首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
High levels of fecal indicator bacteria (FIB) in surface waters is a common problem in urban areas that often leads to impairment of beneficial uses such as swimming. Once impaired, common management and regulatory solutions include development of total maximum daily loads (TMDLs) and other water quality management plans. A critical element of these plans is establishment of a "reference" level of exceedances against which to assess management goals and TMDL compliance. The goal of this study was to provide information on indicator bacteria contributions from natural streams in undeveloped catchments throughout southern California during dry weather, non-storm conditions. To help establish a regional reference data set, bacteria levels [i.e. Escherichia coli (E. coli), enterococci and total coliforms] were measured from 15 unimpaired streams in 11 southern California watersheds weekly for one full year. Concentrations measured from reference areas were typically between one to two orders of magnitude lower than levels found in developed watersheds. Nearly 82% of the time, samples did not exceed daily and monthly bacterial indicator thresholds. E. coli had the lowest daily percent exceedance (1.5%). A total of 13.7% of enterococci exceeded daily thresholds. Indicator bacteria levels fluctuated seasonally with an average of 79% of both enterococci and total coliforms exceedances occurring during summer months (June to August). Temperature, at all sites, explained about one-half the variation in total coliforms density suggesting that stream temperatures regulated bacterial populations. Accounting for natural background levels will allow for management targets that are more reflective of the contributions from natural sources.  相似文献   

2.
E. coli and enterococci in recreational waters are monitored as indicators of fecal contamination, pathogen presence, and health risk. Quantitative polymerase chain reaction (qPCR) tests for fecal indicator bacteria can provide beach managers with same-day information about water quality, unlike culture methods which provide that information the following day. The abilities of qPCR measurements of indicator bacteria, as compared to culture measurements of indicator bacteria, as predictors of pathogen presence or density in surface waters are not well understood. The purpose of this study was to make such comparisons between water samples collected from Chicago area surface waters, including rivers, inland lakes, Lake Michigan, and the Chicago Area Waterways System, which is dominated by wastewater effluent. A total of 294 twenty-litre samples were collected and analyzed for Giardia and Cryptosporidium. qPCR and membrane filtration methods were used to quantify E. coli and enterococci. Correlation, logistic regression, and zero-inflated Poisson modeling were utilized to evaluate associations between indicators and parasites. qPCR and culture measures of the indicator bacteria were similar in their ability to predict parasite presence and density. Correlations between parasites and indicators were generally stronger at waters not dominated by effluent. Associations between indicator density and Giarida presence were observed more consistently than between indicator density and Cryptosporidium presence. Associations between enterococci and parasites were generally stronger than associations between E. coli and parasites. The use of qPCR monitoring in our setting would generate more timely results without compromising the ability to predict parasite presence or density.  相似文献   

3.
Enterococci bacteria are used to indicate the presence of human and/or animal fecal materials in surface water. In addition to human influences on the quality of surface water, a cattle grazing is a widespread and persistent ecological stressor in the Western United States. Cattle may affect surface water quality directly by depositing nutrients and bacteria, and indirectly by damaging stream banks or removing vegetation cover, which may lead to increased sediment loads. This study used the State of Oregon surface water data to determine the likelihood of animal pathogen presence using enterococci and analyzed the spatial distribution and relationship of biotic (enterococci) and abiotic (nitrogen and phosphorous) surface water constituents to landscape metrics and others (e.g. human use, percent riparian cover, natural covers, grazing, etc.). We used a grazing potential index (GPI) based on proximity to water, land ownership and forage availability. Mean and variability of GPI, forage availability, stream density and length, and landscape metrics were related to enterococci and many forms of nitrogen and phosphorous in standard and logistic regression models. The GPI did not have a significant role in the models, but forage related variables had significant contribution. Urban land use within stream reach was the main driving factor when exceeding the threshold (> or =35 cfu/100 ml), agriculture was the driving force in elevating enterococci in sites where enterococci concentration was <35 cfu/100 ml. Landscape metrics related to amount of agriculture, wetlands and urban all contributed to increasing nutrients in surface water but at different scales. The probability of having sites with concentrations of enterococci above the threshold was much lower in areas of natural land cover and much higher in areas with higher urban land use within 60 m of stream. A 1% increase in natural land cover was associated with a 12% decrease in the predicted odds of having a site exceeding the threshold. Opposite to natural land cover, a one unit change in each of manmade barren and urban land use led to an increase of the likelihood of exceeding the threshold by 73%, and 11%, respectively. Change in urban land use had a higher influence on the likelihood of a site exceeding the threshold than that of natural land cover.  相似文献   

