling all EU city personal exposure, indoor and outdoor concentration means, representative EU city cumulative frequency distributions were created. Population exposures were modelled with a microenvironment model using the time spent and concentrations in four microenvironments, i.e. indoors at home and at work, outdoors at work and in transit, as input parameters. Pooled EU city inhalation exposures were compared to modelled population exposures. The contributions of these microenvironments to the total daily inhalation exposure of formaldehyde, benzene and acetaldehyde were estimated. Inhalation exposures were compared to the EU annual ambient benzene air quality guideline (5 microg/m3-to be met by 2010) and the recommended (based on the INDEX project) 30-min average formaldehyde limit value (30 microg/m3). RESULTS: Indoor inhalation exposure contributions are much higher compared to the outdoor or in-transit microenvironment contributions, accounting for almost 99% in the case of formaldehyde. The highest in-transit exposure contribution was found for benzene; 29.4% of the total inhalation exposure contribution. Comparing the pooled AIRMEX EU city inhalation exposures with the modelled exposures, benzene, formaldehyde and acetaldehyde exposures are 5.1, 17.3 and 11.8 microg/m3 vs. 5.1, 20.1 and 10.2 microg/m3, respectively. Together with the fact that a dominating fraction of time is spent indoors (>90%), the total inhalation exposure is mostly driven by the time spent indoors. DISCUSSION: The approach used in this paper faced three challenges concerning exposure and time-activity data, comparability and scarce or missing in-transit data inducing careful interpretation of the results. The results obtained by AIRMEX underline that many European urban populations are still exposed to elevated levels of benzene and formaldehyde in the inhaled air. It is still likely that the annual ambient benzene air quality guideline of 5 microg/m3 in the EU and recommended formaldehyde 30-min average limit value of 30 microg/m3 are exceeded by a substantial part of populations living in urban areas. Considering multimedia and multi-pathway exposure to acetaldehyde, the biggest exposure contribution was found to be related to dietary behaviour rather than to inhalation. CONCLUSIONS: In the present study, inhalation exposures of urban populations were assessed on the basis of novel and existing exposure data. The indoor residential microenvironment contributed most to the total daily urban population inhalation exposure. The results presented in this paper suggest that a significant part of the populations living in European cities exceed the annual ambient benzene air quality guideline of 5 microg/m3 in the EU and recommended (INDEX project) formaldehyde 30-min average limit value of 30 microg/m3. RECOMMENDATIONS AND PERSPECTIVES: To reduce exposures and consequent health effects, adequate measures must be taken to diminish emissions from sources such as materials and products that especially emit benzene and formaldehyde in indoor air. In parallel, measures can be taken aiming at reducing the outdoor pollution contribution indoors. Besides emission reduction, mechanisms to effectively monitor and manage the indoor air quality should be established. These mechanisms could be developed by setting up appropriate EU indoor air guidelines.  相似文献   

19.
Thirty target volatile organic compounds (VOC) were analyzed in personal 48-h exposure samples and residential indoor, residential outdoor and workplace indoor microenvironment samples as a component of EXPOLIS-Helsinki, Finland. Geometric mean residential indoor concentrations were higher than geometric mean residential outdoor concentrations for all target compounds except hexane, which was detected in 40% of residential outdoor samples and 11% of residential indoor samples, respectively. Geometric mean residential indoor concentrations were significantly higher than personal exposure concentrations, which in turn were significantly higher than workplace concentrations for compounds that had strong residential indoor sources (d-limonene, alpha pinene, 3-carene, hexanal, 2-methyl-1-propanol and 1-butanol). 40% of participants in EXPOLIS-Helsinki reported personal exposure to environmental tobacco smoke (ETS). Participants in Helsinki that were exposed to ETS at any time during the 48-h sampling period had significantly higher personal exposures to benzene, toluene, styrene, m,p-xylene, o-xylene, ethylbenzene and trimethylbenzene. Geometric mean ETS-free workplace concentrations were higher than ETS-free personal exposure concentrations for styrene, hexane and cyclohexane. Geometric mean personal exposures of participants not exposed to ETS were approximately equivalent to time weighted ETS-free indoor and workplace concentrations, except for octanal and compounds associated with traffic, which showed higher geometric mean personal exposure concentrations than any microenvironment (o-xylene, ethylbenzene,benzene, undecane, nonane, decane, m,p-xylene, and trimethylbenzene). Considerable differences in personal exposure concentrations and residential levels of compounds with mainly indoor sources suggested differences in product types or the frequency of product use between Helsinki, Germany and the United States.  相似文献   

20.
Estimates of individual personal exposures to ozone, nitrogen dioxide, pollen, temperature, and relative humidity for a group of asthmatics participating In a health effects study were obtained by means of a modeling approach utilizing fixed site monitoring data, regression relationships between fixed site and indoor and outdoor micro-environment concentrations, study subject activity patterns, and study household characteristics. A considerable improvement in the accuracy of exposure assessment using the exposure model instead of fixed site measurements alone was demonstrated for ozone. This large refinement of ozone exposure estimates was achieved using a simplified approach which emphasized the large differences between Indoor and outdoor micro-environmental concentrations, and assumed relatively little heterogeneity in exposure within either of these two broad micro-environmental categories. Major sources of error in the exposure model for ozone Include: failure to Include Indoor microenvironments with no air conditioning in the development of the model, Inability to accurately apportion within-hour time spent in different microenvironments, and misclassification of hour-specific personal location by study subjects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号