首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

A simple data analysis method called the Tracer-Aerosol Gradient Interpretive Technique (TAGIT) is used to attribute particulate S and SO2 at Big Bend National Park in Texas and nearby areas to local and regional sources. Particulate S at Big Bend is of concern because of its effects on atmospheric visibility. The analysis used particulate S, SO2 , and perfluorocarbon tracer data from six 6-hr sampling sites in and near Big Bend National Park. The data were collected in support of the Big Bend Regional Aerosol and Visibility Observational (BRAVO) Study; the field portion was conducted from July through October 1999. Perfluorocarbon tracer was released continuously from a tower at Eagle Pass, TX, approximately 25 km northeast of two large coal-fired power plants (Carbon I and II) in Coahuila, Mexico, and approximately 270 km east-southeast of Big Bend National Park.

The perfluorocarbon tracer did not properly represent the location of the emissions from the Carbon power plants for individual 6-hr sampling periods and attributed only 3% of the particulate S and 27% of the SO2 at the 6-hr sites in and near Big Bend to sources represented by the tracer. An alternative approach using SO2 to tag “local” sources such as the Carbon plants attributed 10% of the particulate S and 75% of the SO2 at the 6-hr sites to local sources. Based on these two approaches, most of the regional (65–86%) and a small fraction (19–31%) of the local SO2 was converted to particulate S. The analysis implies that substantial reductions in particulate S at Big Bend National Park cannot be achieved by only reducing emissions from the Carbon power plants; reduction of emissions from many sources over a regional area would be necessary.  相似文献   

2.
The Big Bend Regional Aerosol and Visibility Observational (BRAVO) field study was conducted from July to October 1999 and was followed by several years of modeling and data analyses to examine the causes of haze at Big Bend National Park TX (BBNP). During BRAVO, daily speciated fine (diameter <2.5 microm) particulate concentrations were measured at 37 sites throughout Texas. At the primary receptor site, K-Bar Ranch, there were many additional measurements including a "high-sensitivity" version of the 24-hr fine particulate elemental data. The spatial, temporal, and interspecies patterns in these data are examined here to qualitatively investigate source regions and source types influencing the fine particulate concentrations in Texas with an emphasis on sources of sulfates, the largest contributor to fine mass and light extinction. Peak values of particulate sulfur (S) varied spatially and seasonally. Maximum S was in Northeast Texas during the summer, whereas peak S at BBNP was in the fall. Sulfate acidity at BBNP also varied by month. Sources of Se were evident in Northeast Texas and from the Carbón I and II plants. High S episodes at BBNP during BRAVO had several different trace element characteristics. Carbon concentrations at BBNP during BRAVO were probably mostly urban-related, with arrival from the Houston area likely. The Houston artificial tracer released during the second half of BRAVO was highly correlated with some carbon fractions. There was evidence of the influence of African dust at sites throughout Texas during the summer. Patterns in several trace elements were also examined. Vanadium was associated with air masses from Mexico. Lead concentrations in southern Texas have dropped dramatically over the past several years.  相似文献   

3.
The recently completed Big Bend Regional Aerosol and Visibility Observational (BRAVO) Study focused on particulate sulfate source attribution for a 4-month period from July through October 1999. A companion paper in this issue by Schichtel et al. describes the methods evaluation and results reconciliation of the BRAVO Study sulfate attribution approaches. This paper summarizes the BRAVO Study extinction budget assessment and interprets the attribution results in the context of annual and multiyear causes of haze by drawing on long-term aerosol monitoring data and regional transport climatology, as well as results from other investigations. Particulate sulfates, organic carbon, and coarse mass are responsible for most of the haze at Big Bend National Park, whereas fine particles composed of light-absorbing carbon, fine soils, and nitrates are relatively minor contributors. Spring and late summer through fall are the two periods of high-haze levels at Big Bend. Particulate sulfate and carbonaceous compounds contribute in a similar magnitude to the spring haze period, whereas sulfates are the primary cause of haze during the late summer and fall period. Atmospheric transport patterns to Big Bend vary throughout the year, resulting in a seasonal cycle of different upwind source regions contributing to its haze levels. Important sources and source regions for haze at Big Bend include biomass smoke from Mexico and Central America in the spring and African dust during the summer. Sources of sulfur dioxide (SO2) emissions in Mexico, Texas, and in the Eastern United States all contribute to Big Bend haze in varying amounts over different times of the year, with a higher contribution from Mexican sources in the spring and early summer, and a higher contribution from U.S. sources during late summer and fall. Some multiple-day haze episodes result from the influence of several source regions, whereas others are primarily because of emissions from a single source region.  相似文献   