4.
Stormwater ponds are commonly used in residential and commercial areas to control flooding. The accumulation of urban contaminants in stormwater ponds can lead to water-quality problems including nutrient enrichment, chemical contamination, and bacterial contamination. This study presents 5 years of monitoring data assessing water quality of a residential subdivision pond and adjacent tidal creek in coastal South Carolina, USA. The stormwater pond is eutrophic, as described by elevated concentrations of chlorophyll and phosphorus, and experiences periodic cyanobacterial blooms. A maximum monthly average chlorophyll concentration of 318.75 μg/L was measured in the stormwater pond and 227.63 μg/L in the tidal creek. Fecal coliform bacteria (FCB) levels were measured in both the pond and the tidal creek that exceeded health and safety standards for safe recreational use. A maximum monthly average FCB level of 1,247 CFU/100 mL was measured in the stormwater pond and 12,850 CFU/100 mL in the tidal creek. In addition, the presence of antibiotic resistant bacteria and pathogenic bacteria were detected. Low concentrations of herbicides (atrazine and 2,4-D), a fungicide (chlorothalonil), and insecticides (pyrethroids and imidacloprid) were measured. Seasonal trends were identified, with the winter months having the lowest concentrations of chlorophyll and FCB. Statistical differences between the stormwater pond and the tidal creek were also noted within seasons. The tidal creek had higher FCB levels than the stormwater pond in the spring and summer, whereas the stormwater pond had higher chlorophyll levels than the tidal creek in the summer and fall seasons. Chlorophyll and FCB levels in the stormwater pond were significantly correlated with monthly average temperature and total rainfall. Pesticide concentrations were also significantly correlated with temperature and rainfall. Pesticide concentrations in the stormwater pond were significantly correlated with pesticide concentrations in the adjacent tidal creek. Chlorophyll and FCB levels in the tidal creek, however, were not significantly correlated with levels in the pond. While stormwater ponds are beneficial in controlling flooding, they may pose environmental and human health risks due to biological and chemical contamination. Management to reduce residential runoff may improve water quality in coastal stormwater ponds and their adjacent estuarine ecosystems.  相似文献   

5.
A study was performed in Del Rey Lagoon, City of Los Angeles, to determine if the lagoon was as a source or sink for fecal indicator bacteria (FIB: total coliforms, Escherichia coli, enterococci) and to screen for the presence of other potentially pathogenic bacteria. The lagoon receives tidal flows from the adjacent Ballona Estuary whose water usually is contaminated with FIB originating from the highly urbanized Ballona Creek Watershed. During 16 sampling events from February 2008 through March 2009, replicate water samples (n?=?3) were collected 1 h prior to the high tide and 1 h prior to the following low tide. FIB concentrations were measured by the defined substrate method (IDEXX, Westbrook, Me) followed by culturing of bacterial isolates sampled from positive IDEXX Quanti-Tray wells and were identified using the Vitek 2 Compact (bioMérieux, Durham, NC). Mean concentrations of FIB often differed by an order of magnitude from flood to ebb flow conditions. The lagoon tended to act as a sink for total coliforms based on the ratio of mean flood to ebb densities (R F/E) >1.0 during 56 % of the sampling events and during ebb flows, as a source for E. coli and enterococci (R F/E <1.69 % of events). Approximately 54 species were identified from 277 isolates cultured from the IDEXX Quanti-Trays. Of these, 54 % were species known to include pathogenic strains that can be naturally occurring, introduced in runoff, or originated from other sources. Diversity and cluster analyses indicated a dynamic assemblage that changes in species composition with day-to-day fluctuations as well as tidal action. The concept of monitoring the lagoon and estuary as a sentinel habitat for pathogenic assemblages is discussed.  相似文献   

6.
A distributed hydrologic modeling and GIS approach is applied for the assessment of land use impact in the Steinsel sub-basin, Alzette, Grand-Duchy of Luxembourg. The assessment focuses on the runoff contributions from different land use classes and the potential impact of land use changes on runoff generation. The results show that the direct runoff from urban areas is dominant for a flood event compared with runoff from other land use areas in this catchment, and tends to increase for small floods and for the dry season floods, whereas the interflow from forested, pasture and agricultural field areas contributes to the recession flow. Significant variations in flood volume, peak discharge, time to the peak, etc., are found from the model simulation based on the three hypothetical land use change scenarios.  相似文献   

