首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
粉煤灰是煤燃烧后的固体废弃物,其高附加值利用是国内外关注的一个方向.目前粉煤灰合成分子筛研究热点主要集中在改进实验合成方法和降低合成成本.此文综述了由粉煤灰合成分子筛的国内外进展,阐述并比较了目前由粉煤灰合成方法的优缺点并指明了未来的研究方向.同时探讨了粉煤灰分子筛在土壤治理、废水处理、空气净化等方面的应用前景.因此利用粉煤灰合成具有高附加值分子筛产品是粉煤灰综合利用的一个发展趋势.  相似文献   

2.
粉煤灰应用于催化材料的制备是实现其高附加值利用的重要途径,本文详细阐述了粉煤灰的化学组成与结构特性,综述了粉煤灰基催化剂在有机物降解、有机合成和催化制氢等领域的研究进展,讨论了粉煤灰在不同催化反应过程中的作用原理.粉煤灰作为一种富含Si、Al的复合载体,具有单一载体不可替代的优势,其组成与结构的改变对催化剂的性能有很大的影响,不同的活性组分与结构对应不同的反应类型,具有非常广泛的适应性.影响催化剂性能的主要因素包括:粉煤灰中Si—O—Si或Al—O—Si结构的重组,Fe、Ca、Na、K等元素对催化剂的修饰,活性组分与粉煤灰载体之间的相互作用等.由此可知,准确调控粉煤灰的化学组成与结构是提高粉煤灰基催化剂性能的重要手段,也是未来拓展粉煤灰高附加值利用空间的理论依据.  相似文献   

3.
粉煤灰复合吸附剂的研制及其在工业废水除氟中的应用   总被引:13,自引:0,他引:13  
粉煤灰复合吸附剂是一种新型得除氟剂,具有良好的吸附性能,在一定条件下,可用于处理高含氟量的工业废水,粉煤灰复合吸附剂处理50mg/L左右的含F^-废水时,当投加量为0.6%-0.8%时,去除率可达90%以上,从而达到排放标准,粉煤灰复合吸附剂所需原料易得,除氟后可将原料固化制成建筑用砖,合理利用。  相似文献   

4.
以小区试验进行了粉煤灰复土造田种植高羊茅的试验 .对高羊茅生长发育、生理功能和矿质积累的研究结果表明 :含 30 %以下粉煤灰复合土能提高高羊茅植株光合作用和氮素利用能力 ,促进植株生长 ,不会对植株产生伤害 ;当复合土中粉煤灰含量达 4 0 %时 ,高羊茅光合作用、蒸腾作用和氮素利用能力降低 ,细胞膜脂质过氧化水平升高 ,膜透性增大 ,SOD、POD和CAT活性降低 ,植株生长被抑制 ;随着复合土中粉煤灰含量的升高高羊茅植株Mn、Zn、Ca、Mg的质量分数升高 ,Cu的质量分数无显著变化 .研究建议粉煤灰复土造田以 30 %粉煤灰复合土为宜 .图 3表 6参 19  相似文献   

5.
城市污水污泥与稻草、粉煤灰混合堆肥及其利用评价   总被引:8,自引:2,他引:8  
林兰稳  钟继洪  谭军 《生态环境》2005,14(5):678-682
利用城市污水污泥与稻草、粉煤灰混合进行堆肥,分析评价不同物料配比堆肥的物理化学性质变化及其农用价值,探讨了污肥绿化利用的土壤环境容量。结果表明:采用广州市大坦沙污水处理厂脱水污泥与稻草、粉煤灰按照4:1:0.6~1.2的比例(质量比)混合堆肥,60d后,堆肥的植物可利用的有效态养分提高,重金属含量比原污泥有较大幅度降低,粉煤灰对污肥中的重金属有一定的钝化作用,堆肥后的物质疏松,臭味消失;由最小限制因子重金属Cd决定的污肥年最大施用量(连续20a)为82.0t/hm^2(污肥B)和72.1t/hm^2(污肥C),由N决定的污肥年最大施用量分别为31.33t/hm^2(污肥B)和32.49t/hm^2(污肥C)。  相似文献   

6.
论述了当今世界水资源危机的现状,引起水资源危机的主要原因;认为发展节水农业是缓解水资源危机的重要举措,并概述了节水农业的技术现状和节水农业今后的发展趋势.  相似文献   

