首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 671 毫秒
1.
黑碳(BC)气溶胶来源复杂且具有特殊环境和气象影响效应.我国不同大气环境下的BC时空分布特征亟待全面认识.使用2006~2020年中国7个大气本底站长期BC观测数据,结合气象数据、排放源、增强植被指数(EVI)和气溶胶光学厚度(AOD)数据,综合分析了BC的时空分布特征、长期演化趋势及其影响因素.结果表明,中国不同地区的BC浓度和AOD差异较大,BC对AOD多为正贡献.受排放源和气象条件等因素的影响,BC浓度和AOD空间分布为东高西低,"胡焕庸线"以东的龙凤山、上甸子、临安和金沙的浓度较高,ρ(BC)和AOD平均值分别为(1699±2213)~(3392±2131) ng·m-3和0.36±0.32~0.72±0.37;"胡焕庸线"以西的阿克达拉、瓦里关和香格里拉的浓度较低,ρ(BC)和AOD平均值分别为(287±226)~(398±308) ng·m-3和0.20±0.13~0.22±0.19.不同大气本底站BC的年际变化可分为4类:年际变化较小型,主要为阿克达拉站;先增后减然后稳定型,主要为瓦里关站;先降低后稳定类,主要为香格里拉站;先稳定后降低型,主要为龙凤山、上甸子、金沙和临安.不同大气本底站BC的季节变化具有差异."胡焕庸线"以西地区秋季BC浓度最低,冬季和春季BC浓度较高;"胡焕庸线"以东地区冬季BC浓度最高,夏季BC浓度最低.BC对AOD的影响在"胡焕庸线"东西部站点的春季和夏季均较大,在"胡焕庸线"以西站点的秋季较小,在"胡焕庸线"以东站点的冬季较小.大气本底站BC的日变化多为双峰型分布,但是峰值时间存在显著地区和季节差异.  相似文献   

2.
基于1980~2017年MERRA-2再分析产品中的气溶胶光学厚度(AOD)数据,结合趋势分析和时空地理加权回归模型(GTWR)等方法,分析中国AOD的时空变化特征,从时空异质性视角量化自然地理和人类活动对AOD的综合影响.结果表明,1980~2017年AOD以0.0028a-1的速率呈显著上升趋势,而2009~2017年AOD以0.0083a-1的速率呈显著下降趋势.2008年前后为AOD由升到降的转折期,可能与2007年生态文明建设和2008年全球经济危机有关.胡焕庸线以东地区为AOD高值区,以人为气溶胶为主,近40a来AOD值呈显著上升趋势;胡焕庸线以西地区为AOD低值区,以自然气溶胶为主,AOD值基本不变.气温、气压、黑炭气溶胶排放和硫酸盐气溶胶排放与AOD呈正相关,降水、风速、NDVI和GDP与AOD呈负相关.AOD与影响因子间的关系具有时空异质性.从时间变化来看,降水、风速、NDVI、GDP的回归系数具有一致性,而气温、气压、黑炭气溶胶排放、硫酸盐气溶胶排放在不同年份的回归系数有正有负;从空间变化来看,中国北方地区气温与AOD间呈负相关,南方地区二者呈正相关.  相似文献   

3.
基于DMSP/OLS数据的中国碳排放时空模拟与分异格局   总被引:2,自引:0,他引:2  
精准模拟和精细尺度获取碳排放的时空动态信息,对于合理制定差别化的区域碳减排政策具有重要意义.利用DMSP/OLS夜间灯光数据在完成年内和跨年数据的校正、像元去饱和、异常值剔除的基础上,提取了城市建成区范围,并以中国大陆为研究对象,根据夜间灯光数据和碳排放统计数据之间的定量关联,构建面板数据模型模拟了2000~2013年中国的碳排放量;采用Theil-Sen Median趋势分析方法与Mann-Kendall检验,探讨了14年间中国碳排放量的时空变化趋势及空间分布特征.结果表明:系统校正后的DMSP/OLS夜间灯光影像构建面板模型模拟的碳排放量拟合精度较高,2002,2007和2012年多尺度回归检验的决定系数R2值分别为0.893,0.955和0.951.2000~2013年中国碳排放时空演化差异显著,稳慢增长型和迅猛增长型分别占碳排放区域总面积的77.6%和19.4%,稳慢增长型面域宽广,迅猛增长型主要位于都市区及都市连绵区.受城市规模及城市化发育程度的影响,迅猛增长型空间结构呈"空心型"与"中心型"空间指向性分异.研究提出,促进经济增长方式和发展模式的实质性转变、因地制宜差别化的减排措施与省区联动策略的实施是"精准减排"目标实现的重要途径.  相似文献   

