首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Microbial associations may influence the negative effects of potentially toxic elements on plants. In a greenhouse experiment, the growth; biochemical response; and Pb, Fe, and Zn uptake of Onopordum acanthium L. were investigated in response to inoculation with arbuscular mycorrhizal fungi, AMF (a mixture of Funneliformis mosseae, Rhizophagus irregularis, and Rhizophagus fasciculatus) and plant growth-promoting rhizobacteria, PGPR (a mixture of Pseudomonas species including P. putida, P. fluorescens, and P. aeruginosa) at increased Pb levels in soil. The treatments were arranged as a factorial experiment based on a randomised complete block design. Results revealed that inoculation with AMF and PGPR decreased Pb toxicity in plants. Inoculated plants with AMF and PGPR had higher shoot and root dry weight compared with the non-inoculated plants. In this study, AMF and PGPR inoculation led to a significant increase (P?≤?.05) in chlorophyll a, b, chlorophyll a+b, carotenoid, proline, and relative water content of plants. Furthermore, AMF and PGPR inoculation likely played a more important role in growth and Pb uptake in O. acanthium L. Our results suggest that AMF and Pseudomonas bacteria could be effective bio-inoculants for enhancing the plant growth and Pb uptake by inhibiting the adverse effects of Pb in O. acanthium.  相似文献   

2.
The main solid waste product from coal-fired power stations is pulverised fuel ash (PFA), which can be enriched in toxic elements. Disposal of PFA by dry (in landfills) or wet (by slurrying) disposal methods can release these elements into the environment. Thereafter, the contaminants can be taken up by biota such as Eichhornia crassipes, a common aquatic plant, which has the ability to accumulate elements from water. This study investigates the uptake of Cd, Cu, Ni and Zn by E. crassipes grown in leachates and slurries prepared from two different PFA samples. PFA samples were obtained from Indraprastha Power Station (IPP Stn.) in New Delhi, India and the Ratcliffe-on-Soar Power Station in the UK. E. crassipes grown in PFA leachates and slurries at 1:5 and 1:50 solid:liquid (PFA:deionised water) ratios show that the plant has a very high accumulation capacity for Cd, Cu, Ni and Zn from both leachates and slurries and the uptake of these metals is stronger in the roots than in the tops of the plant. Metal accumulation, as shown by the accumulation factor (AF) values, is higher from both leachates and slurries for plants grown in the 1:50 (PFA:DIW) ratios than in the 1:5 ratios, initial metal concentrations being higher in the 1:5 ratios than in the 1:50 ratios. Lower metal accumulation in the plants grown in slurries than in leachates is related to the high turbidity of growth medium in slurries resulting in ash particles adhering to the root surfaces thus reducing the surface area of metal absorption. Eichhornia plants are able to reduce the pH of all leachates, especially the highly alkaline Ratcliffe leachates to near neutral conditions. Accumulation of Cd and Zn by the plant is higher from the lower pH IPP leachates than the Ratcliffe leachates, indicating that these metals are more soluble and bioavailable in the acidic medium. However, accumulation of Cu and Ni is independent of the pH of the leachates, indicating that other factors, such as metal species, presence of complexing agents in the growth solutions, and effects of competing metal ions may be contributory factors towards the metal uptake and accumulation by the plant.  相似文献   

3.
In a multifactorial pot experiment, maize (Zea mays L.) with or without inoculation with the arbuscular mycorrhizal (AM) fungus Glomus mosseae BEG167 was grown in a sterilized soil spiked with three levels of zinc (0, 300 and 900 mg Zn kg−1 soil) and three levels of cadmium (0, 25 and 100 mg Cd kg−1 soil). At harvest after 8 weeks of growth, the proportion of root length of inoculated plants colonized decreased with increasing Zn or Cd additon, and was 56% in the absence of both metals and was reduced significantly to 27% in the presence of the higher levels of both metals. Mycorrhizal plants had higher biomass than non-mycorrhizal controls except at the highest soil level of Cd. Cadmium had more pronounced effects on plant biomass than did Zn at the levels studied and the two metals showed a significant interaction. The data suggest that mycorrhizal inoculation increased plant growth with enchancement of P nutrition, perhaps increasing plant tolerance to Zn and Cd by a dilution effect. AM inoculation also led to higher soil solution pH after harvest, possibly reducing the availability of the metals for plant uptake, and lowered the concentrations of soluble Zn and Cd in the soil solution, perhaps by adsorption onto the extrametrical mycelium.  相似文献   

4.
Studies concerning bioaccumulation kinetics and bioconcentration factor (BCF) of heavy metals like zinc (Zn), lead (Pb), chromium (Cr), cadmium (Cd), and copper (Cu) in earthworm Eudrilus eugeniae tissues including integument, gizzard, clitellum, and head region were undertaken. Calculated BCF, predicted K ow, and predicted K oc showed a significant correlation between heavy metals in different earthworm tissues, in substrate spiked with heavy metals. The regression coefficient (r 2) between heavy metal uptake concentration and exposure time varied between 0.73 and 0.99, indicating significant correlation. The K oc was a maximum of 13.9016 in case of Cu and integument at an exposure time of 100 days and a minimum of 0.1114 in case of Cr with respect to head at the same exposure time. Earthworms accumulated heavy metals following chronic exposure to municipal solid waste containing heavy metals. BCF and uptake rate kinetics of heavy metals were calculated and showed increased values in head tissue followed by integument.  相似文献   

