首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Niobium oxide as the promoter was doped in the V/WTi catalyst for the selective catalytic reduction(SCR)of NO.The results showed that the addition of Nb_2O_5could improve the SCR activity at low temperatures and the 6 wt.%additive was an appropriate dosage.The enhanced reaction activity of adsorbed ammonia species and the improved dispersion of vanadium oxide might be the reasons for the elevation of SCR activity at low temperatures.The resistances to SO_2of 3V6Nb/WTi catalyst at different temperatures were investigated.FTIR spectrum and TG-FTIR result indicated that the deposition of ammonium sulfate species was the main deactivation reason at low temperatures,which still exhibited the reactivity with NO above 200°C on the catalyst surface.There was a synergistic effect among NH_3,H_2O and SO_2that NH_3and H_2O both accelerated the catalyst deactivation in the presence of SO_2at 175°C.The thermal treatment at 400°C could regenerate the deactivated catalyst and get SCR activity recovered.The particle and monolith catalysts both kept stable NO_xconversion at 225°C with high concentration of H_2O and SO_2during the long time tests.  相似文献   

2.
The selective catalytic reduction(SCR) activities of the MoO_3 doped V/WTi catalysts prepared by the incipient wetness impregnation method at low temperature were investigated.The results showed that the addition of MoO_3 could enhance the NO_ xconversion at low temperature and the best SCR activity was obtained when the dosage of MoO_3 reached5 wt.%. The NH3-TPD and DRIFTS experiments indicated that the addition of MoO_3 changed the type and number of acid sites on the surface of catalysts and reaction activities of acid sites were altered at the same time. The redox capacity and amount of active oxygen species got improved for V3Mo5/WTi catalyst, which could be confirmed by the H_2-TPR and transient response experiments. Water vapor inhibited the NO_xconversion at low temperature. Deposition of ammonium sulfate or bisulfate might be main reason for the loss of catalytic activity in the presence of SO_2 at low temperature. Choosing the suitable NH_3/NO ratio and elevation of reaction temperature both could weaken the influence of SO_2 on the SCR activity of the V3Mo5/WTi catalyst. Thermal treatment of the deactivated catalyst at350°C could get the low temperature activity recovered. The decrease of GHSV improved the de NO_x efficiency at low temperature and we speculated that the rational technological process and operation parameters could contribute to the application of this kind of catalysts in real industrial environment.  相似文献   

3.
The effect of acidity and redox capability over sulfuric acid-modified CeO_2 catalysts were studied for the selective catalytic reduction of NO_x with NH_3(NH_3-SCR). The deposition of sulfate significantly enhanced the catalytic performance over CeO_2. NO_x conversion over4H_2SO_4/CeO_2 at 230–440 °C was higher than 90%. The strong redox capability of CeO_2 could result in unselective NH_3 oxidation and decrease high temperatures catalytic activity and N_2 selectivity. The deposition of sulfate increased the acidity and weakened the redox capability, and then increased the high temperature NO_x conversion and N_2 selectivity. An appropriate level of acidity also promoted the activity at 190–250 °C over ceria-based catalysts, and with further increase in the acidity, the SCR activity decreased slightly. Weak redox capability lowered the low-temperature catalytic activity. Excellent SCR activity requires a balance of acidity and redox capability on the catalysts.  相似文献   

4.
Nitrogen oxides(NO_x:NO,NO_2)are a concern due to their adverse health effects.Diesel engine transport sector is the major emitter of NO_x.The regulations have been strengthened and to comply with them,one of the two methods commonly used is the selective catalytic reduction of NO_xby NH_3(NH_3-SCR),NH_3being supplied by the in-situ hydrolysis of urea.Efficiency and durability of the catalyst for this process are highly required.Durability is evaluated by hydrothermal treatment of the catalysts at temperature above 800°C.In this study,very active catalysts for the NH_3-SCR of NO_xwere prepared by using a silicoaluminophosphate commercial zeolite as copper host structure.Characterizations by X-ray diffraction(XRD),scanning electron microscopy(SEM)and temperature programmed desorption of ammonia(NH_3-TPD)showed that this commercial zeolite was hydrothermally stable up to 850°C and,was able to retain some structural properties up to950°C.After hydrothermal treatment at 850°C,the NO_xreduction efficiency into NH_3-SCR depends on the copper content.The catalyst with a copper content of 1.25 wt.%was the most active.The difference in activity was much more important when using NO than the fast NO/NO_2reaction mixture.  相似文献   

