首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 191 毫秒
1.
本研究分别于2020年7月和2020年12月采集九龙江口表层水体,测定了溶解氧化亚氮(N2O)浓度及其相关的理化参数,同时进行培养实验,测定硝化速率和N2O产生速率,分析九龙江口N2O的空间分布特征和季节变化规律,探讨了影响N2O分布的主要过程及关键因素,并利用LOICZ箱式模型计算了九龙江口N2O的河流输入、水—气交换、生物生产和河口输出通量。结果表明,九龙江口N2O浓度和饱和度存在显著的空间差异,其浓度范围为15.3~50.2 nmol/L,饱和度范围为214.6%~699.1%。冬季航次N2O的水—气通量为5.02×103 mol/d,夏季航次为4.09×103 mol/d,说明九龙江口是大气N2O的重要排放源。硝化作用是九龙江口水体N2O产生的主要途径,是调控水体N2O分布的主要过程,溶解无机氮是影响硝化作用的关键因素...  相似文献   

2.
本文基于2022年5月现场调查,研究了北黄海辽东半岛东部邻近海域溶解甲烷(CH4)的分布、影响因素及海-气交换通量。结果表明,该海域溶解CH4浓度为3.2~11.2 nmol/L,饱和度为103%~364%,高值区位于鸭绿江口近岸海域,随着河口向海延伸,表层海水溶解CH4浓度逐渐减小,而底层海水溶解CH4浓度升高;鸭绿江冲淡水的输入致使近岸海域溶解CH4浓度显著升高,而沉积物有机质降解使得离岸海域底层海水溶解CH4浓度升高;该海域海-气CH4交换通量为0.7~61.1μmol/(m2·d),是大气CH4的源,近岸海域显著高于离岸海域。鸭绿江冲淡水的输入即使在平水期(5月)已经对邻近海域溶解CH4的影响非常显著,因此,河口等近岸海域海-气CH4交换通量的研究对于评估我国陆架边缘海对大气CH4的贡献至关重要。  相似文献   

3.
为探究弱水动力条件下, 典型滨海地区水体N2O释放通量及其主控因素, 于2019年7月和8月(夏季)和11月(冬季初期)对以大清河-独流减河-北大港湿地为代表的渤海湾弱水动力条件河流开展水样采集与分析工作.结果表明: N2O浓度变化范围为0.4~184.5nmol/L, N2O饱和度的变化范围为7.2%~2740%, 其中近90%的样品处于过饱和状态, 表明该研究区是潜在的N2O释放源.N2O水-气界面释放通量为-0.3~6.7μmol/(m2·h), 夏季水体N2O的释放通量高于冬季.降雨前后N2O浓度出现明显波动, 相同点位降雨前后N2O浓度的变化值为-15.2~63.9nmol/L, 独流减河上游农业区N2O浓度的平均增加量(22.1nmol/L)显著高于下游(1.3nmol/L), 降雨驱动了流域氮素的运移, 促进了水体N2O释放.相关性分析表明, 水体N2O的浓度受反应物浓度、水体盐度共同调控.通过计算得到该滨海地区弱水动力条件下河流N2O的排放因子为0.0073, 表明气候变化委员会(IPCC)默认值0.0026可能低估了该地区间接N2O释放.  相似文献   

4.
河流是大气温室气体重要的排放源.为了探讨天津市典型景观滨海河流N2O释放空间特征及影响因素,以天津市6条不同土地利用类型的滨海河流为研究对象,通过顶空-气相色谱法测定了N2O浓度、饱和度和扩散通量.结果表明,天津市不同景观河流N2O浓度都处于过饱和状态,表现为大气N2O的源;N2O浓度、饱和度和扩散通量均值为(23.85±15.20)nmol·L-1、(309.71±197.38)%和(27.04±16.46)μmol·(m2·d)-1,范围分别为12.70~115.69 nmol·L-1、 164%~1 502%和9.17~244.79μmol·(m2·d)-1.天津市不同土地利用类型河流N2O浓度和扩散通量具有较大的空间异质性,表现为:排污河>城市河流>郊区河流>农业河流.天津滨海河流N2  相似文献   

5.
根据2009和2010年两个航次对大连湾进行的大面调查,测定了不同季节表层海水中CO2分压、CH4和N2O的水平分布。结果表明,大连湾表层海水pCO2的季节变化不大,秋冬两季表层海水pCO2范围分别为44.00~51.55 Pa和35.45~56.21 Pa,统计平均值分别为47.77 Pa和40.05 Pa;大连湾表层海水中溶解CH4浓度的季节变化不大,但其饱和度差异明显,秋季远高于冬季;海水中溶解N2O饱和度的季节变化不大,浓度变化较显著,冬季远高于秋季。利用Liss和Merlivat公式和Wanninkhof公式分别估算了大连湾秋冬2个季节三者的海-气交换通量,结果表明秋季大连湾为大气CO2、CH4和N2O的源区,而冬季大连湾主要为大气CO2的汇区,是大气CH4和N2O的源区。  相似文献   