4.
2003~2014年东北三省气溶胶光学厚度变化分析   总被引:9,自引:5,他引:4  
利用2003~2014年MODIS-Aqua气溶胶光学厚度(AOD)产品、DMSP卫星夜间灯光时间资料和基本气象资料,分析我国东北三省(辽宁、吉林、黑龙江)大气气溶胶光学厚度年际变化及季节变化的空间分布特征.结果表明,东北三省多年平均AOD空间分布存在由大连、沈阳、长春和哈尔滨等城市构成的一个高值带,呈东北-西南走向,多年平均AOD值为0.4~0.8;东北三省植被覆盖率较高的东部和北部是AOD的低值区,多年平均AOD小于0.3;东北三省AOD季节变化为AOD春季到夏季升高,秋季下降,冬季再次升高.东北三省AOD年际变化特征为大部分低值地区呈减小趋势,但以沈阳、长春和哈尔滨为轴线的东北-西南走向的高值区域呈增大趋势,反映了近10多年出现的空气质量两极分化趋势.此外研究了东北三省年均AOD在强、弱西北太平洋夏季风年时的空间分布差异,受地面风场影响,AOD在强季风年时较弱季风年偏低.  相似文献   

5.
选取IPCC碳排放核算方法并基于能源统计数据,核算了我国大陆30个省市的能源消耗碳排放量,利用纠正后的DMSP/OLS夜间灯光数据与相应空间单元的碳排放量进行回归分析,反演出1km×1km栅格的电力消耗碳排放量并分析其在地级市尺度上的时空变化.核算出2005年、2010年和2013年能源消耗排放总量分别为57.02,82.28和93.26亿t,其中电力碳排放量分别为23.03,35.62和42.07亿t.结果表明:校正后的DMSP/OLS夜间灯光数据能更好地估算碳排放,其DN总值与统计的省级能源消耗排放量、电力消耗排放量均存在较强的相关关系;整体而言,发达地区能源消耗排放量大但强度比较低.  相似文献   

6.
长三角地区吸收性气溶胶时空分布特征   总被引:3,自引:1,他引:2  
利用2008~2017年OMI/Aura OMAERUV L2气溶胶数据集,研究了近10年长三角地区吸收性气溶胶的时空分布特征.结果表明:①在时间分布上,长三角地区气溶胶光学厚度(AOD)与吸收性气溶胶光学厚度(AAOD)的年际变化趋势一致,均为先升后降,于2011年达最高值,分别为0. 702和0. 056.月际变化显示AAOD高值多发生在1、3和6月,11月到次年1月明显增加.②在空间分布上,长三角地区AAOD呈北高南低分布,AOD与AAOD分布相似,AAOD 0. 05的高值区主要集中在安徽北部、江苏北部以及南京、杭州和金华等地区. AAOD与AOD季节空间分布均为春冬高,秋季较低,但二者不同的是,夏季AOD很大,AAOD却很小.长三角地区AAOD和AOD的年均空间分布与黑碳贡献量一致.  相似文献   