4.
The Big Bend Regional Aerosol and Visibility Observational (BRAVO) study was an intensive monitoring study from July through October 1999 followed by extensive assessments to determine the causes and sources of haze in Big Bend National Park, located in Southwestern Texas. Particulate sulfate compounds are the largest contributor of haze at Big Bend, and chemical transport models (CTMs) and receptor models were used to apportion the sulfate concentrations at Big Bend to North American source regions and the Carbón power plants, located 225 km southeast of Big Bend in Mexico. Initial source attribution methods had contributions that varied by a factor of > or =2. The evaluation and comparison of methods identified opposing biases between the CTMs and receptor models, indicating that the ensemble of results bounds the true source attribution results. The reconciliation of these differences led to the development of a hybrid receptor model merging the CTM results and air quality data, which allowed a nearly daily source apportionment of the sulfate at Big Bend during the BRAVO study. The best estimates from the reconciliation process resulted in sulfur dioxide (SO2) emissions from U.S. and Mexican sources contributing approximately 55% and 38%, respectively, of sulfate at Big Bend. The distribution among U.S. source regions was Texas, 16%; the Eastern United States, 30%; and the Western United States, 9%. The Carbón facilities contributed 19%, making them the largest single contributing facility. Sources in Mexico contributed to the sulfate at Big Bend on most days, whereas contributions from Texas and Eastern U.S. sources were episodic, with their largest contributions during Big Bend sulfate episodes. On the 20% of the days with the highest sulfate concentrations, U.S. and Mexican sources contributed approximately 71% and 26% of the sulfate, respectively. However, on the 20% of days with the lowest sulfate concentrations, Mexico contributed 48% compared with 40% for the United States.  相似文献   

5.
Project MOHAVE was initiated in 1992 to examine the role of emissions from the 1580 MW coal-fired MOHAVE Power Project (MPP) on haze at the Grand Canyon National Park (GCNP), located about 130 km north-north-east of the power plant. Statistical relationships were analyzed between summertime ambient concentrations of a gaseous perfluorocarbon tracer released from MPP and ambient SO2, particulate sulfur, and light scattering to evaluate whether MPP's emissions could be transported to the GCNP and then impact haze levels there. Spatial analyses indicated that particulate sulfur levels were strongly correlated across the monitoring network, regardless of whether the monitoring stations were upwind or downwind of MPP. This indicates that particulate sulfur levels in this region were influenced by distant regional emission sources. A significant particulate sulfur contribution from a point source such as MPP would result in a non-uniform pattern downwind. There was no suggestion of this in the data. Furthermore, correlations between the MPP tracer and ambient particulate sulfur and light scattering at locations in the park were virtually zero for averaging times ranging from 24 hr to 1 hr. Hour-by-hour MPP tracer levels and light scattering were individually examined, and still no positive correlations were detected. Finally, agreement between tracer and particulate sulfur did not improve as a function of meteorological regime, implying that, even during cloudy monsoon days when more rapid conversion of SO2 to particulate sulfur would be expected, there was no evidence for downwind particulate sulfur impacts. Despite the fact that MPP was a large source of SO2 and tracer, neither time series nor correlation analyses were able to detect any meaningful relationship between MPP's SO2 and tracer emission "signals" to particulate sulfur or light scattering.  相似文献   