6.
为了探究陆架海域在全球海洋一氧化碳(CO)的生物地球化学循环中的地位,本文于2021年春季在中国东海对CO的浓度分布、海-气通量、暗反应生产和微生物消耗进行了研究。结果表明,东海大气中CO的体积分数为126.07×10-9~353.15×10-9,平均值为(191.32±51.52)×10-9,呈现明显的近岸高、远海低的特点。表层海水中CO的浓度为0.83~4.08 nmol/L,平均值为(2.07±0.84)nmol/L,最大值出现在舟山群岛附近,最小值出现在夜间采样站位,受太阳辐射强度和陆源输入有机物的影响较大。近岸海水中CO的垂直分布呈现表层浓度高、随深度增加浓度逐渐减小的趋势。表层海水中CO的过饱和系数为4.98~24.96,平均值为13.94±5.77。CO的日海-气通量为2.62~9.38μmol/(m2·d),平均值为(6.70±2.62)μmol/(m2·d)。在CO的暗反应生成培养实验中,CO浓度随时间增长呈现线性增加的趋势,生成速率为0.024~0.50 n...  相似文献   

7.
春季东、黄海溶解甲烷的分布和海气交换通量   总被引:2,自引:1,他引:1  
于2011年3月17日~4月6日对东、黄海海域进行了大面调查,采集了45个站位不同深度的海水样品,对溶解甲烷(CH4)浓度进行了测定,并估算了其海-气交换通量.结果表明,东、黄海表层海水中溶解甲烷的浓度变化范围是2.39~29.67nmol.L-1,底层海水中甲烷浓度范围是2.63~30.63 nmol.L-1,底层浓度略高于表层,表明底层水体或沉积物中存在甲烷的源.春季东、黄海海域表、底层溶解甲烷的分布特征基本一致,即从近岸向远海逐渐降低,主要受长江冲淡水输入和黑潮水入侵的影响.春季东、黄海海域表层海水中CH4饱和度为93%~1 038%.利用Liss and Merlivat公式(LM86)、Wanninkhof公式(W92)和现场测定的风速估算出春季东、黄海海域CH4的海-气交换通量分别为(2.85±5.11)μmol.(m2.d)-1和(5.18±9.99)μmol.(m2.d)-1,根据本研究结果和文献数据初步估算出东海和黄海年释放甲烷量分别为7.05×10-2~12.0×10-2Tg.a-1和1.17×10-2~2.20×10-2Tg.a-1.春季东、黄海海域表层海水中CH4均呈过饱和状态,是大气中CH4的净源.  相似文献   

8.
对太湖典型草(包括沉水植物及挺水植物湖区)、藻型湖区水-气界面N2O排放通量、水柱溶存浓度、泥-水界面通量以及3个湖区的水柱及沉积物理化性质进行了原位观测及实验室分析研究,并针对影响N2O生成与排放的主要环境因子进行了室内的微环境模拟试验.研究结果表明:水-气界面N2O释放通量及泥-水界面N2O释放通量为藻型湖区 > 沉水植物湖区 > 挺水植物湖区((123.10±11.43)μg/(m2·h),(79.19±4.90)μg/(m2·h),(53.45±4.22)μg/(m2·h)和(29.60±0.20)μmol/(m2·h),(10.89±1.66)μmol/(m2·h),(3.83±0.30)μmol/(m2·h));水体溶存N2O浓度均为藻型湖区 > 挺水植物湖区 > 沉水植物湖区((0.0247±0.0003)μmol/L,(0.0236±0.0003)μmol/L,(0.0219±0.0001)μmol/L);室内微环境实验结果表明:冬季升高温度能够显著地提高N2O的生成潜力,高盐度对3种生态类型湖区沉积物N2O的生成速率总体表现出抑制作用,藻型湖区及挺水植物湖区沉积物N2O释放潜力在添加Cl-组明显高于控制组,氮盐度过高会抑制沉积物N2O产生,而沉水植物湖区沉积物N2O产生受到抑制;随添加NH+4-N和NO-3-N等营养盐浓度升高,藻型湖区及沉水植物湖区沉积物中N2O生成速率增加,挺水植物湖区N2O生成速率降低,而乙酸盐作为微生物活动的碳源和能源对N2O生成表现出抑制作用.冬季太湖典型草、藻型湖区N2O排放存在显著差异,冬季草/藻型湖区N2O生成主要受冬季低温的限制,另外也受水柱无机氮形态及浓度的影响.  相似文献   