7.
利用醋糟开发植物栽培基质的发酵技术   总被引:16,自引:0,他引:16  
对利用酿造工业废弃物醋糟开发有机栽培基质的发酵技术进行了试验研究。结果表明:通过加入鸡粪、粉煤灰、石灰水和尿素等碱性物质调节酸度后,能促进醋糟正常发酵,发酵后的产物理化性状均适合于作植物栽培基质。  相似文献   

8.
黄河流域农业水资源与水环境问题及技术对策   总被引:6,自引:8,他引:6  
对黄河流域农业水资源与水环境现状和存在问题进行了分析,并针对这些问题,提出了改善黄河流域农业水资源利用与水环境安全的技术对策。研究指出,黄河流域水资源贫乏、水质污染严重、灌溉水水质劣化、农业水资源供需矛盾突出,水环境日趋恶化,产生了严重的生态环境问题;而目前我国缺乏有效的农业水资源和水环境监测预警系统,节水农业和水污染防治技术水平低,基础设施落后,信息平台建设不够,农业种植结构和水资源不匹配。今后应加快建立农业水资源与水环境监测预警系统与信息平台,积极推进农业水资源高效利用技术升级,全面提高农业污染防控技术水平,加强农业水环境保护,调整种植结构,建立节水高效种植制度。  相似文献   

9.
采用粉煤灰(FA)和Ca(OH)2水合制得的高活性吸收剂作为二氧化硫的干法脱硫剂,重点研究了两种粉煤灰(电除尘灰和湿式水膜除尘灰)在同一配比、同一水合温度、同一水合时间下的脱硫效率,结果表明:电除尘灰比湿式水膜除尘灰脱硫效率高,并且电除尘的脱硫效率略微低于活性炭,同时介绍了粉煤灰的脱硫机理。  相似文献   

10.
粉煤灰结合施肥对土壤微生物和酶活性的效应   总被引:3,自引:0,他引:3  
在以前对粉煤灰改良石灰性土壤对其理化性质和养分效应研究的基础上,分析了小麦不同生育期土壤中微生物数量和几种重要的土壤酶的活性,旨在探讨石灰性褐土施用粉煤灰配合有机肥对土壤环境生物质量的效应。结果表明,每公顷施用粉煤灰150t以上显著提高了土壤中各种微生物的数量,对土壤酶活性也有显著的作用,尤其是对小麦灌浆期脲酶的活性有显著的促进作用。因此,施用粉煤灰可以改善土壤的生物活性,从而达到保护和治理土壤环境的效果。  相似文献   

11.
Background, aim and scope The increasing use of wood for generating heat and electricity requires that more and more fuels be obtained directly or indirectly from the forest. Sound, sustainable recycling management calls for the return of any generated wood ash back to the forest to make use of the nutrients it contains. Similarly, recycling this ash in other locations such as agricultural land or private gardens can serve equally well as fertilizer. At the same time, it is critical that no accumulated pollutants be introduced into the nutrient loop. Wood ash that is heavily laden with such pollutants must not be considered for recycling. As part of this research project, commissioned by the Ministry for the Environment and Conservation, Agriculture and Consumer Protection of the State of North Rhine-Westphalia in Germany (MUNLV), ash samples of 209 wood-fired appliances generating between 10 and 4000?kW of heat performance were taken from throughout the federal state of North Rhine-Westphalia. Untreated wood, either forested or scrap, was used as the sole fuel for these appliances. Materials and methods All course ash and fly ash samples were analyzed to determine their composition of main nutrients, heavy metals, and the elements Fe, Cl, Si, Al and Na. The purpose of this analysis was to evaluate the suitability of this wood ash for reintroduction to forest soils or as fertilizer in other types of soil. Results The majority of the wood ash samples in this study contained sufficiently high amounts of nutrients to match the requirement for stand-alone fertilizers (PK-fertilizer, potash fertilizer). However, the heavy metal content was highly variable, with a mean content high enough to prohibit them from being classified per se as PK- or potash fertilizer for agricultural land. Due to the high quantities of cadmium, application of this ash to garden soils would likewise be ill-advised. Discussion On forest soils German law permits application of a mixture of potash fertilizer containing, at most, 30?% wood ash (course ash). Because of the high amounts of cadmium and copper, wood ash from our samples can only comprise a maximum of 28?% when added to typically used potash fertilizers. Higher percentage of wood ash would exceed the cut-off value established by the German Fertilizer Ordinance (Düngemittelverordnung – DüMV). Conclusions The application of wood ash on agricultural land and in private gardens is, rightfully so, highly regulated by law. However, the rules governing application of wood ash in the forest are much more lax. Determination of heavy metal content in wood ash cannot be used to determine compliance with DüMV standards because of the high content and fluctuating nature of heavy metals found. Recommendations and perspectives Presently an alternative approach for classifying the ecologic risk of wood ash recycling is being developed.  相似文献   