6.
The Big Bend Regional Aerosol and Visibility Observational (BRAVO) Study was commissioned to investigate the sources of haze at Big Bend National Park in southwest Texas. The modeling domain of the BRAVO Study includes most of the continental United States and Mexico. The BRAVO emissions inventory was constructed from the 1999 National Emission Inventory for the United States, modified to include finer-resolution data for Texas and 13 U.S. states in close proximity. The first regional-scale Mexican emissions inventory designed for air-quality modeling applications was developed for 10 northern Mexican states, the Tula Industrial Park in the state of Hidalgo, and the Popocatépetl volcano in the state of Puebla. Emissions data were compiled from numerous sources, including the U.S. Environmental Protection Agency (EPA), the Texas Natural Resources Conservation Commission (now Texas Commission on Environmental Quality), the Eastern Research Group, the Minerals Management Service, the Instituto Nacional de Ecología, and the Instituto Nacional de Estadistica Geografía y Informática. The inventory includes emissions for CO, nitrogen oxides, sulfur dioxide, volatile organic compounds (VOCs), ammonia, particulate matter (PM) < 10 microm in aerodynamic diameter, and PM < 2.5 microm in aerodynamic diameter. Wind-blown dust and biomass burning were not included in the inventory, although high concentrations of dust and organic PM attributed to biomass burning have been observed at Big Bend National Park. The SMOKE modeling system was used to generate gridded emissions fields for use with the Regional Modeling System for Aerosols and Deposition (REMSAD) and the Community Multiscale Air Quality model modified with the Model of Aerosol Dynamics, Reaction, Ionization and Dissolution (CMAQ-MADRID). The compilation of the inventory, supporting model input data, and issues encountered during the development of the inventory are documented. A comparison of the BRAVO emissions inventory for Mexico with other emerging Mexican emission inventories illustrates their uncertainty.  相似文献   

7.
The ionic compositions of particulate matter with aerodynamic diameter < or = 2.5 microm (PM2.5) and size-resolved aerosol particles were measured in Big Bend National Park, Texas, during the 1999 Big Bend Regional Aerosol and Visibility Observational study. The ionic composition of PM2.5 aerosol was dominated by sulfate (SO4(2-)) and ammonium (NH4+). Daily average SO4(2-) and NH4+ concentrations were strongly correlated (R2 = 0.94). The molar ratio of NH4+ to SO4(2-) averaged 1.54, consistent with concurrent measurements of aerosol acidity. The aerosol was observed to be comprised of a submicron fine mode consisting primarily of ammoniated SO4(2-) and a coarse particle mode containing nitrate (NO3-). The NO3- appears to be primarily associated with sea salt particles where chloride has been replaced by NO3-, although formation of calcium nitrate (Ca(NO3)2) is important, too, on several days. Size-resolved aerosol composition results reveal that a size cut in particulate matter with aerodynamic diameter < or = 1 microm would have provided a much better separation of fine and coarse aerosol modes than the standard PM2.5 size cut utilized for the study. Although considerable nitric acid exists in the gas phase at Big Bend, the aerosol is sufficiently acidic and temperatures sufficiently high that even significant future reductions in PM2.5 SO4(2-) are unlikely to be offset by formation of particulate ammonium nitrate in summer or fall.  相似文献   

8.
The Big Bend Regional Aerosol and Visibility Observational (BRAVO) Study was conducted in Big Bend National Park, Texas, July through October 1999. Daily PM2.5 organic aerosol samples were collected on pre-fired quartz fiber filters. Daily concentrations were too low for detailed organic analysis by gas chromatography-mass spectrometry (GC-MS) and were grouped based on their air mass trajectories. A total of 12 composites, each containing 3–10 daily samples, were analyzed. Alkane carbon preference indices suggest primary biogenic emissions were small contributors to primary PM2.5 organic matter (OM) during the first 3 months, while in October air masses advecting from the north and south were more strongly influenced by biogenic sources. A series of trace organic compounds previously shown to serve as particle phase tracers for various carbonaceous aerosol source types were examined. Molecular tracer species were generally at or below detection limits, except for the wood smoke tracer levoglucosan in one composite, so maximum possible source influences were calculated using the detection limit as an upper bound to the tracer concentration. Wood smoke was found not to contribute significantly to PM2.5 OM, with contributions for most samples at <1% of the total organic particulate matter. Vehicular exhaust also appeared to make only minor contributions, with maximum possible influences calculated to be 1–4% of PM2.5 OM. Several factors indicate that secondary organic aerosol formation was important throughout the study, and may have significantly altered the molecular composition of the aerosol during transport.  相似文献   

