首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
低成本、高产量的发酵工艺是实现工业燃料乙醇经济和环境可持续性发展的关键,而不需要重大基础设施改变或投资.为获得酿酒酵母(Saccharomyces cerevisiae)利用甘蔗汁生产燃料乙醇的最优发酵工艺,首先对发酵体系的氮源条件进行优化;其次,在单因素试验基础上,以乙醇发酵效率为响应值,通过响应面法优化了燃料乙醇生产的发酵工艺,并通过补料分批发酵技术在5 L发酵罐中进一步扩大发酵.结果表明,以1.0 g/L (NH)SO和1.0 g/L酵母提取物作为发酵氮源,乙醇发酵效率和得率比对照可分别提高4.80%、9.52%.响应面设计获得的最优发酵工艺条件为在总糖浓度150.0 g/L、酵母提取物浓度2.0 g/L、发酵时间24.5 h、pH5.0、外加(NH)SO浓度1.0 g/L时,最高乙醇发酵效率可达到91.10%.在5 L发酵罐中采用补料分批发酵获得的最终乙醇浓度达到98.92 g/L,发酵效率维持在90%左右,乙醇生产力最高达到3.81 g Lh.本研究获得了一种高效生产糖质燃料乙醇的发酵工艺,可在较短时间内获得高浓度乙醇且消耗较少氮源,结果可为进一步利用糖质原料进行高效生物炼制及高浓度乙醇工业化生产提供参考.(图6表6参30)  相似文献   

2.
混合培养微生物利用甘油补料发酵生产乙醇研究   总被引:3,自引:1,他引:2  
采用浸麻芽孢杆菌和红曲菌990691用甘油混合发酵生产乙醇.结果表明,分批发酵中高浓度的甘油对乙醇发酵有着较强的抑制作用,分批发酵最佳甘油浓度为0.217 mol L-1.在分批发酵的基础上补料发酵,考察了不同甘油浓度的补料液和不同补料时间对乙醇发酵的影响.最终确定乙醇补料发酵较优的工艺条件为:反应器1 L,装液量700 mL红曲发酵液,甘油初始浓度为0.217 mol L-1,以补料方式每隔60 h分5次补加0.217 mol L-1甘油浓度的红曲发酵液,每次补加100 mL,发酵培养360 h.当乙醇最高浓度达0.221 mol L-1,乙醇总产率0.628 mmol h-1,乙醇/甘油转化率达87%(mol mol-1).与分批发酵相比,补料发酵很大程度解除了高浓度甘油的抑制作用,有效地利用了甘油,提高了乙醇的产量,且乙醇产率较为稳定.  相似文献   

3.
鲜甘薯原料的运动发酵单胞菌快速乙醇发酵条件   总被引:1,自引:0,他引:1  
对运动发酵单胞菌232B同步糖化发酵(SSF)鲜甘薯快速生产燃料乙醇的条件进行了研究.通过单因素试验和正交试验获得了乙醇发酵的最佳参数为:初始pH值6.0~7.0,硫酸铵5.0 g/kg,糖化酶量1.6 AUG/kg淀粉,初始总糖浓度200 g/kg,接种量ψ=12.5%.经过21 h发酵,乙醇浓度为95.15 g/kg.发酵效率可达94%.同时对不灭菌发酵也进行了研究,发酵效率可达92%.残糖的HPLC分析结果说明,发酵液中已没有葡萄糖存在,经酸水解后又出现了葡萄糖、半乳糖、甘露糖等成分,说明发酵结束后的残糖是多种低聚糖.图4表4参19  相似文献   

4.
鲜甘薯发酵生产燃料乙醇中的降粘工艺   总被引:1,自引:0,他引:1  
鲜甘薯高浓度发酵生产燃料乙醇的瓶颈之一是醪液粘度高,容易堵塞管路,严重影响工业化生产和增加能源消耗,同时也会降低乙醇发酵效率.为解决此问题,进行了添加降粘酶系及其作用条件优化研究,结果如下:1)确定最适降粘酶系为四川禾本生物工程有限公司的纤维素酶,粘度由1.7×104mPa.s降到8.8×102mPa.s,并且降低了生产成本;2)确定降粘酶作用前高温处理条件:110℃,20 min;3)最适降粘酶对不同品种鲜甘薯高浓度发酵的降粘效果表明降粘酶对大部分品种鲜甘薯降粘效果较好,粘度均约为1.0×103mPa.s以下,最低粘度只有2.7×102mPa.s,粘度下降率均在95%以上;4)在确定最适降粘酶系和其作用前高温条件后,将其应用于工业化生产,加入降粘酶2 h后发酵醪液的粘度由1.8×105mPa.s下降到2.7×103mPa.s,发酵后终粘度仅为7.9×102mPa.s,发酵时间仅为23 h,乙醇浓度达到10.56%(V/V),进一步验证了该降粘酶系应用于工业化鲜甘薯燃料乙醇生产的实际意义.表8参19  相似文献   