12.
The purpose of this study was to determine heavy metal concentrations in ash samples taken from the filter of the gas cleaning system of biomass incinerators in Austria. Knowing the concentrations of heavy metals is important for the decision of further treatment or utilization of the ashes. The heavy metals contained in the ashes remain in the bottom ash of the incinerator or leave the incinerator with the off-gas and are collected in the off-gas filter. The amount of the metals in the collected fly ash depends on the composition of the input material. The aim of this study was to examine this influence and compare the results with literature data. For measurement, the fly ash samples were at first dissolved in a microwave digestion unit using nitric acid and hydrochloric acid. Afterwards, 20 metals were analyzed by inductively coupled plasma optical emission spectrometry. Al, Fe, Mg, Mn, and Zn were found in higher concentrations in the fly ash samples. The enrichment factor between the concentrations in the fly ash and the concentrations in the input material was on average in the range of 18.  相似文献   

13.
• Washed MSWI fly ash was used as partial cement or sand substitute. • Sand replacing is beneficial for strength, while cement replacement reduces strength. • Cementing efficiency factor and mortar pore structure explain the strength results. • Health risk assessment was conducted for MSWI fly ash blended cement mortar. • CR and HI contributed by different exposures and heavy metals were analyzed. The strength of cement substituted mortar decreases with the increase in fly ash amount, whereas the strength increases when the fly ash is blended as sand substitute. A mortar with highest strength (compressive strength= 30.2 Mpa; flexural strength= 7.0 Mpa) was obtained when the sand replacement ratio was 0.75%. The k value (cementing efficiency) of fly ash varied between 0.36 and 0.15 for the fly ash fraction in binder between 5% and 25%. The k values of fly ash used for sand replacement were all significantly above that used for cement substitution. The macropores assigned to the gaps between particles decreased when the fly ash was used as sand replacement, providing an explanation for the strength enhancement. The waste-extraction procedure (toxicity-sulphuric acid and nitric acid method (HJ/T 299-2007)) was used to evaluate metal leaching, indicating the reuse possibility of fly ash blended mortar. For the mortar with the mass ratio of fly ash to binder of 0.5%, the carcinogenic risks (CR) and non-carcinogenic hazard quotient (HQ) in sensitive scenario for blended mortar utilization were 9.66 × 10-7 and 0.06, respectively; these results were both lower than the threshold values, showing an acceptable health risk. The CR (9.89 × 10-5) and HQ (3.89) of the non-sensitive scenario for fly ash treatment exceeded the acceptable threshold values, indicating health risks to onsite workers. The main contributor to the carcinogenic and non-carcinogenic risk is Cr and Cd, respectively. The CR and HQ from inhalation was the main route of heavy metal exposure.  相似文献   

14.
Fly ash is applied in agricultural fields to improve soil quality and crop yield; however, there are concerns regarding environmental hazards and toxicity to ecologically important soil organisms. The soil microarthropod fauna is a vital component of detritus food web, and major groups like Collembola are sensitive indicators of soil quality; however, information is scanty on their biomarker potentials against xenobiotics in tropical soils. The present study was aimed to evaluate temporal changes of Collembola population in fly ash amended field plots, and assess the biomarker potentials of life history parameters and biochemical responses such as acetylcholinesterase (AChE) and superoxide dismutase (SOD) activities in Cyphoderus javanus Borner (Collembola, Insecta), exposed to fly ash treated soil in microcosms. The field study using 5% (50 t ha?1) and 20% (200 t ha?1) doses of fly ash revealed dose-dependent and persistent decline in the density and relative abundance of Collembola population in sandy loam lateritic soil. The microcosm experiments showed negligible lethal effect of fly ash on C. javanus, but major life history parameters namely survival success, fecundity, and molting were significantly inhibited by fly ash treatments. The activity of AChE was downregulated, whereas activity of SOD was upregulated within 7 days of exposure of C. javanus to fly ash treated soil. These biological and biochemical parameters in Collembola are potential biomarkers, and therefore, the effects of fly ash are significant in C. javanus, an ecologically relevant species in the tropical soils of India.  相似文献   