9.
春季南海溶存N_2O的分布特征和海气交换通量   总被引:1,自引:0,他引:1  
2005年4月28日至5月11日在南海北部进行了调查,测定了南海不同深度海水中溶解N2O的浓度.结果表明,表层海水中的N2O浓度范围在5.17~14.9 nmol/L,饱和度范围为90.4%~236.3%,除个别站位外,表层水体中N2O均处于过饱和状态,是大气中N2O的净源.在研究海域陆架-陆坡站位和海盆区站位N2O的垂直分布有一共同特点:透光层海水中N2O垂直混合较为均匀.利用Liss和Merlivat公式(LM86)以及Wanninkhof公式(W92)分别计算了南海N2O海-气交换通量,结果为-0.57~32.93 μmol/m2·d和-1.1~53.51 μmol/m2*d,此外,我们还估算了南海对大气N2O的贡献为0.15~0.24 Tg/a,要远高于开阔大洋.  相似文献   

10.
海洋是大气中一氧化碳(CO)的重要来源,河口区域在调节气候活性气体收支方面发挥着重要作用。本文旨在研究长江口作为典型河口在全球海洋CO生物地球化学循环中的地位,并进一步了解河口区域海水和大气中CO浓度的变化情况。本文基于2021年冬季和夏季在长江口及其邻近海域的现场调查,对该海域CO分布、海-气通量和微生物消耗速率进行了研究。结果表明,冬季和夏季调查海域大气中CO的体积分数平均值分别为(530.39±120.40)×10-9和(416.91±102.01)×10-9,大气中CO含量受人类活动影响较大;受光照强度和陆源输入有机物的影响,夏季表层海水中CO的浓度平均值[(4.52±2.13) nmol/L]显著高于冬季[(1.30±0.79) nmol/L];相应地,夏季海—气通量平均值[0.95μmol/(m2·d)]亦显著高于冬季[0.10μmol/(m2·d)]。冬季的微生物消耗速率常数(kbio)的平均值[(0.46±0.31)/h]明显高于夏季[(0.26±0.07)/h...  相似文献   

11.
二甲基硫(dimethyl sulfide,DMS)海气交换对全球气候和环境变化有重要贡献。本文利用已发表的2005-2017年文献数据,结合ERA-interim(European Centre for Medium-Range Weather Forecasts Interim Re-Analysis)风速数据,估算了黄、东海DMS海气通量,并分析了其季节变化和空间差异。结果表明:南黄海和东海DMS年平均海气通量分别为(8.63±4.90)μmol/(m2·d)和(12.77±8.42)μmol/(m2·d),除秋季外,东海海气通量高于南黄海;DMS海气通量季节变化显著,夏季最大,冬季最小,南黄海秋季高于春季,东海春季高于秋季。基于方差分解,本文讨论了各因子方差对DMS海气通量方差的贡献,在南黄海,春季表层DMS浓度和交换速率均对海气通量有主要影响,夏季和冬季交换速率对海气通量影响较大;在东海,春季海气通量受到交换速率和DMS浓度交互作用的影响较大,夏季海气通量主要由DMS浓度控制,秋季和冬季交换速率对海气通量的影响较大。南黄海和东海占全球海洋面积的0.30%,其DMS排放量为0.1461 TgS/a,占全球海洋DMS排放量的0.52%。  相似文献   

12.
上海城市河流温室气体排放特征及其影响因素   总被引:2,自引:0,他引:2       下载免费PDF全文
为研究城区和郊区河流3种温室气体(N2O、CH4和CO2)排放通量的差异,分别于春季(2013年4月)、夏季(2013年7月)、秋季(2013年10月)和冬季(2014年1月),利用浮箱法和扩散模型法对上海市城区河流(苏州河)和郊区河流(淀浦河)的温室气体排放通量进行了观测;并探讨了人类活动干扰下环境因子对温室气体排放的影响. 结果表明:研究区内2条河流是温室气体的排放源,城区河流N2O和CH4的扩散排放通量和浮箱排放通量年均值均比郊区河流大1~2个量级, CO2两种排放通量在城郊区2条河流的年均值相当. 苏州河N2O、CO2和CH4扩散排放通量年均值分别为15.88、6 748.27和84.98 μmol/(m2·h);淀浦河分别为0.61、2 978.98和9.61 μmol/(m2·h). 苏州河N2O、CO2和CH4浮箱排放通量年均值为15.77、4 041.61和6 721.08 μmol/(m2·h);淀浦河为0.60、1 214.77和59.58 μmol/(m2·h). 城市河流呈现出高氮负荷及缺氧的特征,是影响中心城区河流N2O、CO2和CH4扩散排放通量偏高的重要因素. CH4浮箱排放通量和扩散排放通量的差异显示,城市河流中的富碳氮缺氧环境条件有利于随机气泡排放的发生,增强了温室气体的排放.   相似文献   