5.
A series of cobalt doped TiO_2(Co-TiO_2) and Co Oxloaded TiO_2(Co/TiO_2) catalysts prepared by sol–gel and impregnation methods respectively were investigated on selective catalytic reduction with NH_3(NH_3-SCR) of NO. It was found that Co-TiO_2 catalyst showed more preferable catalytic activity at low temperature range. From characterization results of XRD,TEM, Raman and FT-IR, Co species were proved to be doped into TiO_2 lattice by replaced Ti atoms. After being characterized and analyzed by NH_3-TPD, PL, XPS, EPR and DRIFTS, it was found that the better NH_3-SCR activities of Co-TiO_2 catalysts, compared with Co/TiO_2 catalyst, were ascribed to the formation of more oxygen vacancies which further promoted the production of more superoxide ions(O-2). The superoxide ions were crucial for the formation of low temperature SCR reaction intermediates(NO-3) by reacting with adsorbed NO molecule. Therefore, these aspects were responsible for the higher low temperature NH_3-SCR activity of Co-TiO_2 catalysts.  相似文献   

6.
CuSO_4/TiO_2 catalysts with high catalytic activity and excellent resistant to SO_2 and H_2 O,were thought to be promising catalysts used in Selective catalytic reduction of nitrogen oxides by NH_3.The performance of catalysts is largely affected by calcination temperature.Here,effects of calcination temperature on physicochemical property and catalytic activity of CuSO_4/TiO_2 catalysts were investigated in depth.Catalyst samples calcined at different temperatures were prepared first and then physicochemical properties of the catalyst were characterized by N2 adsorption-desorption,X-ray diffraction,thermogravimetric analysis,Raman spectra,Fourier-transform infrared spectroscopy,X-ray photoelectron spectroscopy,temperature-pro grammed desorption of NH_3,temperature-programmed reduction of H_2 and in situ diffuse reflectance infrared Fourier transform spectroscopy.Results revealed that high calcination temperature had three main effects on the catalyst.First,sintering and anatase transform into rutile with increase of calcination temperature,causing a decrement of specific surface area.Second,decomposition of CuSO_4 under higher calcination temperature,resulting in disappears of Br(?)nsted acid sites(S-OH),which had an adverse effect on surface acidity.Third,CuO from the decomposition of CuSO_4 changed surface reducibility of the catalyst and favored the process of NH_3 oxidation to nitrogen oxides(NO_x).Thus,catalytic activity of the catalyst calcined under high temperatures(≥600℃) decreased largely.  相似文献   

7.
Selective catalytic reduction technology using NH3 as a reducing agent(NH3-SCR) is an effective control method to remove nitrogen oxides. TiO2-supported vanadium oxide catalysts with different levels of Ce and Sb modification were prepared by an impregnation method and were characterized by X-ray diffractometer(XRD), Brunauer–Emmett–Teller(BET), Transmission electron microscopy(TEM), Fourier transform infrared spectroscopy(FT-IR), UV–Vis diffuse reflectance spectroscopy(UV–Vis DRS), Raman and Hydrogen temperature-programmed reduction(H2-TPR). The catalytic activities of V5 CexS by/TiO2 catalysts for denitration were investigated in a fixed bed flow microreactor. The results showed that cerium, vanadium and antimony oxide as the active components were well dispersed on TiO2, and the catalysts exhibited a large number of d–d electronic transitions, which were helpful to strengthen SCR reactivity. The V5 CexS by/TiO2 catalysts exhibited a good low temperature NH3-SCR catalytic activity. In the temperature range of 210 to 400℃, the V5 CexS by/TiO2 catalysts gave NO conversion rates above 90%. For the best V5Ce35Sb2/TiO2 catalyst, at a reaction temperature of 210℃, the NO conversion rate had already reached 90%. The catalysts had different catalytic activity with different Ce loadings. With the increase of Ce loading, the NO conversion rate also increased.  相似文献   