9.
ABSTRACT

Project MOHAVE was initiated in 1992 to examine the role of emissions from the 1580 MW coal-fired MOHAVE Power Project (MPP) on haze at the Grand Canyon National Park (GCNP), located about 130 km north-northeast of the power plant. Statistical relationships were analyzed between summertime ambient concentrations of a gaseous perfluorocarbon tracer released from MPP and ambient SO2, particulate sulfur, and light scattering to evaluate whether MPP's emissions could be transported to the GCNP and then impact haze levels there. Spatial analyses indicated that particulate sulfur levels were strongly correlated across the monitoring network, regardless of whether the monitoring stations were upwind or downwind of MPP. This indicates that particulate sulfur levels in this region were influenced by distant regional emission sources. A significant particulate sulfur contribution from a point source such as MPP would result in a non-uniform pattern downwind. There was no suggestion of this in the data.

Furthermore, correlations between the MPP tracer and ambient particulate sulfur and light scattering at locations in the park were virtually zero for averaging times ranging from 24 hr to 1 hr. Hour-by-hour MPP tracer levels and light scattering were individually examined, and still no positive correlations were detected. Finally, agreement between tracer and particulate sulfur did not improve as a function of meteorological regime, implying that, even during cloudy monsoon days when more rapid conversion of SO2 to par-ticulate sulfur would be expected, there was no evidence for downwind particulate sulfur impacts. Despite the fact that MPP was a large source of SO2 and tracer, neither time series nor correlation analyses were able to detect any meaningful relationship between MPP's SO2 and tracer emission “signals” to particulate sulfur or light scattering.  相似文献   

10.
Back trajectory analyses are often used for source attribution estimates in visibility and other air quality studies. Several models and gridded meteorological datasets are readily available for generation of trajectories. The Big Bend Regional Aerosol and Visibility Observational (BRAVO) tracer study of July to October 1999 provided an opportunity to evaluate trajectory methods and input data against tracer concentrations, particulate data, and other source attribution techniques. Results showed evidence of systematic biases between the results of different back trajectory model and meteorological input data combinations at Big Bend National Park during the BRAVO. Most of the differences were because of the choice of meteorological data used as input to the trajectory models. Different back trajectories also resulted from the choice of trajectory model, primarily because of the different mechanisms used for vertical placement of the trajectories. No single model or single meteorological data set was found to be superior to the others, although rawinsonde data alone are too sparse in this region to be used as the only input data, and some combinations of model and input data could not be used to reproduce known attributions of tracers and simulated sulfate.  相似文献   

11.
Several factors have recently caused visibility impairment at Big Bend National Park, TX, to be of interest. Analyses of historical data collected there have shown that visibility is poorer and fine particle concentrations are higher at Big Bend than at other monitored Class I areas in the western United States. In addition, air masses frequently arrive there after crossing Mexico, where emissions are not well known. During September and October 1996, a field study was undertaken to begin examining the aerosol, visibility, and meteorology on both sides of the border. Results indicate that, during the study, the largest fractions of fine mass and light extinction at Big Bend were due to sulfates and the trace elements most closely associated with sulfate particles were Na and Se. Based on back trajectory modeling and the spatial, temporal, and inter-species relationships in the fine particle concentrations measured during the study, sulfates arrived at the park from both Mexico and the United States. Se was higher in Texas than in Northern Mexico, while V, Pb, Zn, Ni, and Mn were on average much higher in Mexico.  相似文献   