7.
基于2008—2017年的MODIS气溶胶光学厚度(AOD)数据、实测气象观测数据,探究了长三角地区的AOD时空分布规律,并分析了AOD与多个气象要素的相关性,以对AOD的时空变化作出合理的气象解释。结果表明:1)从时间分布来看,长三角地区年均AOD呈周期性波动变化趋势,2011年出现峰值0.83,2014年AOD开始迅速下降,至2017年达到最低,较2014年相比下降22.8%,这与政府实施的固体颗粒物控制排放政策有关;每年夏季(6,7月)AOD出现最大值,这主要是海洋上大量的海盐气溶胶颗粒和水汽扩散到内陆地区造成的。2)从空间分布来看,长三角AOD高值区均分布在江苏南部以及徐州一带,2014年以来AOD高值范围逐步缩小;浙江地区AOD明显低于苏沪地区,这与浙江地势高起伏较大密切相关。3)从相关性方面来看,AOD变化与气温、相对湿度变化之间呈较好的正相关性,而与风速的相关性较复杂,这可能受风向的不确定影响;夏季气温高、湿度大,因此出现大范围的AOD高值区;冬季气温低、空气中水汽含量低,固体颗粒物对于AOD贡献率较大,因此冬季AOD变化能够在一定程度上反映空气污染状况。该研究结果可为长三角地区气溶胶评估、空气质量归因分析、空气质量改善等相关研究提供参考。  相似文献   

8.
南疆地区AOD时空分布特征及气象影响因素分析   总被引:2,自引:0,他引:2  
为探究南疆地区大气气溶胶光学厚度的时空分布特征及气象因素对其的影响,采用MODIS MCD19A2数据集2010-2019年的气溶胶数据,分析南疆地区近10 a来AOD时空分布特征及气象因素对AOD的影响.结果表明:①空间分布上,AOD高值区分布在海拔较低的盆地地区,呈现中间高四周低的分布特征.空间分布季节性差异明显,...  相似文献   

9.
为探究全国大气气溶胶光学厚度(AOD)的分布及变化特征,利用最新的MODIS/Terra C6.1 550 nm AOD月数据分析了2001~2017年全国AOD的时空分布及变化趋势.结果表明,空间特征:年均AOD空间分布呈现两个显著的高值中心和低值中心,第一高值中心位于以人为气溶胶为主的华北平原、华中地区、长三角地区、珠三角地区和四川盆地,第二高值中心位于以尘埃气溶胶为主的塔克拉玛干沙漠地区,两个低值中心分别位于内蒙古地区东部至东北地区北部以及青藏高原.时间特征:各区域AOD峰值主要出现在春、夏季,塔克拉玛干沙漠地区、四川盆地和珠三角地区AOD在3~4月达到峰值,华北平原、华中地区和长三角地区AOD在5~7月达到峰值.趋势特征:2001~2006年,我国西北地区和内蒙古地区AOD呈现减少趋势,我国中东部地区和西南地区东部AOD呈现增长趋势.2007~2012年,青藏高原和塔克拉玛干沙漠地区AOD变化趋势由减少转为增长,华北平原和四川盆地AOD的增幅减弱,长三角地区AOD呈现弱的下降趋势.2013~2017年,我国大部地区AOD呈显著地下降趋势.  相似文献   

10.
四川盆地地形复杂、气候特殊,是我国颗粒物污染高发地.为探究四川盆地气溶胶分布和周期变化特征,深入认识气溶胶污染特性及其气候效应,结合卫星遥感探测方法,利用2006-2017年MODIS C006 3 km AOD(气溶胶光学厚度)产品,分析了四川盆地AOD的时空特征.结果表明:①MODIS AOD(MODIS数据反演的气溶胶光学厚度)与太阳光度计CE318观测的AOD、ρ(PM2.5)、ρ(PM10)线性相关系数分别为0.78、0.77、0.75,表明MODIS C006 3 km AOD产品适用于四川盆地颗粒物污染研究.②四川盆地AOD平均值范围为0.1~1.3,其中,成都平原和四川盆地东南部地区是AOD高值(AOD值>1.0)中心,四川盆地周边高海拔区AOD均小于0.3.③2006-2017年AOD年均值范围为0~2.5,整体呈"倒N型"曲线下降,其峰值和谷值分别出现在2013年和2017年;2013年AOD大于1.0的区域占四川盆地的34.1%,是12 a中颗粒物污染最重的一年;2017年AOD小于0.3的面积占57.1%.④AOD季节性变化呈春季最大、夏季次之、秋季最小的特征.⑤AOD月变化呈"双峰型"波动特征,AOD月均值范围为0~2.5,其中,2-5月AOD月均值均大于0.7,8月AOD月均值为0.6,11-12月AOD月均值均小于0.5.研究显示,四川盆地颗粒物污染防治应以成都平原城市群和四川省南部城市群为主,应重点控制细颗粒物排放,合理安排工业企业的周期性生产强度.   相似文献   