8.
Mn-Ni oxides with different compositions were prepared using standard co-precipitation(CP) and urea hydrolysis-precipitation(UH) methods and optimized for the selective catalytic reduction of nitrogen oxides(NO_x) by NH_3 at low temperature.Mn((2))Ni_((1))O_x-CP and Mn_((2))Ni_((1))O_x-UH(with Mn:Ni molar ratio of 2:1) catalysts showed almost identical selective catalytic reduction(SCR) catalytic activity,with about 96% NO_x conversion at 750 C and-99%in the temperature range from 100 to 250℃.X-ray diffraction(XRD) results showed that Mn_((2))Ni_((1))O_x-CP and Mn_((2))Ni_((1))O_x-UH catalysts crystallized in the form of Mn_2NiO_4 and MnO_2-Mn_2NiO_4 spinel,respectively.The latter gave relatively good selectivity to N_2,which might be due to the presence of the MnO_2 phase and high metal-O binding energy,resulting in low dehydrogenation ability.According to the results of various characterization methods,it was found that a high density of surface chemisorbed oxygen species and efficient electron transfer between Mn and Ni in the crystal structure of Mn_2NiO_4 spinel played important roles in the high-efficiency SCR activity of these catalysts.Mn_((2))Ni_((1))O_x catalysts presented good resistance to H_2O or/and SO_2 with stable activity,which benefited from the Mn_2NiO_4 spinel structure and Eley-Rideal mechanism,with only slight effects from SO_2.  相似文献   

9.
The regeneration of commercial SCR(Selective Catalyst Reduction) catalysts deactivated by Pb and other elements was studied.The deactivated catalyst samples were prepared by chemical impregnation with mixed solution containing K_2SO_4,Na_2SO_4,CaSO_4,Pb(NO_3)_2and NH_4H_2PO_4.A novel method combining Ethylenediaminetetraacetic acid disodium salt(EDTA-2Na) and H_2SO_4solution(viz.catalysts treated by dilute EDTA-2Na and H_2SO_4 solution in sequence) was used to recover the activity of deactivated samples,and the effect was compared with single H_2SO_4,oxalic acid,acetic acid,EDTA or HNO_3 solutions.The surface structure,acidity and reducibility of samples were characterized by N_2adsorption–desorption,inductively coupled plasma optical emission spectrometer(ICP-OES),scanning electron microscopy(SEM),X-ray diffraction(XRD),X-ray fluorescence(XRF),H-2-temperature programmed section(H_2-TPR),NH3-temperature programmed desorption(NH3-TPD) and in situ DRIFTS.Impurities caused a decrease of specific surface area and surface reducibility,as well as Br?nsted acid sites,and therefore led to severe deactivation of the SCR catalyst.The use of an acid solution alone possibly eliminated the impurities on the deactivated catalyst to some extent,and also increased the specific surface area and Br?nsted acid sites and promoted the surface reducibility,thus recovered the activity partially.The combination of EDTA-2Na and H_2SO_4 could remove most of the impurities and improve the activity significantly.The removal of Pb should be an important factor for regeneration.Due to a high removal rate for Pb and other impurities,the combination of EDTA-2Na and H_2SO_4 solutions provided the best efficiency.  相似文献   

10.
Sulfur poisoning of V_2O_5/BaSO_4–TiO_2(VBT),V_2O_5/WO_3–TiO_2(VWT) and V_2O_5/BaSO_4–WO_3–TiO_2(VBWT) catalysts was performed in wet air at 350℃ for 3 hr,and activities for the selective catalytic reduction of NO_x with NH_3 were evaluated for 200–500℃.The VBT catalyst showed higher NO_x conversions after sulfur poisoning than the other two catalysts.The introduction of barium sulfate contributed to strong acid sites for the as-received catalyst,and eliminated the redox cycle of active vanadium oxide to some extent,which resulted in a certain loss of activity.Readily decomposable sulfate species formed on VBT-S instead of inactive sulfates on VWT-S.These decomposable sulfates increased the number of strong acid sites significantly.Some sulfate species escaped during catalyst preparation and barium sulfate was reproduced during sulfur poisoning,which protects vanadia from sulfur oxide attachment to a great extent.Consequently,the VBT catalyst exhibited the best resistance to sulfur poisoning.  相似文献   

11.
12.
13.
14.
15.
16.
17.
聚乙烯醇-硼酸固定化方法的改进   总被引:24,自引:0,他引:24       下载免费PDF全文
在固定化细胞技术中,常采用聚乙烯醇作为包埋介质,但聚乙烯醇固定化颗粒水溶膨胀性较大、易碎.笔者采用延时包埋法与加入化学药剂法对其进行了改进.结果表明,用这两种方法制得的聚乙烯醇固定化颗粒的水溶膨胀性大大减少、不易破碎;电镜观察发现,改进后的聚乙烯醇凝胶网状结构明显优于未经过改进的聚乙烯醇凝胶的网状结构.   相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号