首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
2.
Belote RT  Jones RH  Hood SM  Wender BW 《Ecology》2008,89(1):183-192
Research examining the relationship between community diversity and invasions by nonnative species has raised new questions about the theory and management of biological invasions. Ecological theory predicts, and small-scale experiments confirm, lower levels of nonnative species invasion into species-rich compared to species-poor communities, but observational studies across a wider range of scales often report positive relationships between native and nonnative species richness. This paradox has been attributed to the scale dependency of diversity-invasibility relationships and to differences between experimental and observational studies. Disturbance is widely recognized as an important factor determining invasibility of communities, but few studies have investigated the relative and interactive roles of diversity and disturbance on nonnative species invasion. Here, we report how the relationship between native and nonnative plant species richness responded to an experimentally applied disturbance gradient (from no disturbance up to clearcut) in oak-dominated forests. We consider whether results are consistent with various explanations of diversity-invasibility relationships including biotic resistance, resource availability, and the potential effects of scale (1 m2 to 2 ha). We found no correlation between native and nonnative species richness before disturbance except at the largest spatial scale, but a positive relationship after disturbance across scales and levels of disturbance. Post-disturbance richness of both native and nonnative species was positively correlated with disturbance intensity and with variability of residual basal area of trees. These results suggest that more nonnative plants may invade species-rich communities compared to species-poor communities following disturbance.  相似文献   

3.
Martinson HM  Fagan WF  Denno RF 《Ecology》2012,93(8):1779-1786
Because patch size and connectivity may strongly impact the assemblage of species that occur on a patch, the types of food-web interactions that occur among those species may also depend on spatial structure. Here, we identify whether food-web interactions among salt-marsh-inhabiting arthropods vary with patch size and connectivity, and how such changes in trophic structure might feed back to influence the spatial distribution of prey. In a multiyear survey, patch-restricted predators exhibited steeper occupancy-patch-size relationships than herbivores, and species' critical patch sizes were correlated with overall rarity. As a result, the presence of food-web modules depended strongly on patch size: large and well-connected patches supported complex food-web modules, but only the simplest modules involving the most abundant species were found on small patches. Habitat-generalist spiders dominated on small patches, and predation pressure from such species may contribute to the observed lower densities of mesopredators on small patches. Overall, patch size and connectivity influenced the types of modules present on a patch through differential loss of rare, patch-restricted predators, but predation by generalist predators may be a key mechanism influencing the spatial structure of certain prey species.  相似文献   

4.
5.
In tallgrass prairie, disturbances such as grazing and fire can generate patchiness across the landscape, contributing to a shifting mosaic that presumably enhances biodiversity. Grassland birds evolved within the context of this shifting mosaic, with some species restricted to one or two patch types created under spatially and temporally distinct disturbance regimes. Thus, management-driven reductions in heterogeneity may be partly responsible for declines in numbers of grassland birds. We experimentally altered spatial heterogeneity of vegetation structure within a tallgrass prairie by varying the spatial and temporal extent of fire and by allowing grazing animals to move freely among burned and unburned patches (patch treatment). We contrasted this disturbance regime with traditional agricultural management of the region that promotes homogeneity (traditional treatment). We monitored grassland bird abundance during the breeding seasons of 2001-2003 to determine the influence of altered spatial heterogeneity on the grassland bird community. Focal disturbances of patch burning and grazing that shifted through the landscape over several years resulted in a more heterogeneous pattern of vegetation than uniform application of fire and grazing. Greater spatial heterogeneity in vegetation provided greater variability in the grassland bird community. Some bird species occurred in greatest abundance within focally disturbed patches, while others occurred in relatively undisturbed patches in our patch treatment. Henslow's Sparrow, a declining species, occurred only within the patch treatment. Upland Sandpiper and some other species were more abundant on recently disturbed patches within the same treatment. The patch burn treatment created the entire gradient of vegetation structure required to maintain a suite of grassland bird species that differ in habitat preferences. Our study demonstrated that increasing spatial and temporal heterogeneity of disturbance in grasslands increases variability in vegetation structure that results in greater variability at higher trophic levels. Thus, management that creates a shifting mosaic using spatially and temporally discrete disturbances in grasslands can be a useful tool in conservation. In the case of North American tallgrass prairie, discrete fires that capitalize on preferential grazing behavior of large ungulates promote a shifting mosaic of habitat types that maintain biodiversity and agricultural productivity.  相似文献   