11.
为研究长株潭城市群大气污染时空演化特征及潜在传输规律,采用2008~2016年中分辨率成像光谱仪(MODIS)MAIAC气溶胶光学厚度(AOD)数据,分析长株潭城市群近10a来AOD演化特征.在此基础上,利用拉格朗日混合型单粒子轨迹模式(HYSPLIT)及全球资料同化系统(GDAS)气象要素数据研究大气污染物潜在传输规律.结果表明,长株潭城市群AOD呈现下降趋势,并以春、夏季下降幅度最为显著.空间上,AOD总体呈北高南低、西高东低分布特征,并与经济发展、城市化水平等因素密切相关.此外,长株潭城市群大气污染物向外长距离传输(>1500km)、中距离传输(500~1500km)以及局地传输(0~500km)比率分别为17.89%、36.45%和45.66%,主要影响湖北、江西、安徽、广东、广西、江苏和浙江等地区.研究结果有助于理解长株潭城市群大气污染的时空变化规律,同时为区域“联防联控”、建设“美丽中国”提供科学的辅助依据.  相似文献   

12.
京津冀地区气溶胶季节变化及与云量的关系   总被引:7,自引:2,他引:5  
利用2000年3月—2008年2月中分辨率成像光谱仪(MODIS)的卫星资料,分析了京津冀平原地区大气气溶胶光学厚度(AOD)和气溶胶细粒子组分比率(FMF)的时空分布特征. 结果表明:通过AOD与FMF的组合特征可判别气溶胶季节变化特征.冬、春季以粗粒子为主,但冬季AOD偏小,而在春季急剧增大;夏、秋季均以细粒子为主,但夏季AOD达到最大,秋季较小. 大气环流和气流后向轨迹分析表明,冬季到达北京的气流以西北冷空气为主,西北路径的气流轨迹占冬季气流轨迹总数的67%;春季主要受偏西、西北及偏北气流影响,这3类对沙尘天气有贡献的气流轨迹占春季气流轨迹总数比例之和达到60%;夏季主要以偏南气流和局地环流占优,这2类气流轨迹分别占夏季气流轨迹总数的52%和34%;秋季气流轨迹与春季的相似,但途经沙源的气流传输速度较春季慢.京津冀平原地区夏季AOD与云量(CF)呈正相关,AOD增加,特别是细粒子增加可能导致局地云量增多.   相似文献   

13.
利用北黄海圆岛岛基太阳光度计气溶胶光学厚度(aerosol optical depth,AOD)实测数据,在优选时空匹配窗口的基础上,对最新版本MODIS C061 AOD产品开展了有效性验证。结果表明,相对于其他尺度的采样窗口,采用30 km×30 km空间采样窗口、±0.5 h时间采样窗口可以得到更加准确的验证结果。在此时空窗口下,MODISA AOD产品(550 nm)与岛基观测数据具有非常好的一致性,相关系数达到0.98,春季、秋季和冬季AOD产品精度满足NASA的设计要求,夏季数据存在较大误差,符合NASA期望误差([(0.04+0.1*AOD),(-0.02-0.1*AOD)])的比例仅为40%,气溶胶模型假定不合理是其可能的误差来源。  相似文献   

14.
西北地区气溶胶光学特性的时空变化特征   总被引:1,自引:0,他引:1  
利用2003-2018年的Aqua-MODIS C6.1气溶胶产品对西北地区气溶胶光学厚度(AOD)和Angstrom波长指数(AE)的时空分布特征进行研究,并结合当地站点气象要素资料,分析了气象要素对AOD的影响.结果表明,西北地区AOD的高值区位于塔克拉玛干沙漠和陕西关中地区;青海南部及新疆北部等是AOD的低值区....  相似文献   