15.
土地整理中生态环境保护问题及对策   总被引:14,自引:0,他引:14  
土地整理是一项旨在通过对土地利用方式、利用结构及利用布局进行综合整治,以达到改善农业生产条件和生态环境,提高土地生产力,实现土地集约化利用的利国利民的活动。从当前实际情况来看,对通过土地整理增加耕地面积,提高土地生产力这个目标比较重视,也做得比较好;但由于对保护农业生态环境这一目标重视不够,同时缺乏一整套完整的农地整理生态绩效的评价体系和方法,导致土地整理对农业生态环境产生了一些不良影响,影响了土地资源可持续利用。文章从生态学的角度分析了当前我国土地整理过程中存在的环境保护问题,并针对问题提出了保护生物多样性、实施景观生态规划、建立评价体系等对策,以达到土地资源可持续利用;最后对广东典型区域农地整理生态环境保护问题进行了探讨。  相似文献   

16.
The technical feasibility of utilization of fly ash as a low-cost adsorbent for the removal of metals from water has been studied. For two types of fly ashes, the retention capacities of copper, lead, and zinc metal ions have been studied. Contact time, initial concentration, and pH have been varied and their effect on retention mechanism has been studied. The dominant mechanisms responsible for retention are found to be precipitation due to the presence of calcium hydroxide, and adsorption due to the presence of silica and alumina oxide surfaces in the fly ash. First-order kinetic plots have revealed that the rate constant increases with increase in the initial concentration and pH. Langmuir adsorption isotherms have been plotted to study the maximum adsorption capacities for metal ions considered under different conditions. X-ray diffraction studies revealed the formation of new peaks corresponding to respective metal ions precipitates under alkaline conditions.  相似文献   

17.
粉煤灰对土壤和作物生长的影响   总被引:3,自引:0,他引:3  
粉煤灰施用量控制在60~600t/hm2,不会造成土壤、粮食的污染,且能改善土壤的物理、化学和生物学性质.有利于养分的转化。粉煤厂磁化后15~7.5t/hm2的施用量即可达到最佳的改上增产效果。本文在分析粉煤灰埋化性质的基础上,讨论了粉煤灰对土壤和作物生长的影响,同时也提出了降低粉煤灰中有害物质对土壤和作物不利影响的农用技术。  相似文献   

18.
HDTMAB改性粉煤灰对水体中磷的吸附特性   总被引:1,自引:0,他引:1  
制备了十六烷基三甲基溴化铵(HDTMAB)改性粉煤灰,研究了该改性粉煤灰对水体中磷的吸附特性,结果表明:①当HDTMAB负载量为10%时,改性粉煤灰吸附磷酸盐的效果最佳;②改性粉煤灰对磷酸盐的吸附速度很快,20min可达吸附平衡;③改性粉煤灰对磷酸盐的吸附行为能较好地符合Langmuir等温吸附模型和Freundlich等温吸附模型,但在Freundlich模式下表现为两个线性区;④pH对改性粉煤灰吸附磷酸盐的性能有显著影响,随着pH的升高对磷酸盐的吸附能力逐渐增加。  相似文献   

19.
•Ultra-lightweight ceramsite is prepared with 80% fly ash. •SiO2, Al2O3, and flux contents significantly influence the performance of ceramsite. •The expansion of ceramsite is caused by the formation of a dense glaze and gas. •The bulk density of ultra-lightweight ceramsite is only 340 kg/m3. The disposal of fly ash has become a serious problem in China due to its rapid increase in volume in recent years. The most common method of fly ash disposal is solidification-stabilization-landfill, and the most common reuse is low-value-added building materials. A novel processing method for preparing ultra-lightweight ceramsite with fly ash was developed. The results show that the optimal parameters for preparation of ultra-lightweight ceramsite are as follows: mass ratio of fly ash:kaolin:diatomite= 80:15:5, preheating temperature of 800°C, preheating time of 5 min, sintering temperature of 1220°C, and sintering time of 10 min. The expansion agent is perlite, at 10 wt.% addition. Finally, a ceramsite with bulk density of 340 kg/m3, particle density of 0.68 g/cm3, and cylinder compressive strength of 1.02 MPa was obtained. Because of its low density and high porosity, ultra-lightweight ceramsite has excellent thermal insulation performance, and its strength is generally low, so it is usually used in the production of thermal insulation concrete and its products. The formation of a liquid-phase component on the surface, and generation of a gas phase inside ceramsite during the sintering process, make it possible to control the production of the suitable liquid phase and gas in this system, resulting in an optimization of the expansion behavior and microstructure of ceramsite. These characteristics show the feasibility of industrial applications of fly ash for the production of ultra-lightweight ceramsite, which could not only produce economic benefits, but also conserve land resources and protect the environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号