首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Free-surface flows over patchy vegetation are common in aquatic environments. In this study, the hydrodynamics of free-surface flow in a rectangular channel with a bed of rigid vegetation-like cylinders occupying half of the channel bed was investigated and interpreted by means of laboratory experiments and numerical simulations. The channel configurations have low width-to-depth aspect ratio (1.235 and 2.153). Experimental results show that the adjustment length for the flow to be fully developed through the vegetation patch in the present study is shorter than observed for large-aspect-ratio channels in other studies. Outside the lateral edge of the vegetation patch, negative velocity gradient (\(\partial \overline{u}/\partial z < 0\)) and a local velocity maximum are observed in the vertical profile of the longitudinal velocity in the near-bed region, corresponding to the negative Reynolds stress (\(- \overline{{u^{\prime}w^{\prime}}} < 0\)) at the same location. Assuming coherent vortices to be the dominant factor influencing the mean flow field, an improved Spalart–Allmaras turbulence model is developed. The model improvement is based on an enhanced turbulence length scale accounting for coherent vortices due to the effect of the porous vegetation canopy and channel bed. This particular flow characteristic is more profound in the case of high vegetation density due to the stronger momentum exchange of horizontal coherent vortices. Numerical simulations confirmed the local maximum velocity and negative gradient in the velocity profile due to the presence of vegetation and bed friction. This in turn supports the physical interpretation of the flow processes in the partly obstructed channel with vegetation patch. In addition, the vertical profile of the longitudinal velocity can also be explained by the vertical behavior of the horizontal coherent vortices based on a theoretical argument.  相似文献   

2.
The paper focuses on the numerical simulation of the exchange flow between open water and floating vegetation, which plays an important role in maintaining the ecological balance by transporting nutrient matter. The simulation was conducted using a new solver developed upon OpenFOAM. A modified RNG k-ε turbulence model, which is expected to model both the high- and low-Reynolds number flows correctly, was used to determine the eddy viscosity. Several particular terms were added into the momentum equations and turbulence model equations to model the effects of vegetation and buoyancy. Among these terms, the term for the effect of vegetation in the ε-equation was re-modelled. The model was validated by properly predicting the profiles of mean velocity and turbulent kinetic energy for flows through suspended canopies. The density flow between open and vegetated water was simulated with the same conditions as those of the experiment conducted by Zhang and Nepf. The predicted results agreed well with the experimental data and provided more detailed information of such exchange flow. The convection between the root layer and the layer beneath the roots, which was not observed in the experiment, was observed in the numerical simulation.  相似文献   

3.
4.
Field observations of the interactions between a stratified flow and a canopy suspended from the free surface above a solid boundary are described and analysed. Data were recorded in and around the canopy formed by a large long-line mussel farm. The canopy causes a partial blockage of the water flow, reducing velocities in the upper water column. Deceleration of the approaching flow results in a deepening of isopycnals upstream of the canopy. Energy considerations show that the potential for an approaching stratified flow to be diverted beneath a porous canopy is indicated by a densimetric Froude number. Strong stratification or low-velocities inhibit vertical diversion beneath the canopy, instead favouring a horizontal diversion around the sides. The effect on vertical mixing is also considered with a shear layer generated beneath the canopy and turbulence generated from drag within the canopy. In the observations, stratification is shown to be of sufficient strength to limit the effectiveness of the first mixing process, while the turbulence within the canopy is likely to enhance vertical exchange. Velocity and temperature microstructure measurements are used to investigate the effect of the canopy on turbulent dissipation and show that dissipation is enhanced within the canopy.  相似文献   

5.

Motivated by shallow ocean waves propagating over coral reefs, we investigate the drift velocities due to surface wave motion in an effectively inviscid fluid that overlies a saturated porous bed of finite depth. Previous work in this area either neglects the large-scale flow between layers (Phillips in Flow and reactions in permeable rocks, Cambridge University Press, Cambridge, 1991) or only considers the drift above the porous layer (Monismith in Ann Rev Fluid Mech 39:37–55, 2007). Overcoming these limitations, we propose a model where flow is described by a velocity potential above the porous layer and by Darcy’s law in the porous bed, with derived matching conditions at the interface between the two layers. Both a horizontal and a novel vertical drift effect arise from the damping of the porous bed, which requires the use of a complex wavenumber k. This is in contrast to the purely horizontal second-order drift first derived by Stokes (Trans Camb Philos Soc 8:441–455, 1847) when working with solely a pure fluid layer. Our work provides a physical model for coral reefs in shallow seas, where fluid drift both above and within the reef is vitally important for maintaining a healthy reef ecosystem (Koehl et al. In: Proceedings of the 8th International Coral Reef Symposium, vol 2, pp 1087–1092, 1997; Monismith in Ann Rev Fluid Mech 39:37–55, 2007). We compare our model with field measurements by Koehl and Hadfield (J Mar Syst 49:75–88, 2004) and also explain the vertical drift effects as documented by Koehl et al. (Mar Ecol Prog Ser 335:1–18, 2007), who measured the exchange between a coral reef layer and the (relatively shallow) sea above.