13.
以大型深水水电类水库潘家口水库为例,于2020年春季(5月)、夏季(8月)在研究区设置33个采样点,采用顶空平衡-气相色谱法和经验模型法对水柱温室气体浓度和水-气界面扩散通量进行了观测及估算,并分析了潘家口水库温室气体浓度及通量的主要影响因素.结果表明:春季潘家口水库水-气界面CH4、CO2、N2O平均通量分别为(1.11±1.60)μmol/(m2·h),(1333.31±546.43)μmol/(m2·h),(76.65±19.54)nmol/(m2·h).夏季潘家口水库水-气界面CH4、CO2、N2O平均通量分别为(0.62±1.13)μmol/(m2·h),(746.08±1152.44)μmol/(m2·h),(141.18±256.02)nmol/(m2·h).潘家口水库温室气体排放呈现出大的时空异质性,空间上春季和夏季各温室气体通量均表现为干流大于支流;季节上CH4与CO2扩散通量表现为春季大于夏季,而N2O扩散通量夏季大于春季.统计分析表明CH4扩散通量主要受电导率、风速等环境因子影响,CO2扩散通量受风速、pH及DOC影响,N2O扩散通量主要受水柱NO3--N、NO2--N的影响.  相似文献   

14.
冯凯  黄天寅 《环境科学研究》2014,27(12):1432-1439
垃圾填埋场是全球温室气体释放的重要来源. 在南京轿子山生活垃圾填埋场3个具有不同填埋龄(4~13 a)、覆土深度(30~100 cm)和有无填埋气收集系统的平台,采用静态箱气相色谱法对填埋场CH4和N2O的释放规律进行了研究. 结果表明:填埋龄与覆土深度对填埋场CH4和N2O的释放影响显著,与其他2个平台相比,填埋龄(10~15 a)长、覆土深度(80~100 cm)大且无填埋气收集系统的平台1的CH4和N2O四季及昼夜释放通量均相对较小,相差为2个数量级;虽然3个平台温室气体释放通量的昼夜和季节性变化规律并不一致,但在春季均出现最小值,CH4和N2O的最小释放通量分别约为30和186.49 μg/(m2·h). 夏季、秋冬季交替及冬春季交替时期,CH4和N2O的释放通量均出现峰值,晚上的释放量约占全天释放总量的70%左右. 垃圾填埋场是高度异质性体系,相关性分析表明,CH4释放通量与覆土温度、覆土含水率无显著相关性,而N2O释放通量却与这2个指标呈显著相关. CH4释放通量季节和昼夜性变化较稳定,变异系数范围分别为13%~405%和43%~429%. N2O释放通量的季节性和昼夜性变异水平较高,变异系数范围分别为15%~1 005%和17%~1 552%,因此有必要进行全时段监测.   相似文献   

15.
以北方典型富营养化水库-大黑汀水库水体为研究对象,在2018年夏季和秋季采用顶空平衡法对其表层35个点位水体溶解的二氧化碳(CO2)、甲烷(CH4)和氧化亚氮(N2O)浓度进行测定,并对水库水-气界面扩散通量进行了估算.结果表明夏季和秋季大黑汀水库表层水体的CO2、CH4和N2O整体上均表现为过饱和状态,夏季表层水体CO2溶存浓度和扩散通量均值分别为(72.75±67.49)μmol/L和(810.62±790.64)μmol/(m2·h);秋季CO2溶存浓度和扩散通量均值分别为(394.64±104.13)μmol/L和(4822.81±1250.00)μmol/(m2·h);夏季CH4平均浓度和扩散通量分别为(0.19±0.12)μmol/L和(3.04±2.10)μmol/(m2·h),秋季CH4平均浓度和扩散通量分别为(0.41±0.26)μmol/L和(5.16±3.23)μmol/(m2·h);夏季N2O溶存浓度和扩散通量均值分别为(0.03±0.01)μmol/L和(0.31±0.10)μmol/(m2·h),秋季N2O溶存浓度和扩散通量均值分别为(0.03±0.01)μmol/L和(0.25±0.15)μmol/(m2·h).相关性分析结果表明大黑汀水库夏季表层水体CO2及N2O浓度主要受水温、水深和电导率影响,CH4浓度主要受水深及电导率影响;水库秋季表层水体CO2溶存浓度主要受水温、水深和TDS影响,CH4浓度主要受水温、水深和TDS影响,N2O浓度主要受水深影响.  相似文献   