7.
In this study, baseflow and storm discharges were monitored in seven watersheds of varying development density to document the effects of development on stream water quality. In addition, two of the watersheds contained package wastewater treatment facilities, which were evaluated as an alternative to residential on-site septic systems. Monthly grab samples of baseflow and flow-proportional samples of storm event discharge were collected and analyzed for nitrogen, phosphorus, sediment, and bacteria. For the five watersheds without wastewater treatment facilities, a significant linear relationship was documented between fecal coliform and enterococci levels in baseflow samples and the percentage of residential or impervious area. For the two watersheds with wastewater discharge, bacteria levels were significantly greater than those from the two relatively undeveloped watersheds. These results indicate that bacteria levels increased with increasing residential development even if many of the septic systems were replaced by a community wastewater treatment system. Computed annual export rates for ammonia nitrogen (NH3-N) were correlated to the percentage of impervious surfaces in the watersheds, while the rates for other nitrogen forms, total phosphorus, and total suspended sediment were not. Annual export rates from the two mostly undeveloped watersheds were greater than a compilation of rates for undeveloped areas across the USA. Export from the four watersheds with more than 68 % residential land use was less than those reported from local and national studies of residential areas.  相似文献   

8.
Water quality impairment by fecal waste in coastal watersheds is a public health issue. The present study provided evidence for the use of a mitochondrial (mtDNA) marker to detect animal fecal sources in surface water. The accurate identification of fecal pollution is based on the notion that fecal microorganisms preferentially inhabit a host animal’s gut environment. In contrast, mtDNA host-specific markers are inherent to eukaryotic host cells, which offers the advantage by detecting DNA from the host rather than its fecal bacteria. The present study focused on sampling water presumably from non-point sources (NPS), which can increase bacterial and nitrogen concentrations to receiving water bodies. Stream sampling sites located within the Piscataqua River Watershed (PRW), New Hampshire, USA, were sampled from a range of sites that experienced nitrogen inputs such as sewer and septic systems and suburban runoff. Three mitochondrial (mtDNA) gene marker assays (human, bovine, and canine) were tested from surface water. Nineteen sites were sampled during an 18-month period. Analyses of the combined single and multiplex assay results showed that the proportion of occurrence was highest for bovine (15.6%; n = 77) compared to canine (5.6%; n = 70) and human (5.7%; n = 107) mtDNA gene markers. For the human mtDNA marker, there was a statistically significant relationship between presence vs. absence and land use (Fisher’s test p = 0.0031). This result was evident particularly for rural suburban septic, which showed the highest proportion of presence (19.2%) compared to the urban sewered (3.3%), suburban sewered (0%), and agricultural (0%) as well as forested septic (0%) sites. Although further testing across varied land use is needed, our study provides evidence for using the mtDNA marker in large watersheds.  相似文献   

9.
Runoff from impervious land cover has a major impact on headwater tidal creek ecosystems resulting from ever increasing development along the coastline. Tidal creek habitats can serve as "early warning systems" for anthropogenic stressors due to their proximity to the uplands. In this study, the macrobenthic community was sampled along the longitudinal gradient of tidal creeks (i.e., first order, second order, and third order) in North Carolina, South Carolina, and Georgia which varied in their levels of watershed development (salt marsh, forested, suburban, and urban). This study was designed to assess the condition of macrobenthic communities in tidal creek ecosystems under varying levels of anthropogenic stressors and test whether the conclusions of a previous study in South Carolina (Holland et al., J Exp Mar Biol Ecol 298:151-178, 2004) could be generalized to the southeastern USA. Metrics of community-level and species-specific response within tidal creeks draining watersheds of varying degrees of impervious cover suggest the macrobenthic community may be a useful indicator of development in tidal creeks ecosystems. The differences observed when data from all three states were pooled was consistent with previous findings in South Carolina tidal creeks which illustrates that macrobenthic communities in tidal creeks may react to watershed development in similar patterns along the southeastern coast of the USA.  相似文献   