12.
The elemental compositions of the water-soluble and acid-digestible fractions of 24-hr integrated fine particulate matter (PM(2.5)) samples collected in Steubenville, OH, from 2000 to 2002 were determined using dynamic reaction cell inductively coupled plasma-mass spectrometry. The water-soluble elemental compositions of PM(2.5) samples collected at four satellite monitoring sites in the surrounding region were also determined. Fe was the most abundant but least water soluble of the elements determined at the Steubenville site, having a mean ambient concentration of 272 ng/m3 and a median fractional solubility of 6%. Fe solubility and its correlations with SO4(2-) and temperature varied significantly by season, consistent with the hypothesis that secondary sulfates may help to mobilize soluble Fe under suitable summertime photochemical conditions. Significantly higher ambient concentrations were observed at Steubenville than at each of the four satellite sites for 10 of the 18 elements (Al, As, Ca, Cd, Fe, Mg, Mn, Na, Pb, and Zn) determined in the water-soluble PM(2.5) fraction. Concentrations of Fe, Mn, and Zn at Steubenville were substantially higher than concentrations reported recently for larger U.S. cities. Receptor modeling identified seven sources affecting the Steubenville site. An (NH4)2SO4-dominated source, likely representing secondary PM(2.5) from coal-fired plants to the west and southwest of Steubenville, accounted for 42% of the PM(2.5) mass, and two sources likely dominated by emissions from motor vehicles and from iron and steel facilities in the immediate Steubenville vicinity accounted for 20% and 10%, respectively. Other sources included an NH4NO3 source (15%), a crustal source (6%), a mixed nonferrous metals and industrial source (3%), and a primary coal combustion source (3%). Results suggest the importance of very different regional and local source mechanisms in contributing to PM(2.5) mass at Steubenville and reinforce the need for further research to elucidate whether metals such as Fe, Mn, and Zn play a role in the PM(2.5) health effects observed previously there.  相似文献   

13.
ABSTRACT

Several factors have recently caused visibility impairment at Big Bend National Park, TX, to be of interest. Analyses of historical data collected there have shown that visibility is poorer and fine particle concentrations are higher at Big Bend than at other monitored Class I areas in the western United States. In addition, air masses frequently arrive there after crossing Mexico, where emissions are not well known. During September and October 1996, a field study was undertaken to begin examining the aerosol, visibility, and meteorology on both sides of the border. Results indicate that, during the study, the largest fractions of fine mass and light extinction at Big Bend were due to sulfates and the trace elements most closely associated with sulfate particles were Na and Se. Based on back trajectory modeling and the spatial, temporal, and inter-species relationships in the fine particle concentrations measured during the study, sulfates arrived at the park from both Mexico and the United States. Se was higher in Texas than in Northern Mexico, while V, Pb, Zn, Ni, and Mn were on average much higher in Mexico.  相似文献   

14.
Fine particulate matter (PM2.5) concentrations associated with 202 24-hr samples collected at the National Energy Technology Laboratory (NETL) particulate matter (PM) characterization site in south Pittsburgh from October 1999 through September 2001 were used to apportion PM2.5 into primary and secondary contributions using Positive Matrix Factorization (PMF2). Input included the concentrations of PM2.5 mass determined with a Federal Reference Method (FRM) sampler, semi-volatile PM2.5 organic material, elemental carbon (EC), and trace element components of PM2.5. A total of 11 factors were identified. The results of potential source contributions function (PSCF) analysis using PMF2 factors and HYSPLIT-calculated back-trajectories were used to identify those factors associated with specific meteorological transport conditions. The 11 factors were identified as being associated with emissions from various specific regions and facilities including crustal material, gasoline combustion, diesel combustion, and three nearby sources high in trace metals. Three sources associated with transport from coal-fired power plants to the southeast, a combination of point sources to the northwest, and a steel mill and associated sources to the west were identified. In addition, two secondary-material-dominated sources were identified, one was associated with secondary products of local emissions and one was dominated by secondary ammonium sulfate transported to the NETL site from the west and southwest. Of these 11 factors, the four largest contributors to PM2.5 were the secondary transported material (dominated by ammonium sulfate) (47%), local secondary material (19%), diesel combustion emissions (10%), and gasoline combustion emissions (8%). The other seven factors accounted for the remaining 16% of the PM2.5 mass. The findings are consistent with the major source of PM2.5 in the Pittsburgh area being dominated by ammonium sulfate from distant transport and so decoupled from local activity emitting organic pollutants in the metropolitan area. In contrast, the major local secondary sources are dominated by organic material.  相似文献   