16.
为研究水稻成熟衰老期叶际及根际NOGs(nitrogen oxides gases, 氮氧化物)排放的光控机制,在同步测定条件下,采用密闭箱法,研究了不同光质(黄、绿、白、红、蓝光)、光强〔0.00、(50.00±2.35)(75.00±2.32)(100.00±3.89) μmol/(m2·s)〕对水稻成熟衰老期叶际及根际NOGs排放的影响. 结果表明:在相同氮源〔NH4NO3-N,ρ(N)为90 mg/L〕下,日间光强为(75.00±2.32) μmol/(m2·s)时,水稻成熟衰老期叶际N2O和NO的平均排放速率分别为18.09、0.39 μg/(pot·h),二者排放量分别占各自总排放量的28.88%、30.78%;在(100.00±3.89)μmol/(m2·s)光强条件下,叶际N2O和NO的平均排放速率则分别为23.27、0.50 μg/(pot·h),二者排放量分别占各自总排放量的36.74%、27.92%. 在0.00~(100.00±3.89)μmol/(m2·s)日间光强下,水稻叶际及根际N2O和NO排放随随光强增加而增强,但不同光照条件下水稻叶际及根际均无明显的NO2净排放作用. 在光强一致〔(20.00±0.48)μmol/(m2·s)〕条件下,同期黄、绿、白、红、蓝光处理的水稻叶际N2O平均排放速率分别为24.90、15.46、13.85、16.40和19.77 μg/(pot·h),红、蓝光在抑制水稻叶际N2O及根际NO排放的同时,也促进了水稻根际N2O的排放. 研究显示,水稻成熟衰老期叶际及根际NOGs排放均以N2O为主,叶际N2O的排放可以反映根际N2O的排放情况. 光照越强,NOGs排放就越明显. 适度控制日间光强并增加红、蓝光比例,可抑制N2O和NO排放.   相似文献   

17.
基于规模化人工湿地工程——武河湿地的野外原位监测试验,采用静态箱-气相色谱法研究了人工湿地中温室气体(N2O、CH4和CO2)释放特征与规律. 结果表明,武河湿地工程的N2O和CH4平均释放通量分别为14.35和35.54 mg/(m2·d),表现为N2O、CH4的释放源,但其释放通量低于城市污水处理厂;湿地(主要包括水体和土壤生物呼吸)的CO2平均释放通量为2 889.4 mg/(m2·d). 人工湿地沿程N2O、CH4和CO2释放特征有所不同,平均释放通量呈先升后降规律,在布水渠处N2O释放通量最大,为51.92 mg/(m2·d);而6#溢流堰处CH4释放通量最大,为182.03 mg/(m2·d). 人工湿地中温室气体释放亦具有明显的季节变化规律,表现为春夏季高于秋冬季.   相似文献   

18.
以闽江河口区水产养虾塘为研究对象,于2017年6~11月,采用漂浮箱法和扩散模型法同步原位观测了养殖塘N2O排放通量.结果表明,研究期间悬浮箱法和扩散模型法获得的养殖塘水-气界面N2O通量变化范围分别为(0.38±0.05)~(20.63±5.63)μg/(m2·h)和(2.77±0.52)~(17.23±2.27)μg/(m2·h),随时间推移均呈现“增加-降低-增加-降低”的双峰变化特征.两种方法观测的N2O通量均与水温、水体硝酸盐氮(NO3--N)和氨氮(NH4+-N)浓度呈现显著正相关关系(P<0.05),与水体溶解氧(DO)呈现出显著负相关关系(P<0.05).悬浮箱法与不同扩散模型法测定的N2O排放通量大小排序表现为:模型DMRC01>悬浮箱法>模型DMCL98>模型DMW92a>模型DMMY95>模型DMCW03>模型DMLM86.相比其他几种模型方法,模型RC01与悬浮箱法测得的养殖塘水-气界面N2O通量相关性系数最高.本研究结果初步表明,今后进行东南沿海河口区养殖塘N2O通量的大尺度观测研究时,可考虑选择RC01模型法来代替悬浮箱法进行测定,进而减小人力及物力的投入.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号