6.
Capers RS  Selsky R  Bugbee GJ  White JC 《Ecology》2007,88(12):3135-3143
Invasive species richness often is negatively correlated with native species richness at the small spatial scale of sampling plots, but positively correlated in larger areas. The pattern at small scales has been interpreted as evidence that native plants can competitively exclude invasive species. Large-scale patterns have been understood to result from environmental heterogeneity, among other causes. We investigated species richness patterns among submerged and floating-leaved aquatic plants (87 native species and eight invasives) in 103 temperate lakes in Connecticut (northeastern USA) and found neither a consistently negative relationship at small (3-m2) scales, nor a positive relationship at large scales. Native species richness at sampling locations was uncorrelated with invasive species richness in 37 of the 60 lakes where invasive plants occurred; richness was negatively correlated in 16 lakes and positively correlated in seven. No correlation between native and invasive species richness was found at larger spatial scales (whole lakes and counties). Increases in richness with area were uncorrelated with abiotic heterogeneity. Logistic regression showed that the probability of occurrence of five invasive species increased in sampling locations (3 m2, n = 2980 samples) where native plants occurred, indicating that native plant species richness provided no resistance against invasion. However, the probability of three invasive species' occurrence declined as native plant density increased, indicating that density, if not species richness, provided some resistance with these species. Density had no effect on occurrence of three other invasive species. Based on these results, native species may resist invasion at small spatial scales only in communities where density is high (i.e., in communities where competition among individuals contributes to community structure). Most hydrophyte communities, however, appear to be maintained in a nonequilibrial condition by stress and/or disturbance. Therefore, most aquatic plant communities in temperate lakes are likely to be vulnerable to invasion.  相似文献   

7.
The invasion paradox: reconciling pattern and process in species invasions   总被引:14,自引:0,他引:14  
The invasion paradox describes the co-occurrence of independent lines of support for both a negative and a positive relationship between native biodiversity and the invasions of exotic species. The paradox leaves the implications of native-exotic species richness relationships open to debate: Are rich native communities more or less susceptible to invasion by exotic species? We reviewed the considerable observational, experimental, and theoretical evidence describing the paradox and sought generalizations concerning where and why the paradox occurs, its implications for community ecology and assembly processes, and its relevance for restoration, management, and policy associated with species invasions. The crux of the paradox concerns positive associations between native and exotic species richness at broad spatial scales, and negative associations at fine scales, especially in experiments in which diversity was directly manipulated. We identified eight processes that can generate either negative or positive native-exotic richness relationships, but none can generate both. As all eight processes have been shown to be important in some systems, a simple general theory of the paradox, and thus of the relationship between diversity and invasibility, is probably unrealistic. Nonetheless, we outline several key issues that help resolve the paradox, discuss the difficult juxtaposition of experimental and observational data (which often ask subtly different questions), and identify important themes for additional study. We conclude that natively rich ecosystems are likely to be hotspots for exotic species, but that reduction of local species richness can further accelerate the invasion of these and other vulnerable habitats.  相似文献   

8.
Altermatt F  Holyoak M 《Ecology》2012,93(5):1125-1133
Natural ecosystems often show highly productive habitats that are clustered in space. Environmental disturbances are also often nonrandomly distributed in space and are either intrinsically linked to habitat quality or independent in occurrence. Theoretical studies predict that configuration and aggregation of habitat patch quality and disturbances can affect metacommunity composition and diversity, but experimental evidence is largely lacking. In a metacommunity experiment, we tested the effects of spatially autocorrelated disturbance and spatial aggregation of patch quality on regional and local richness, among-community dissimilarity, and community composition. We found that spatial aggregation of patch quality generally increased among-community dissimilarity (based on two measures of beta diversity) of communities containing protozoa and rotifers in microcosms. There were significant interacting effects of landscape structure and location of disturbances on beta diversity, which depended in part on the specific beta diversity measures used. Effects of disturbance on composition and richness in aggregated landscapes were generally dependent on distance and connectivity among habitat patches of different types. Our results also show that effects of disturbances in single patches cannot directly be extrapolated to the landscape scale: the predictions may be correct when only species richness is considered, but important changes in beta diversity may be overlooked. There is a need for biodiversity and conservation studies to consider the spatial aggregation of habitat quality and disturbance, as well as connectivity among spatial aggregations.  相似文献   