10.
The origin and distribution of microbial contamination in Lake Geneva's most polluted bay were assessed using faecal indicator bacteria (FIB). The lake is used as drinking water, for recreation and fishing. During 1 year, water samples were taken at 23 points in the bay and three contamination sources: a wastewater treatment plant (WWTP), a river and a storm water outlet. Analyses included Escherichia coli, enterococci (ENT), total coliforms (TC), and heterotrophic plate counts (HPC). E. coli input flux rates from the WWTP can reach 2.5 x 10(10) CFU/s; those from the river are one to three orders of magnitude lower. Different pathogenic Salmonella serotypes were identified in water from these sources. FIB levels in the bay are highly variable. Results demonstrate that (1) the WWTP outlet at 30 m depth impacts near-surface water quality during holomixis in winter; (2) when the lake is stratified, the effluent water is generally trapped below the thermocline; (3) during major floods, upwelling across the thermocline may occur; (4) the river permanently contributes to contamination, mainly near the river mouth and during floods, when the storm water outlet contributes additionally; (5) the lowest FIB levels in the near-surface water occur during low-flow periods in the bathing season.  相似文献   

11.
Urbanization can exert a profound influence on land covers and landscape characteristics. In this study, we characterize the impact of urbanization on land cover and lacustrine landscape and their consequences in a large urban lake watershed, Donghu Lake watershed (the largest urban lake in China), Central China, by using Landsat TM satellite images of three periods of 1987, 1993 and 1999 and ground-based information. We grouped the land covers into six categories: water body, vegetable land, forested land, shrub-grass land, open area and urban land, and calculated patch-related landscape indices to analyze the effects of urbanization on landscape features. We overlaid the land cover maps of the three periods to track the land cover change processes. The results indicated that urban land continuously expanded from 9.1% of the total watershed area in 1987, to 19.4% in 1993, and to 29.6% in 1999. The vegetable land increased from 7.0% in 1987, 11.9% in 1993, to 13.9% in 1999 to sustain the demands of vegetable for increased urban population. Concurrently, continuous reduction of other land cover types occurred between 1987 and 1999: water body decreased from 30.4% to 23.8%, and forested land from 33.6% to 24.3%. We found that the expansion of urban land has at least in part caused a decrease in relatively wild habitats, such as urban forest and lake water area. These alterations had resulted in significant negative environmental consequences, including decline of lakes, deterioration of water and air quality, and loss of biodiversity.  相似文献   

12.
Multiple Antibiotic Resistance (MAR) analysis and regression modeling techniques were used to identify surface water areas impacted by fecal pollution from human sources, and to determine the effects of land use on fecal pollution in Murrells Inlet, a small, urbanized, high-salinity estuary located between Myrtle Beach and Georgetown, South Carolina. MAR analysis was performed to identify areas in the estuary that are impacted by human-source fecal pollution. Additionally, regression analysis was performed to determine if an association exists between land use and fecal coliform densities over the ten-year period from 1989 to 1998. Land-use variables were derived using Geographic Information System (GIS) techniques and were used in the regression analysis.MAR analyses were conducted by comparing the frequency and patterns of antibiotic resistance found in Escherichia coli isolates derived from surface water samples and from sewage sources in the Murrells Inlet sewage collection system. The MAR results suggest that the majority of the fecal pollution detected in the Murrells Inlet estuary may be from non-human sources, including fecal coliforms isolated from areas in close proximity to high densities of active septic tanks.A MAR Index, which measures the frequency of antibiotic resistance, was calculated for each of twenty-three water samples and nine sewage samples. The antibiotic resistance pattern comparisons were performed using cluster analysis. Although the MAR indices indicated that several surface water sites had potential human-source contamination, the cluster analysis suggests that only one sampling site had MAR patterns that were similar to those found in the sewage samples. This site was in close proximity to several large pleasure boats as well as a sewage collection system lift station, but was not near areas with active septic tanks. The results of the regression analysis also suggest that sewage sources and rainfall runoff from urbanized areas may contribute to fecal pollution in the estuary.  相似文献   