  相似文献   

6.
Results are presented from a series of large-scale experiments investigating the internal and near-bed dynamics of bi-directional stratified flows with a net-barotropic component across a submerged, trapezoidal, sill obstruction. High-resolution velocity and density profiles are obtained in the vicinity of the obstruction to observe internal-flow dynamics under a range of parametric forcing conditions (i.e. variable saline and fresh water volume fluxes; density differences; sill obstruction submergence depths). Detailed synoptic velocity fields are measured across the sill crest using 2D particle image velocimetry, while the density structure of the two-layer exchange flows is measured using micro-conductivity probes at several sill locations. These measurements are designed to aid qualitative and quantitative interpretation of the internal-flow processes associated with the lower saline intrusion layer blockage conditions, and indicate that the primary mechanism for this blockage is mass exchange from the saline intrusion layer due to significant interfacial mixing and entrainment under dominant, net-barotropic, flow conditions in the upper freshwater layer. This interfacial mixing is quantified by considering both the isopycnal separation of vertically-sorted density profiles across the sill, as well as calculation of corresponding Thorpe overturning length scales. Analysis of the synoptic velocity fields and density profiles also indicates that the net exchange flow conditions remain subcritical (G < 1) across the sill for all parametric conditions tested. An analytical two-layer exchange flow model is then developed to include frictional and entrainment effects, both of which are needed to account for turbulent stresses and saline entrainment into the upper freshwater layer. The experimental results are used to validate two key model parameters: (1) the internal-flow head loss associated with boundary friction and interfacial shear; and (2) the mass exchange from the lower saline layer into the upper fresh layer due to entrainment.  相似文献   

7.
Xu  Ze-Xing  Ye  Chen  Zhang  Yan-Yang  Wang  Xie-Kang  Yan  Xu-Feng 《Environmental Fluid Mechanics》2020,20(4):707-738

This paper investigates the influence of near-bank vegetation patches on the bed morphological adjustment in open channel flow systems. The 2D depth-averaged hydro-morphological model is adopted for this investigation, which is first validated by laboratory experimental data measured in an open channel with a single near-bank vegetation patch. The validated model is then applied for extensive numerical simulations, with the aim of conducting a systematic analysis of the influence of different geometric controlling parameters on the bed morphological evolution. The controlling parameters taken into account for numerical analysis include the angle of repose value (RAV) of sediment, vegetation density (VD), patch length (PL) and patch width (PW). The numerical results and analysis show that: (1) the RAV of sediment with slope-failure parametrization only influences the shape of the transverse bed topography in the junction region; (2) increase in VD, PL and PW that substantially enhances flow blockage effect encourages the growth of the pool adjacent to the patch in three dimensions; (3) increase in VD, PL and PW produces analogous retrogressive erosion (erosion toward the upstream) in the pool region, presumably due to the increase in flow resistance. Additional numerical experiments suggest that the staggered-order distribution of multiple patches might be an optimal choice for channel restoration and conservation since pools and riffles with larger scales can be produced.

  相似文献   

8.
We have developed a numerical method to simulate the transport of non-sorbing contaminants within the sediment layer of a stream and the leaching of these contaminants in the steam. Typical stream bottom surfaces are uneven with triangularly shaped undulation forms. The flow of the water above such triangular surfaces causes external pressure changes that result in a “pumping effect” and a secondary flow within the sediment. The latter causes a significant contaminant advection within the sediment layer. The flow field in the porous sediment layer is obtained by solving numerically Darcy’s equations. The unsteady mass transfer equation is solved by using a finite-difference method with an up-wind scheme. The effects of parameters, such as channel slope, hydraulic head and dispersion, are studied by quantitatively comparing the numerical results of the total mass flow rate from the contaminant source, the concentration front propagation, and the contaminant mass flow rate into the water column. The “pumping effect,” increases the flow in the vertical direction and, thus, enhances the vertical advective mass transport of the contaminant. This bedform-shape induced flow is largely responsible for the mass transfer of contaminants into the water column. The numerical results also show that the mechanical dispersion inside the sediment bed will significantly increase the contaminant mass flow rate from the source.  相似文献   