9.
Cornell HV  Karlson RH  Hughes TP 《Ecology》2007,88(7):1707-1715
Community similarity is the proportion of species richness in a region that is shared on average among communities within that region. The slope of local richness (alpha diversity) regressed on regional richness (gamma diversity) can serve as an index of community similarity across regions with different regional richness. We examined community similarity in corals at three spatial scales (among transects at a site, sites on an island, and islands within an island group) across a 10 000-km longitudinal diversity gradient in the west-central Pacific Ocean. When alpha diversity was regressed on gamma diversity, the slopes, and thus community similarity, increased with scale (0.085, 0.261, and 0.407, respectively) because a greater proportion of gamma diversity was subsumed within alpha diversity as scale increased. Using standard randomization methods, we also examined how community similarity differed between observed and randomized assemblages and how this difference was affected by spatial separation of species within habitat types and specialization of species to three habitat types (reef flats, crests, and slopes). If spatial separation within habitat types and/or habitat specialization (i.e., underdispersion) occurs, fewer species are shared among assemblages than the random expectation. When the locations of individual coral colonies were randomized within and among habitat types, community similarity was 46-47% higher than that for observed assemblages at all three scales. We predicted that spatial separation of coral species within habitat types should increase with scale due to dispersal/extinction dynamics in this insular system, but that specialization of species to different habitat types should not change because habitat differences do not change with scale. However, neither habitat specialization nor spatial separation within habitat types differed among scales. At the two larger scales, each accounted for 22-24% of the difference in community similarity between observed and randomized assemblages. At the smallest scale (transect-site), neither spatial separation within habitat types nor habitat specialization had significant effects on community similarity, probably due to the small size of transect samples. The results suggest that coral species can disperse among islands in an island group as easily as they can among sites on an island over time scales that are relevant to their establishment and persistence on reefs.  相似文献   

10.
There is a general consensus that the diversity of a biotic community can have an influence on its stability, but the strength, ubiquity, and relative importance of this effect is less clear. In the context of biological invasions, diversity has usually been studied in terms of its effect on a community's invasibility, but diversity may also influence stability by affecting the magnitude of compositional or functional changes experienced by a community upon invasion. We examined the impacts of invasive ants on arthropod communities at five natural area sites in the Hawaiian Islands, and assessed whether differences among sites in community diversity and density variables were related to measures of stability. Ant invasion was usually associated with significant changes in overall community composition, as measured by Bray-Curtis distances, particularly among endemic subsets of the communities. Changes in mean species richness were also strong at three of the five sites. Among sites, diversity was negatively related to stability as measured by resistance to overall compositional change, but this effect could not be separated from the strong negative effect of invasive ant density on compositional stability. When compositional stability was measured as proportional change in richness, the best predictor of stability among endemic community subsets was endemic richness, with richer communities losing proportionately more species than species-poor communities. This effect was highly significant even after controlling for differences in invasive ant density and suggested that communities that had already lost many endemic species were resistant to further species loss upon ant invasion, while more intact communities remained vulnerable to species loss. Communities underwent strong but idiosyncratic functional shifts in association with ant invasion, both in terms of trophic structure and total arthropod biomass. There were no apparent relationships, however, between functional stability and community diversity or density measures. Instead, invasive ant density was the best among-site predictor of the magnitude of functional change. Overall, diversity appeared to be a poor predictor of stability in the face of ant invasion in these communities, possibly because any actual diversity effects were overshadowed by community-specific factors and variation in the magnitude of the ant-mediated perturbation.  相似文献   

11.
Spatial Structure and Population Extinction: A Study with Drosophila Flies   总被引:2,自引:0,他引:2  
Abstract: The total amount of habitat and also its distribution and subdivision affect the extinction probability of a resident population Two species of Drosophila are studied in spatial configurations of a single large habitat patch, single small habitat patches, and two small but connected habitat patches in which a low rate of migration, roughly one fly per generation, is possible. The single large habitat patch shows the lowest extinction rate lower than the combined rate of two small patches of the same total size. For one of the species, the "corridor" between the pair of small patches seems to produce a "rescue effect" that lowers extinction rates, probably due to a decrease in the coefficient of variation in fluctuations of the population sire in this coupled system. The systems seem to have been influenced by demographic stochasticity, based on the relationship of population size to extinction probability.  相似文献   