13.
The major goal of this study is to gain a perspective on the prevalence of DNA enteric virus genomes in mesophilic anaerobic-digested (MAD) sewage sludge and manure by comparing their quantitative PCR (qPCR) concentrations and removals with traditional fecal indicators (Escherichia coli, enterococci, and Bacteroidetes). In addition, relationships between qPCR and culture measurements of fecal indicators (FIs) were determined. There was no significant difference between the qPCR concentrations of human adenovirus and E. coli/enterococci in MAD sewage sludge; however, the qPCR concentrations of bovine adenovirus were significantly lower than FIs and bovine polyomavirus (BPyV) in MAD manure. The qPCR concentrations of human polyomavirus were slightly lower than E. coli and enterococci (p ≤ 0.05), but no significant difference was observed between the qPCR concentrations of BPyV and FIs. The digestion treatment achieved higher genome removal of bovine DNA enteric viruses than FIs (p ≤ 0.05). Significant correlations were observed between qPCR and culture measurements of FIs, but the concentrations and removals of FIs determined by qPCR assays were still significantly different than those determined by culture assays. Overall, we determined that the prevalence of DNA enteric virus genomes in MAD biological wastes was high due to their comparable in qPCR concentrations to FIs, indicating that mesophilic anaerobic digestion treatment alone may not be effective enough to remove DNA viral pathogens in biological wastes.  相似文献   

14.
The United States Environmental Protection Agency (USEPA) recommends the use of Escherichia coli (E. coli) and enterococci as indicators of enteric pathogens in fresh waters; however, fecal coliform analyses will remain important by virtue of the large amount of historic data collected in prior years. In this study, we attempted, in a real-world situation (i.e., a rural inland watershed in the Piedmont of South Carolina) to compare different bacterial indicators and methods to one another. We compared fecal coliforms, enumerated by membrane filtration with E. coli, enumerated by a commercialized enzyme substrate method and observed E. coli/fecal coliform ratios of 1.63 and 1.2 for two separate tests. In the same watershed, we observed an E. coli/fecal coliform ratio of 0.84 when we used the commercialized enzyme substrate method for both enumerations. Given these results, users of such data should exercise care when they make comparisons between historic membrane filtration data and data acquired through the use of the more modern enzymatic methods. Some sampling and side-by-side testing between methods in a specific watershed may be prudent before any conversion factors between old and new datasets are applied.  相似文献   

15.
Three methods (membrane filtration, multiple tube fermentation, and chromogenic substrate technology kits manufactured by IDEXX Laboratories, Inc.) are routinely used to measure indicator bacteria for beach water quality. To assess comparability of these methods, quantify within-laboratory variability for each method, and place that variability into context of variability among laboratories using the same method, 22 southern California laboratories participated in a series of intercalibration exercises. Each laboratory processed three to five replicates from thirteen samples, with total coliforms, fecal coliforms or enterococci measured depending on the sample. Results were generally comparable among methods, though membrane filtration appeared to underestimate the other two methods for fecal coliforms, possibly due to clumping. Variability was greatest for the multiple tube fermentation method. For all three methods, within laboratory variability was greater than among laboratories variability.  相似文献   

16.
Water quality monitoring is essential for the provision of safe drinking water. In this study, we compared a selection of fecal indicators with universal Bacteroidales genetic marker to identify fecal pollution of a variety of drinking water sources. A total of 60 samples were collected from water sources. The microbiological parameters included total coliforms, fecal coliforms, Escherichia coli and fecal streptococci as the fecal indicator bacteria (FIB), Clostridium perfringens and H2S bacteria as alternative indicators, universal Bacteroidales genetic marker as a promising alternative fecal indicator, and Salmonella spp., Shigella spp., and E. coli O157 as pathogenic bacteria. From 60 samples analyzed, Bacteroidales was the most frequently detected indicator followed by total coliforms. However, the Bacteroidales assay failed to detect the marker in nine samples positive for FIB and other alternative indicators. The results of our study showed that the absence of Bacteroidales is not necessarily an evidence of fecal and pathogenic bacteria absence and may be unable to ensure the safety of the water. Further research, however, is required for a better understanding of the use of a Bacteroidales genetic marker as an indicator in water quality monitoring programs.  相似文献   