9.
A number of experimental studies on submerged canopy flows have focused on fully-developed flow and turbulent characteristics. In many natural rivers, however, aquatic vegetation occurs in patches of finite length. In such vegetated flows, the shear layer is not formed at the upstream edge of the vegetation patch and coherent motions develop downstream. Therefore, more work is neededz to reveal the development process for large-scale coherent structures within vegetation patches. For this work, we considered the effect of a limited length vegetation patch. Turbulence measurements were intensively conducted in open-channel flows with submerged vegetation using Particle Image Velocimetry (PIV). To examine the transition from boundary-layer flow upstream of the vegetation patch to a mixing-layer-type flow within the patch, velocity profiles were measured at 33 positions in a longitudinal direction. A phenomenological model for the development process in the vegetation flow was developed. The model decomposed the entire flow region into four zones. The four zones are the following: (i) the smooth bed zone, (ii) the diverging flow zone, (iii) the developing zone and (iv) the fully-developed zone. The PIV data also confirmed the efficiency of the mixing-layer analogy and provided insight into the spatial evolution of coherent motions.  相似文献   

10.
Much study has been performed on the mixing properties of submerged, turbulent buoyant jets. It is safe to say that the problem of estimating dilution rates in vertical buoyant jets spreading in an `infinitely deep' ambient water has been more than adequately resolved by previous researchers. However, the majority of environmental applications involve discharges into ambient waters of finite depths in which a bounding surface serves to re-direct the impinging buoyant jet horizontally into a radial spreading layer. Previous research indicates that this impinging jet undergoes additional mixing before buoyancy stabilizes vertical mixing and confines the spreading layer to the vicinity of the bounding surface. Unfortunately, the conceptualization and subsequent mathematical modeling of this additional mixing phenomenon is surrounded by considerable amount of disagreement between researchers. The purpose of this study is to provide, by means of velocity and concentration profile measurements, independent experimental evidence for the existence of a critical flow state immediately downstream of the active mixing zone in the horizontally flowing, radial flow that forms after impingement. It is further shown that this critical flow state must be expressed in terms of a composite Froude Number that takes into account the possibility of a non-zero exchange layer flow. Finally, the influence of the presence of a sill-like topographic downstream control on the criticality of the radial flow immediately downstream of the active mixing zone is also investigated.  相似文献   

11.
In this work we investigate experimentally and numerically the flow structure around foliaged plants deployed in a channel with gravels on the bed under submerged and barely submerged conditions. Velocity and Reynolds stress were measured by using a NORTEK Vectrino profiler. Visual observation shows that the initial motion of gravels is easier to be triggered under the condition of flow with barely submerged vegetation. This is confirmed by the measured velocity, Reynolds stress and total kinetic energy (TKE) profiles. The velocity exhibits a speed up in the near-bed region, and the associated Reynolds stress and TKE increase there. A 3D numerical model is then verified against the experiments and used to investigate systematically the effect of degree of submergence of foliaged plants on the channel bed shear stress. The results show that the maximum bed shear stress occurs when the foliage is situated slightly below the water surface, which can enhance channel bed instability.  相似文献   

12.
This contribution presents particle image velocimetry measurements for an open channel stationary uniform and fully developed flow of water over a horizontal flat bed of uniform glass beads in presence of a staggered array of vertical cylindrical stems. The main objective was to explore and quantify the influence of the stems-to-flow relative submergence, h v /h, over the mean flow and local turbulence intensities. A comparison with measurements for the non-vegetated flow over the same granular bed is presented. Results indicate a remarkable influence of h v /h over the whole flow field. The time-average mean flow presents a strong spatial variation in the layer of the flow occupied by the stems. The local velocity fluctuations are strongly affected by the presence of the stems, with regions in between the stems where they reach peaks that are several times larger than those encountered in the flow in absence of vegetation. The turbulence intensity profiles are noticeably different when compared to those measured in the non-vegetated flow conditions. From previous works it was possible to derive an equation for the mean velocity, U v , of the flow through the vegetated layer of height h v . The prediction of this equation is in good agreement with the uniform value for the double-average longitudinal velocity profile in this layer. A final brief discussion about the possible impact of these vegetated-flow features on the sediment transport is presented.  相似文献   