12.
Debate on the relationship between diversity and stability has been driven by the recognition that species loss may influence ecosystem properties and processes. We conducted a litterbag experiment in the Scottish Highlands, United Kingdom, to examine the effects of altering plant litter diversity on decomposition, microbial biomass, and microfaunal abundance. The design of treatments was fully factorial and included five species from an upland plant community (silver birch, Betula pendula; Scots' pine, Pinus sylvestris; heather, Calluna vulgaris; bilberry, Vaccinium myrtillus; wavy-hair grass, Deschampsia flexuosa); species richness ranged from one to five species. We tested the effects of litter species richness and composition on variable means, whether increasing litter species richness reduced variability in the decomposer system, and whether any richness-variability relationships were maintained over time (196 vs. 564 days). While litter species composition effects controlled variable means, we revealed reductions in variability with increasing litter species richness, even after accounting for differences between litter types. These findings suggest that higher plant species richness per se may result in more stable ecosystem processes (e.g., decomposition) and decomposer communities. Negative richness-variation relationships generally relaxed over time, presumably because properties of litter mixtures became more homogeneous. However, given that plant litter inputs continue to enter the belowground system over time, we conclude that variation in ecosystem properties may be buffered by greater litter species richness.  相似文献   

13.
Terauds A  Chown SL  Bergstrom DM 《Ecology》2011,92(7):1436-1447
Although theory underlying the invasion paradox, or the change in the relationship between the richness of alien and indigenous species from negative to positive with increasing spatial scale, is well developed and much empirical work on the subject has been undertaken, most of the latter has concerned plants and to a lesser extent marine invertebrates. Here we therefore examine the extent to which the relationships between indigenous and alien species richness change from the local metacommunity to the interaction neighborhood scales, and the influences of abundance, species identity, and environmental favorability thereon, in springtails, a significant component of the soil fauna. Using a suite of modeling techniques, including generalized least squares and geographically weighted regressions to account for spatial autocorrelation or nonstationarity of the data, we show that the abundance and species richness of both indigenous and alien species at the metacommunity scale respond strongly to declining environmental favorability, represented here by altitude. Consequently, alien and indigenous diversity covary positively at this scale. By contrast, relationships are more complex at the interaction neighborhood scale, with the relationship among alien species richness and/or density and the density of indigenous species varying between habitats, being negative in some, but positive in others. Additional analyses demonstrated a strong influence of species identity, with negative relationships identified at the interaction neighborhood scale involving alien hypogastrurid springtails, a group known from elsewhere to have negative effects on indigenous species in areas where they have been introduced. By contrast, diversity relationships were positive with the other alien species. These results are consistent with both theory and previous empirical findings for other taxa, that interactions among indigenous and alien species change substantially with spatial scale and that environmental favorability may play a key role in explaining the larger scale patterns. However, they also suggest that the interactions may be affected by the identity of the species concerned, especially at the interaction neighborhood scale.  相似文献   

14.
Shape is considered an important attribute of patches, but little attention has been paid to its influence on the structure and dynamics of rocky shore assemblages. Effects of patch shape were investigated from September 1997 to June 1998 in algal assemblages on intertidal shores at Cape Banks, south of Sydney (NSW, Australia). Three experiments were established, in order to separately investigate the importance of three different characteristics of patch shape, namely area, perimeter and distance of the central zone from the edge. In each experiment, responses for sets of replicate patches that differed on average for only one shape characteristic were compared. Patches of different shapes were produced by scraping off all resident organisms, and subsequent colonisation was recorded. The range of shapes naturally occurring at the study sites was also measured over 1 year, and the shapes of plots used in the experiments were chosen to cover this range of natural variability. Shapes of natural patches within assemblages were very variable. Consistent differences were observed in patch size, geometry and characteristics of the substratum among sheltered and exposed shores and among different times of the year, suggesting that different disturbances influence the dynamics of assemblages at these sites. The results of the three experiments showed that shape may have important effects on patch colonisation. Area, perimeter and distance of the central zone from the edge significantly affected growth of algae in experimental clearings. Responses to different patch characteristics were species specific. Effects of different attributes of patch shape also varied over time. This spatial and temporal variability of responses suggests that colonisation processes of patches of different shapes are complex, probably involving effects that can produce contrasting results. Results are relevant to the design and interpretation of field experiments, as they suggest that the shape of plots may affect the perception of patterns and processes in intertidal assemblages.Communicated by R. Cattaneo-Vietti, Genova  相似文献   