17.
The Catskill/Delaware reservoirs supply 90% of New York City’s drinking water. The City has implemented a series of watershed protection measures, including land acquisition, aimed at preserving water quality in the Catskill/Delaware watersheds. The objective of this study was to examine how relationships between landscape and surface water measurements change between years. Thirty-two drainage areas delineated from surface water sample points (total nitrogen, total phosphorus, and fecal coliform bacteria concentrations) were used in step-wise regression analyses to test landscape and surface-water quality relationships. Two measurements of land use, percent agriculture and percent urban development, were positively related to water quality and consistently present in all regression models. Together these two land uses explained 25 to 75% of the regression model variation. However, the contribution of agriculture to water quality condition showed a decreasing trend with time as overall agricultural land cover decreased. Results from this study demonstrate that relationships between land cover and surface water concentrations of total nitrogen, total phosphorus, and fecal coliform bacteria counts over a large area can be evaluated using a relatively simple geographic information system method. Land managers may find this method useful for targeting resources in relation to a particular water quality concern, focusing best management efforts, and maximizing benefits to water quality with minimal costs.The United States Environmental Protection Agency through its Office of Research and Development funded and managed the research described here. It has been subjected to Agency’s administrative review and approved for publication as an EPA document.  相似文献   

18.
In Maryland, U.S., an interim framework has recentlybeen developed for using biologically based thresholds, or `biocriteria', to assess the health of nontidal streams statewide at watershed scales. The evaluation of impairment is based on indices of biological integrity from the Maryland Biological Stream Survey (MBSS). We applied logistic regression to quantify how the biotic integrity of streams at a local scale is affected by cumulative effects resulting from catchment land uses, point sources, and nearby transmission line rights-of-way. Indicators for land use were developed from the remote sensing National Land Cover Data and applied at different scales. We determined that the risk of local impairment in nontidal streams rapidly increases with increased urban land use in the catchment area. The average likelihood of failing biocriteria doubled with every 10% points increment in urban land, thus an increase in urban land use from 0 to 20% quadruples the risk of impairment. For the basins evaluated in this study, catchments with more than 40–50% urban land use had greater than 80% probability of failing biocriteria, on average. Inclusion of rights-of-way and point sources in the model did not significantly improve the fit for this data set, most likely because of their low numbers. The overall results indicate that our predictive modeling approach can help pinpoint stream ecosystems experiencing or vulnerable to degradation.  相似文献   

19.
Effects of Forest Management Practices on Mid-Atlantic Streams   总被引:1,自引:0,他引:1  
Agricultural and urban land use activities have affected stream ecosystems throughout the mid-Atlantic region. However, over 60% of the mid-Atlantic region is forested. A study was conducted to investigate the effects of management practices on forested stream ecosystems throughout the mid-Atlantic region. The study consisted of two phases: Phase 1 was a literature synthesis of information available on the effects of forest management practices on stream hydrology, erosion and sedimentation, riparian habitat alteration, chemical addition, and change in biotic diversity in the mid-Atlantic region. In Phase 2, data from mid-Atlantic streams were analyzed to assess the effects of forest land use on stream quality at the regional scale. Typically, it is the larger order streams in which monitoring and assessment occurs—3rd order or higher streams. The impacts of forest management practices, particularly hydrologic modifications and riparian buffer zone alteration, occur predominantly in first and second order streams with cumulative impacts translating to higher order streams. Based on the literature review and mid-Atlantic Highland streams analysis, there are short-term (e.g., 2 to 5 years) effects of forest management practices on stream quality at local scales. However, signatures of cumulative effects from forest management practices are not apparent at regional scales in the Highlands. In general, forested land use is associated with good stream quality in the region compared with other land use practices.  相似文献   

20.
Studies on abundance and types of various pollution indicator bacterial populations from tropical estuaries are rare. This study was aimed to estimate current levels of pollution indicator as well as many groups of human pathogenic bacteria and their seasonal variations in different locations in Mandovi and Zuari Rivers in the central west coast of India. The sampling covered the estuarine and upstream regions of these rivers representing premonsoon (May 2005), monsoon (September 2006) and post-monsoon (November 2005). Both the abundance and types of autochthonous and allochthonous microbial populations in the near shore environments are affected by land drainages, domestic sewage outfalls and other discharges. The overall ranges (and their mean abundance; no. ml(-1)) of the monitored groups of bacteria were: total coliforms: 0-29,047 (3,134 ml(-1)); total streptococci: 3-14,597 (798); total vibrios: 13-42,275 (2,530); Escherichia coli: 0-1,333 (123); Vibrio cholerae: 0-3,012 (207); Salmonella spp: 0-1,646 (90); Streptococcus faecalis: 0-613 (88) and Aeromonas spp: 0-2,760 (205). In general, abundance of sewage pollution indicator bacteria such as total coliforms and total streptococci was lower than that reported from many other locations worldwide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号