15.
To investigate the seasonal variation of aerosol optical depth(AOD), extinction coefcient(EXT), single scattering albedo(SSA) and the decomposed impacts from sulfate(SO4 2) and black carbon(BC) over China, numerical experiments are conducted from November 2007 to December 2008 by using WRF-Chem. Comparison of model results with measurements shows that model can reproduce the spatial distribution and seasonal variation of AOD and SSA. Over south China, AOD is largest in spring(0.6–1.2) and lowest in summer(0.2–0.6). Over north, northeast and east China, AOD is highest in summer while lowest in winter. The high value of EXT under 850 hPa which is the reflection of low visibility ranges from 0.4–0.8 km 1and the high value area shifts to north during winter, spring and summer, then back to south in autumn. SSA is 0.92–0.94 in winter and 0.94–0.96 for the other three seasons because of highest BC concentration in winter over south China. Over east China, SSA is highest(0.92–0.96) in summer, and 0.88–0.92 during winter, spring and autumn as the concentration of scattering aerosol is highest while BC concentration is lowest in summer over this region. Over north China, SSA is highest(0.9–0.94) in summer and lowest(0.82–0.86) in winter due to the significant variation of aerosol concentration. The SO4 2 induced EXT increases about 5%– 55% and the impacts of BC on EXT is much smaller(2%–10%). The SO4 2-induced increase in SSA is 0.01–0.08 and the BC-induced SSA decreases 0.02–0.18.  相似文献   

16.
郑州地区大气气溶胶光学特性的地基遥感研究   总被引:6,自引:2,他引:4       下载免费PDF全文
根据自动跟踪扫描光度计观测资料,利用Bouguer-Lamber定律反演郑州地区2007年2~9月气溶胶光学厚度和波长指数,分析郑州地区该时段气溶胶光学特性的季节变化和日变化情况.结果表明,郑州地区2007年2~9月1020nm气溶胶光学厚度为0.49±0.09;870nm气溶胶光学厚度为0.60±0.13;670nm气溶胶光学厚度为0.76±0.20;440nm气溶胶光学厚度为1.08±0.34.季节变化以夏季最高,秋冬次之,春季最低.波长指数春季为0.37~0.69,夏季为1.18~1.26.春季有50%以上的天气,扬尘粒子为主控粒子,而夏季城市-工业气溶胶是主控粒子之一.日变化规律与近地面污染物浓度变化一致,8:30和17:00左右出现峰值,11:30出现谷值,由于气温上升,湍流剧烈,12:30左右气溶胶光学厚度有1个小高峰,但仍处于全天的低值区.  相似文献   

17.
This study finds out seasonal and monthly variations in Aerosol Optical Depth (AOD) over eastern and western routes of China Pakistan Economic Corridor (CPEC) and the relationship between AOD and meteorological parameters (i.e., temperature, rainfall and wind speed). The Moderate Resolution Imaging Spectroradiometer (MODIS) and Multi-angle Imaging Spectroradiometer (MISR) data was used from the terra satellite for the period of 2000-2016. This study aims to overtake the conventional view of the purpose of using the satellite datasets. This study takes on to the concept that validated satellite data sets rather should be used for the analysis instead of just validation specifically for our study region. Hence, after comparing MODIS AOD with MISR AOD, only MISR AOD dataset is used for further analysis. The results show a decreasing trend of AOD in summer season, a positive relationship between temperature and AOD during winter and spring seasons whereas a positive relationship between wind speed and AOD in winter and spring seasons over eastern and western routes. Periodic analysis of MODIS AOD and MISR AOD depicts May-Aug as the peak period of aerosol concentration over central Pakistan. The inter-annual analysis shows the aerosol trend remained higher during summer season however rainfall shows the washout effect. Eastern route has higher standard deviation and larger values for aerosol prevalence as compared to western route. The trajectory analysis using the HYSPLIT model suggests the bias of air mass trajectory caused deviation in the aerosol trend in the year 2014.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号