15.
Lamb EG 《Ecology》2008,89(1):216-225
Multiple factors linked through complex networks of interaction including fertilization, aboveground biomass, and litter control the diversity of plant communities. The challenge of explaining plant diversity is to determine not only how each individual mechanism directly influences diversity, but how those mechanisms indirectly influence diversity through interactions with other mechanisms. This approach is well established in the study of plant species richness, but surprisingly little effort has been dedicated toward understanding the controls of community evenness, despite the recognition that this aspect of diversity can influence a variety of critical ecosystem functions. Similarly, studies of diversity have predominantly focused on the influence of shoot, rather than root, biomass, despite the fact that the majority of plant biomass is belowground in many natural communities. In this study, I examine the roles of belowground biomass, live aboveground biomass, litter, and light availability in controlling the species richness and evenness of a rough fescue grassland community using structural equation modeling. Litter was the primary mechanism structuring grassland diversity, with both richness and evenness declining with increasing litter cover. There were few relationships between shoot biomass, shading, and diversity, and more importantly, no relationship between root biomass and diversity. The lack of relationship between root biomass and species richness and evenness suggests that, even though root competition in grasslands is intense, belowground interactions may not play an important role in structuring community diversity or composition.  相似文献   

16.
Miriti MN 《Ecology》2007,88(5):1177-1190
I present results from analyses of 20 years of spatiotemporal dynamics in a desert perennial community. Plants were identified and mapped in a 1-ha permanent plot in Joshua Tree National Park (California, USA) in 1984. Plant size, mortality, and new seedlings were censused every five years through 2004. Two species, Ambrosia dumosa and Tetracoccus hallii, were dominant based on their relative abundance and ubiquitous distributions. Spatial analysis for distance indices (SADIE) identified regions of significantly high (patches) or low (gaps) densities. I used SADIE to test for (1) transience in the distribution of patches and gaps within species over time and (2) changes in juvenile-adult associations with conspecific adults and adults of the two dominant species over time. Plant performance was quantified in patches and gaps to determine plant responsiveness to local spatial associations. Species identity was found to influence associations between juveniles and adults. Juveniles of all species showed significant positive spatial associations with the dominant A. dumosa but not with T. hallii. The broad distribution of A. dumosa may increase the spatial extent of non-dominant species that are facilitated by this dominant. The spatial location of patches and gaps was generally consistent over time for adults but not juveniles. Observed variability in the locations of juvenile patches and gaps suggested that suitable locations for establishment were broad relative to occupied regions of the habitat, and that conditions for seed germination were independent of conditions for seedling survival. A dramatic change in spatial distributions and associations within and between species occurred after a major drought that influenced data from the final census. Positive associations between juveniles and adults of all species were found independent of previous associations and most species distributions contracted to areas that were previously characterized by low density. By linking performance to spatial distribution, results from this study offer a spatial context for plant-plant interactions within and among species. Community composition could be influenced both by individual species tolerances of abiotic conditions and by the competitive or facilitative interactions individuals exert over neighbors.  相似文献   

17.
Meynard CN  Quinn JF 《Ecology》2008,89(4):981-990
Spatial structure in metacommunities and their relationships to environmental gradients have been linked to opposing theories of community assembly. In particular, while the species sorting hypothesis predicts strong environmental influences, the neutral theory, the mass effect, and the patch dynamics frameworks all predict differing degrees of spatial structure resulting from dispersal and competition limitations. Here we study the relative influence of environmental gradients and spatial structure in bird assemblages of the Chilean temperate forest. We carried out bird and vegetation surveys in South American temperate forests at 147 points located in nine different protected areas in central Chile, and collected meteorological and productivity data for these localities. Species composition dissimilarities between sites were calculated, as well as three indices of bird local diversity: observed species richness, Chao estimate of richness, and Shannon diversity. A stepwise multiple regression and partial regression analyses were used to select a small number of environmental factors that predicted bird species diversity. Although diversity indices were spatially autocorrelated, environmental factors were sufficient to account for this autocorrelation. Moreover, community dissimilarities were not significantly related to distance between sites. We then tested a multivariate hypothesis about climate, vegetation, and avian diversity interactions using a structural equation modeling (SEM) approach. The SEM showed that climate and area of fragments have important indirect effects on avian diversity, mediated through changes in vegetation structure. Given the scale of this study, the metacommunity framework provides useful insights into the mechanisms driving bird assemblages in this region. Taken together, the weak spatial structure of community composition and diversity, as well as the strong environmental effects on bird diversity, support the interpretation that species sorting has a predominant role in structuring avian assemblages in the region.  相似文献   