13.
The hydrodynamics of flows through a finite length semi-rigid vegetation patch (VP) were investigated experimentally and numerically. Detailed measurements have been carried out to determine the spatial variation of velocity and turbulence profiles within the VP. The measurement results show that an intrusion region exists in which the peak Reynolds stress remains near the bed. The velocity profile is invariant within the downstream part of the VP while the Reynolds stress profile requires a longer distance to attain the spatially invariant state. Higher vegetation density leads to a shorter adjustment length of the transition region, and a higher turbulence level within the VP. The vegetation density used in the present study permits the passing through of water and causes the peak Reynolds stress and turbulence kinetic energy each the maximum at the downstream end of the patch. A 3D Reynolds-averaged Navier–Stokes model incorporating the Spalart–Allmaras turbulence closure was employed subsequently to replicate the flow development within the VP. The model reproduced transitional flow characteristics well and the results are in good agreement with the experimental data. Additional numerical experiments show that the adjustment length can be scaled by the water depth, mean velocity and maximum shear stress. Empirical equations of the adjustment lengths for mean velocity and Reynolds stress were derived with coefficients quantified from the numerical simulation results.  相似文献   

14.
The presence of suction (flow of water from channel to ground water) affects the channel hydrodynamics and increases the bed shear stress. At high bed shear stress in alluvial channels made of the non-cohesive material, sediment transport occurs as sheet flow layer of high sediment concentration. The sediment transport in the form of sheet flow has been observed in the present study when suction was applied to the non-transporting channels designed on incipient motion condition. The erosion of the channel banks contributed to the sheet flow because of the increased channel bed shear stress. An empirical relation for the thickness of sheet flow layer has been developed which includes suction as independent parameter along with others.  相似文献   

15.
Thermal-driven flow is generated due to topographic or vegetation-shading effects. Asymptotic solutions by assuming a small bottom slope are derived to discuss effects of rooted emergent vegetation and interactions between emergent vegetation and sloping topography on thermal-driven flow during diurnal heating and cooling cycles. The results show that the zero-order horizontal velocity is significantly reduced by vegetative drag, and the time lag between the change of horizontal velocity and the reversal of pressure gradient is also shortened. The solutions reveal that the viscous effect is dominant in very shallow water, and the drag force becomes important as the water depth increases. The inertial term is only important at the very beginning stage of flow initiation. Different vegetation distributions can significantly change the temperature fields that then affect patterns of thermal-driven circulation and exchange flowrates. For the case of tall vegetation growth in shallow water, and when the deep water side is open, the effects of vegetation shading may interfere with the topographic effects and dramatically alter the flow patterns. The blockage of solar radiation due to vegetation shading can determine the patterns and magnitude of thermal-driven flow. By means of the derived asymptotic horizontal velocity, exchange flow rates can be estimated, which are in good agreement with previous studies. The limitation and valid ranges of asymptotic solutions are finally discussed.  相似文献   

16.
The vertical diffusional mass (solute) transfer through a suspended sediment layer, e.g. at the bottom of a lake, reservoir or estuary, by the propagation of velocity fluctuations from above was investigated. The attenuation of the velocity fluctuations in the suspension layer and the associated effect on solute transfer through the suspension layer was simulated. To represent large eddies traveling downstream in water over a high-concentration suspended sediment layer, a streamwise velocity fluctuation moving in downstream direction was imposed along the upper boundary of the suspension layer. Velocity fluctuations and downstream velocity were normalized by the shearvelocity (U*) at the top of the suspension layer. Streamwise and vertical velocity components inside the suspension layer, were obtained from the 2-D continuity and the Navier–Stokes equations. The persistence of turbulence with depth—as it penetrates from the overlying water into the suspension layer—was found to depend on its amplitude, its period, and on the apparent viscosity of the suspension. The turbulence was found to propagate efficiently into the suspension layer when its frequency is low, and the apparent viscosity of the suspension is high. Effects on vertical mass transfer were parameterized by penetration depth and effective diffusion coefficient, and related to apparent viscosity of the suspension, Schmidt number and shear velocity on top of the suspension layer. The enhancement of turbulence penetration by viscosity is similar to the flow near an oscillating flat plate (Stokes’ second problem), but is opposite to turbulence penetration into a stationary porous and permeable sediment bed. The information is applicable to water quality modeling mear the sediment/water interface of lakes, river impoundments and estuaries.  相似文献   