15.
Keller W  Heneberry JH  Dixit SS 《Ambio》2003,32(3):183-189
Lakes in Killarney Park near Sudbury, Ontario, Canada, have shown dramatic water quality changes including general increases in pH and alkalinity, and decreases in SO4(2-), base cations and metals. While some lakes have recovered to pH > 6.0, many are still highly acidic despite decades of improvement. Very high historical S deposition related to emissions from the Sudbury metal smelters dominated the acidification process in this region. However, since the implementation of substantial S emission controls (90%) at the smelters, the Sudbury emissions are no longer the major source of S deposition in the Sudbury area. Wet deposition of SO4(2-) and SO4(2-) concentrations in lakewaters at Killarney now approach values in the Dorset, Ontario, area, about 200 km from Sudbury. This suggests that the S deposition to the Killarney area is now primarily from long-range transport, not from local sources. Studies of Killarney lakes are revealing the complex nature of the chemical recovery process. As lake acidity decreases, other changes including decreased Ca2+ concentrations, increased transparency, and altered thermal regimes may potentially affect some of these ecosystems. It is clear that continuing assessments of the recovery of Killarney lakes, within a multiple-stressor framework, are needed.  相似文献   

16.
Ammonium (NH(4)(+)) concentrations in air and precipitation at the Institute of Ecosystem Studies (IES) in southeastern New York, USA declined over an 11-year period from 1988 to 1999, but increased from 1999 to 2001. These trends in particulate NH(4)(+) correlated well with trends in particulate SO(4)(2-) over the 1988-2001 period. The NH(4)(+) trends were not as well correlated with local cattle and milk production, which declined continuously throughout the period. This suggests that regional transport of SO(4)(2-) may have a greater impact on concentrations of NH(4)(+) and subsequent deposition than local agricultural emissions of NH(3). Ammonium concentrations in precipitation correlated significantly with precipitation SO(4)(2-) concentrations for the 1984-2001 period although NH(4)(+) in precipitation increased after 1999 and SO(4)(2-) in precipitation continued to decline after 1999. The correlation between NH(4)(+) and SO(4)(2-) was stronger for particulates than for precipitation. Particulate NH(4)(+) concentrations were also correlated with particulate SO(4)(2-) concentrations at 31 of 35 eastern U.S. CASTNet sites that had at least 10 years of data. Air concentrations of NH(4)(+) and SO(4)(2-) were more strongly correlated at the sites that were located within an agricultural landscape than in forested sites. At most of the sites there was either no trend or a decrease in NH(4)(+) dry deposition during the 1988-2001 period. The sites that showed an increasing trend in NH(4)(+) dry deposition were generally located in the southeastern U.S. The results of this study suggest that, in the northeastern U.S., air concentrations of NH(4)(+) and subsequent deposition may be more closely linked to SO(4)(2-) and thus SO(2) emissions than with NH(3) emissions. These results also suggest that reductions in S emissions have reduced NH(4)(+) transport to and NH(4)(+)-N deposition in the Northeast.  相似文献   

17.
Project MOHAVE was a major monitoring, modeling, and data analysis study whose objectives included the estimation of the contributions of the Mohave Power Project (MPP) and other sources to visibility impairment in the southwestern United States, in particular at Grand Canyon National Park. A major element of Project MOHAVE was the release of perfluorocarbon tracers at MPP and other locations during 50-day summer and 30-day winter intensive study periods. Tracer data (from about 30 locations) were sequestered until several source and receptor models were used to predict tracer concentrations. None of the models was successful in predicting the tracer concentrations; squared correlation coefficients between predicted and measured tracer were all less than 0.2, and most were less than 0.1.  相似文献   