5.
一株运动发酵单胞菌Zy-1快速生产乙醇   总被引:1,自引:0,他引:1  
经多次实验优化,得到运动发酵单胞菌Zy发酵葡萄糖生产乙醇较合适的条件.Zy的诱变菌株Zy-1在该条件下发酵葡萄糖生产乙醇比原始菌株更有较大优势.当葡萄糖浓度为200gL^-1时,发酵48h,乙醇浓度96.5gL^-1,残糖2.3gL^-1,发酵效率为94.42%.Zy-1发酵天然原料米粉、木薯、红薯干等,发酵时间44h,乙醇浓度达95gL^-1以上,发酵效率92%以上.发酵液用DNS法测定,还原糖约2gL^-1,残总糖因原料种类不同,其值有所差异(5~20gL^-1).经薄层层析分析,发酵液无葡萄糖,而是二糖、三糖等低聚糖.图2表5参12  相似文献   

6.
菊芋是生物能源和生物炼制的新型原料作物,具有和其他作物不同的秸秆组成.为了解菊芋秸秆的生物转化情况,本研究首先比较了NaOH-H_2O_2、瞬间弹射蒸汽爆破(ICSE)及NaOH-H_2O_2和ICSE联用等3种预处理方法,证明对于菊芋秸秆NaOH-H_2O_2预处理法简单高效.进一步研究显示,NaOH-H_2O_2预处理过程中水洗一次即可显著促进酶解和后续发酵.利用分批补料和补加纤维素酶的方式进行高物料浓度条件下预处理菊芋秸秆的分步水解和乙醇发酵,当物料浓度达到30%(m/V)时,水解72 h的葡萄糖和木糖浓度分别可达143.6 g/L和36.2 g/L.利用木糖-葡萄糖共发酵重组酿酒酵母菌株LX03在菊芋秸秆水解液中进行乙醇发酵,发酵72 h乙醇最高浓度达66.2 g/L(8.27%,V/V),且发酵总糖利用率达86.9%.本研究利用菊芋秸秆水解液发酵获得较高的乙醇产量,为进一步利用菊芋秸秆进行高效生物炼制及高浓度纤维素乙醇生产提供了参考.(图3表1参23)  相似文献   

7.
耐高温酵母高浓度发酵生产燃料乙醇工艺优化   总被引:2,自引:0,他引:2  
采用两水平部分因子设计(23Fractional Factorial),选取发酵温度、接种量、初始糖浓度为自变量考察因素,以最终发酵乙醇浓度和9 h生物量浓度为响应值,考察耐高温高浓度酵母的燃料乙醇发酵能力,并对实验数据进行二次模型变异分析(Ahalysis of variance,ANOVA),建立了三元二次方程数学...  相似文献   

8.
采用分批培养研究了从高浓度厌氧产氢活性污泥中筛选的优势菌种Clostridium papyrosolvens的发酵产氢能力.结果表明:该菌有较强的高糖耐受性和耐酸性,当葡萄糖浓度为30 g/L、pH阶段性控制在4.5时,发酵44 h葡萄糖消耗率为83.7%,总产气量达到3 081.3 mL/L,最高产气率为187.5 mL L-1 h-1,氢气含量为67.5%,比产氢率达1.06 mol(H2)/mol(葡萄糖).研究中选用了廉价的发酵产氢培养基,以玉米浆为氮源,以还原铁粉作氧化还原电位控制剂,省去了牛肉膏、蛋白胨等昂贵氮源以及L-半胱氨酸、维生素、无机离子等高成本组分,显著降低了纯菌发酵的培养基成本,获得了较好的产氢效果.图5表2参23  相似文献   

9.
浮萍是一种淀粉含量高、营养丰富的可再生廉价生物质资源;乳酸是一种重要的化学品,尝试以浮萍为原料用发酵法生产乳酸,为了获得高浓度的乳酸,需要增大底物浓度,但高浓度底物会使培养基黏度上升,从而阻碍发酵的进行.因此,首先对浮萍培养基的降黏工艺进行优化,同时考察在高浮萍底物浓度下的分批和补料分批两种发酵模式.结果表明,添加降黏酶后浮萍培养基的黏度(6.38±2.87 Pa·s)与不添加(27.60±5.77 Pa·s)相比可以降低332.60%,发酵获得的乳酸浓度(84.63±0.76 g/kg)也较未添加(69.33±0.66 g/kg)时有显著提高.浮萍底物浓度为260 g/kg时,在添加降黏酶的条件下通过补料分批发酵能获得最高的乳酸浓度达到110.10±1.16 g/kg,乳酸生产强度最高可达2.45±0.03g kg-1 h-1.在整个发酵过程中只以浮萍为单一底物,不需要添加其他任何营养物质.本研究表明以浮萍为单一底物,通过将降黏酶处理和补料分批发酵相结合可以在高底物浓度下发酵获得高浓度的乳酸,结果可为今后以浮萍为原料发酵生产乳酸的应用开发提供参考.(图4参35)  相似文献   

10.
研究了氧气和震荡条件对酿酒酵母高浓度乙醇发酵的影响.结果表明,震荡是提高发酵液乙醇浓度和产率的最重要因素.与静止培养相比,在不通气情况下震荡培养使乙醇浓度提高了69%(从75.8 g L-1提高到128.1 g L-1),在通气条件下乙醇浓度提高了68.7%(从85.2 g L-1提高到to 143.8 g L-1).在最优条件下,两次补料,经54 h发酵,发酵液中乙醇浓度达到143.8 g L-1,乙醇产率与理论产率的比值为0.471 g/g(即92.20%).经分析,通气和震荡条件提高了发酵液中酿酒酵母的生物量和细胞活力.图5表1参12  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号