17.
In order to simulate a simple entraining geophysical flow, a viscous Newtonian gravity current is released from a reservoir by a dam-break and flows along a rigid horizontal bed until it meets a layer of entrainable material of finite depth, identical to the current. The goal is to examine the entrainment mechanisms by observing the interaction between the incoming flow and the loose bed. The sole parameter varied is the initial volume of the gravity current, thus altering its height and velocity. The gravity current plunges or spills into the entrainable bed and the velocity of the flow front becomes linear with time. The bed material is directly affected: motion is generated in the fluid far downstream of, and in that lying beneath the encroaching front. Shear bands are identified, separating horizontal flow downstream from flow with a strong vertical component close to the step. Downstream of the step the flow is horizontal and stratified, with no slip on the bottom boundary and very low shear near the surface. Between these two regions may lie transitional zones with linear velocity profiles, separated by horizontal bands of high shear; the number of transitional zones in the cross-section varies with the initial volume of the dam-break.  相似文献   

18.
This present study reports the results of an experimental study characterizing thorough variation of turbulent hydrodynamics and flow distribution in emergent and sparsely vegetated open channel flow. An emergent and rigid sparse vegetation patch with regular spacing between stems along the flow and transverse directions was fixed in the central region of the cross-section of open channel. Experiments were conducted in subcritical flow conditions and velocity measurements were obtained with an acoustic Doppler Velocimetry system. Large variations of the turbulence intensities, Reynolds shear stress, turbulent kinetic energy and vortical motions are found in and around the vegetation patch. At any cross-section through the interior of the vegetation patch, streamwise velocity decreases with increase in streamwise length and the velocity profiles converge from the log-law to a linear profile with increasing slope. Time-averaged lateral and vertical velocities inside the vegetation patch increase with increasing streamwise distance and converge from negative values to positive values. Turbulence intensities interior of the sparse vegetation patch are more than those of without the vegetation patch. Similar to the trend of streamwise velocity profiles inside the vegetation, turbulence intensities and longitudinal-normal Reynolds shear stress profile decreases with streamwise direction. In the interior of the vegetation patch and downstream of the trailing edge, turbulent kinetic energy profiles are exhibiting irregular fluctuations and the maximum values are occurring in the outer layer. Analysis of flow distribution confirms sparse vegetation patch is inducing a serpentine flow pattern in its vicinity. At the leading edge, flow is rushing towards the right hand sidewall, and at the trailing edge, flow is turning to the left hand sidewall. In between the leading and trailing edges, the streamlines are following a zig-zag fashion at varied degree along the streamwise and lateral directions. Immediate upstream of the leading edge and in the interior of the vegetation patch, vortex motion is clearly visible and the vortices are stretched along the width of the channel with streamwise direction.  相似文献   

19.
The Structure of the Shear Layer in Flows over Rigid and Flexible Canopies   总被引:1,自引:0,他引:1  
Flume experiments were conducted with rigid and flexible model vegetation to study the structure of coherent vortices (a manifestation of the Kelvin–Helmholtz instability) and vertical transport in shallow vegetated shear flows. The vortex street in a vegetated shear layer creates a pronounced oscillation in the velocity profile, with the velocity near the top of a model canopy varying by a factor of three during vortex passage. In turn, this velocity oscillation drives the coherent waving of flexible canopies. Relative to flows over rigid vegetation, the oscillation in canopy geometry has the effect of decreasing the amount of turbulent vertical momentum transport in the shear layer. Using a waving plant to determine phase in the vortex cycle, each vortex is shown to consist of a strong sweep at its front (during which the canopy is most deflected), followed by a weak ejection at its rear (when the canopy height is at a maximum). Whereas in unobstructed mixing layers the vortices span the entire layer, they encompass only 70% of the flexibly obstructed shear layer studied here.  相似文献   

20.
Laboratory experiments are conducted to quantify the mean flow structure and turbulence properties downstream of a spanwise suspended linear array in a uniform ambient water flow using Particle Tracking Velocimetry. Eighteen experimental scenarios, with four depth ratios (array depth to water column depth) of 0.35, 0.52, 0.78, and 0.95 and bulk Reynolds number (length scale is the array depth) from 11,600 to 68,170, are investigated. Three sub-layers form downstream of the array: (1) an internal wake zone, where the time-averaged velocity decreases with increasing distance downstream, (2) a shear layer which increases in vertical extent with increasing distance downstream of the array, and the rate of the increase is independent of the bulk Reynolds number or the depth ratio, and (3) an external wake layer with enhanced velocity under the array. The location of the shear layer is dependent on the depth ratio. The spatially averaged and normalized TKE of the wake has a short production region, followed by a decay region which is comparable to grid turbulence decay and is dependent on the depth ratio. The results suggest that the shear layer increases the transfer of horizontal momentum into the internal wake zone from the fluid outside of the array and that the turbulence in the internal wake zone can be modeled similarly to that of grid turbulence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号