18.
As an odorless, nontoxic, and inert compound, sulfur hexafluoride (SF6) is one of the most widely used tracer gases in indoor air quality studies in both controlled and uncontrolled environments. This compound may be subject to reactions with water vapor under elevated temperature to form acidic inorganic compounds such as HF and H2SO4. Thus, in the presence of unvented combustion sources such as kerosene heaters, natural gas heaters, gas log fireplaces, candles, and lamps, the SF6 dissociation may interfere with measurements of the emissions from these sources. Tests were conducted in a research house with a vent-free natural gas heater to investigate these potential interferences. It was observed that the heater operation caused about a 5% reduction of SF6 concentration, which can be an error source for the ventilation rate measurement and consequently the estimated pollutant emission rates. Further analysis indicates that this error can be much greater than the observed 5% under certain test conditions because it is a function of the ventilation flow rate. Reducing the tracer gas concentration has no effect on this error. A simple theoretical model is proposed to estimate the magnitude of this error. The second type of interference comes from the primary and secondary products of the SF6 dissociation, mainly H2SO4, SO2, HF, and fine particulate matter (PM). In the presence of approximately 5 ppm SF6, the total airborne concentrations of these species increased by a factor of 4-10. The tests were performed at relatively high SF6 concentrations, which is necessary to determine the interferences quantitatively. The second type of interference can be significantly reduced if the SF6 concentration is kept at a low ppb level.  相似文献   

19.
The duration, strength, spatial extent, and chemical makeup of particulate matter (PM) are compared for two winter air quality episodes captured during the California Regional Particulate Air Quality Study (CRPAQS). Each episode, from the beginning of the buildup through dissolution, lasted about 3 weeks. The first episode occurred from December 14, 1999, through January 1, 2000, with peak 24-hr average fine particulate matter (PM2.5) concentrations reaching 129 microg/m3. The second episode occurred a year later, from December 18, 2000, through January 8, 2001, with peak 24-hr average PM2.5 concentrations reaching 179 microg/m3. Although similar in duration, each episode exhibited unique characteristics. One significant difference was the episode buildup rate; rapid in 1999, but slow and steady in 2000. The rapid buildup of the first episode resulted in more days with PM2.5 concentrations above the 24-hr federal standard, whereas the slow and steady increase of the second episode produced higher peaks. Spatial extent and progress also differed between the two episodes. The Northern Valley was impacted more during the December 1999 episode, and the Southern Valley during the December 2000 episode. The differences carried over into chemical composition. Ammonium nitrate dominated the PM2.5 mass during the December 1999 episode. The second episode reflected a dichotomy typical to the San Joaquin Valley, with Fresno concentrations dominated by organic and elemental carbon and the rest of the Valley concentrations dominated by ammonium nitrate. Each episode showed a regional as well as a local component. Ammonium nitrate concentrations, which result from more regional-scale secondary formation and mixing of emissions, were fairly uniform among the urban and rural sites. Carbon concentrations were always higher at urban sites than at rural sites, corresponding to the higher emissions density of primary carbon sources in urban areas.  相似文献   

20.
Peregrine falcons (Falco peregrinus) have been recorded nesting in Big Bend National Park, Texas, USA and other areas of the Chihuahuan Desert since the early 1900s. From 1993 to 1996, peregrine falcon productivity rates were very low and coincided with periods of low rainfall. However, low productivity also was suspected to be caused by environmental contaminants. To evaluate potential impacts of contaminants on peregrine falcon populations, likely avian and bat prey species were collected during 1994 and 1997 breeding seasons in selected regions of western Texas, primarily in Big Bend National Park. Tissues of three peregrine falcons found injured or dead and feathers of one live fledgling also were analyzed. Overall, mean concentrations of DDE [1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene], a metabolite of DDT [1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane], were low in all prey species except for northern rough-winged swallows (Stelgidopteryx serripennis, mean = 5.1 microg/g ww). Concentrations of mercury and selenium were elevated in some species, up to 2.5 microg/g dw, and 15 microg/g dw, respectively, which upon consumption could seriously affect reproduction of top predators. DDE levels near 5 microg/g ww were detected in carcass of one peregrine falcon found dead but the cause of death was unknown. Mercury, selenium, and DDE to some extent, may be contributing to low reproductive rates of peregrine falcons in the Big Bend region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号