18.
When changes in the frequency and extent of disturbance outstrip the recovery potential of resident communities, the selective removal of species contributes to habitat loss and fragmentation across landscapes. The degree to which habitat change is likely to influence community resilience will depend on metacommunity structure and connectivity. Thus ecological connectivity is central to understanding the potential for cumulative effects to impact upon diversity. The importance of these issues to coastal marine communities, where the prevailing concept of open communities composed of highly dispersive species is being challenged, indicates that these systems may be more sensitive to cumulative impacts than previously thought. We conducted a disturbance-recovery experiment across gradients of community type and environmental conditions to assess the roles of ecological connectivity and regional variations in community structure on the recovery of species richness, total abundance, and community composition in Mahurangi Harbour, New Zealand. After 394 days, significant differences in recovery between sites were apparent. Statistical models explaining a high proportion of the variability (R2 > 0.92) suggested that community recovery rates were controlled by a combination of physical and ecological features operating across spatial scales, affecting successional processes. The dynamic and complex interplay of ecological and environmental processes we observed driving patch recovery across the estuarine landscape are integral to recovery from disturbances in heterogeneous environments. This link between succession/recovery, disturbance, and heterogeneity confirms the utility of disturbance-recovery experiments as assays for cumulative change due to fragmentation and habitat change in estuaries.  相似文献   

19.
Following habitat alteration or fragmentation, competition, parasitism, and predation from species that live in the new habitats may reduce the survival and reproductive success of species living in the original habitats. Negative influences from species that live outside the remnant patches are expected to be greater in small rather than in large remnant patches because more "external" species are expected to move through the centers of small remnant patches. We surveyed birds within remnant patches of old-growth montane forests on Vancouver Island, Canada, (1) to evaluate whether the richness and abundance of non-old-growth bird species were larger at the center of small rather than large patches and (2) to evaluate whether the opposite was true of old-growth bird species. More non-old-growth bird species were present at the center of small remnant patches of old growth than in large old-growth patches. We found no relationship, however, between patch size and richness or abundance of old-growth bird species at the center of remnant patches of old growth. This was true for old-growth species with open, cup-shaped nests and cavity nests. Old-growth birds may have been affected less in our study area than in other areas because they evolved within heterogeneous montane forests and interacted with non-old-growth species throughout their evolutionary histories or because the contrast between old-growth forests and logged areas was less than that between the forests and agricultural/urban areas that were surveyed in other studies.  相似文献   

20.
Spatial structure and dynamics of multiple populations may explain species distribution patterns in patchy communities with heterogeneous disturbance regimes, especially when species have poor dispersal. The endemic-rich Florida (U.S.A.) rosemary scrub occupies about 4% of the west portion of Archbold Biological Station and occurs scattered within a matrix of less xeric vegetation. Longer fire-return times and higher frequency of open patches in rosemary scrub provide favorable habitat for many plant species. Occupancy of 123 species of vascular plants and ground lichens in 89 patches was determined by repeated site surveys. About two-thirds of the species occurring at more than 14 patches had a significant logistic regression of presence on time-since-fire, patch size, patch isolation, or their interactions. Species with presence related to the interaction between patch isolation and patch size were primarily herbs and small shrubs specializing in rosemary scrub. These results suggest the importance of spatial characteristics of the landscape for population turnover of these species. An incidence-based metapopulation model was used to predict extinction and colonization probabilities of those species with presence in rosemary scrub patches related to the studied spatial variables. This is the first attempt to apply incidence-based metapopulation models to plants. The results showed stronger effects of patch size and patch isolation on extinction probabilities of herbs than on those of woody species. Because of their effect on spatial heterogeneity and habitat availability, fire suppression and habitat destruction may decrease persistence probabilities for these rosemary scrub specialists, many of which are endangered species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号