5.
A field study was conducted in a dried waste pool of a lead (Pb) mine in Arak (Iran) to find the accumulator plant(s) and to evaluate the amount of metal bioaccumulation in the root and shoot portion of the naturally growing vegetation. Concentrations of heavy metals were determined both in the soil and the plants that were grown in the dried waste pool. The concentrations of total Cu, Zn, Pb, and Ni in the waste pool were found to be higher than the natural soil and the toxic levels. The results showed that six dominant vegetations, namely, Centaurea virgata, Eleagnum angustifolia, Euphorbia macroclada, Gundelia tournefortii, Reseda lutea, and Scariola orientalis accumulated heavy metals. Based on the results, it was concluded that E. macroclada belonging to Euphorbiaceae is the best Pb accumulator and also a good accumulator for Zn, Cu, and Ni. The bioaccumulation ability of E. macroclada was evaluated in experimental pots. The study showed that the amount of heavy metals in polluted soils decreased several times during two years of phytoremediation. The accumulation of metal in the root, leaves, and shoot portions of E. macroclada varied significantly, but all the concentrations were within the toxic limits. Based on the obtained data, E. macroclada is an effective accumulator plant for soil detoxification and phytoremediation in critical conditions.  相似文献   

6.
This study investigated the potential use of chelator-induced bioextraction of heavy metals from soil by Coprinus comatus in a pot experiment. Two production waves of the mushroom were obtained to determine biomass and metal concentration. The application of ethylenediaminetetraacetic acid (EDTA) or nitrilotriacetate (NTA) slightly inhibited the growth of C. comatus, but significantly enhanced the accumulation of heavy metals in fruiting bodies compared with the control. The highest concentrations of Pb, Cu and Cd reached 900.60, 783.61 and 23.64 mg·kg?1 in a single pot, respectively. However, application of citric acid (CA) had no effect on metal uptake. Moreover, chelators applied to soil after fructification increased the dry biomass and metal concentration in fruiting bodies compared with those applied before sowing mycelia. EDTA was more efficient for inducing metal uptake by C. comatus than NTA or CA, and split applications of EDTA after fructification resulted in the highest total metal uptake by mushroom, i.e. 19.08±2.84, 17.57±0.69 and 0.55±0.06 mg for Pb, Cu and Cd, respectively, which were 130, 12 and 5 times values obtained with the control. Interestingly, many mushrooms turned blue after soil had been treated with chelator, indicating that these mushrooms are rich in Cu.  相似文献   

7.
Cu和Pb对赤潮异弯藻(Heterosigma akashiwo)生长的影响   总被引:1,自引:0,他引:1  
以添加了不同浓度的CuSO_4和Pb(NO_3)_2混合液的f/2培养基培养赤潮异弯藻,通过分析藻的最大生长密度、生长周期及比生长率这3个参数与Cu和Pb之间的相关关系,讨论2种重金属对赤潮异弯藻生长的影响以及2种重金属之间的互作效应。结果表明,Cu为0~0.02 mg·L~(-1)或Pb为0~0.32 mg·L~(-1)时,对赤潮异弯藻生长有促进作用;当Pb浓度不同的条件下,Cu浓度达到0.5~2.5 mg·L~(-1)时,赤潮异弯藻生长受到明显抑制,甚至无法生长;在Cu浓度不同的条件下,Pb在1~9 mg·L~(-1)范围内,随着浓度的增加,对赤潮异弯藻生长抑制作用逐步增强。在Cu浓度为0~2.5 mg·L~(-1)或Pb浓度为1~9 mg·L~(-1)及两者互作条件下,赤潮异弯藻最大生长密度和生长周期都受到显著影响(P0.01)。另外,Cu和Pb对赤潮异弯藻比生长率无显著影响,两者相互作用不明显。结合湛江海域已报道的这2种重金属实际含量,进一步评估了海区中重金属的潜在生态效应。  相似文献   

8.
为探讨重金属Cr(VI)、Pb以及Cu对沙蚕体腔细胞DNA的毒性效应,以双齿围沙蚕为受试动物,重金属按不同剂量水平,Cr(VI):10、100和200 mg·L~(-1),Pb:5、50和100 mg·L~(-1),Cu:1、10和20 mg·L~(-1),分别胁迫沙蚕24 h,以不加任何重金属离子的海水为对照,采用单细胞凝胶电泳技术,检测其体腔细胞DNA损伤程度。结果表明,与空白对照组相比,3种重金属离子的各浓度组都能引起沙蚕体腔细胞DNA损伤,且3种重金属胁迫浓度与细胞DNA损伤程度之间存在显著的剂量-效应关系。双齿围沙蚕可以作为单细胞凝胶电泳的实验材料用于重金属所致环境污染的生物监测指示生物。  相似文献   

9.
The response of green roselle (Hibiscus sabdariffa) to Cu/Pb contamination and manure application in soil was investigated using pot experiments. Subsamples of a mineral soil were treated with increasing doses (0–500 mg kg?1) of Cu/Pb only and/or amended (at 10% w/w) with poultry or swine manure. Roselle plants were grown, monitored for changes in growth rate and post-harvest aboveground dry biomass and tissue Cu/Pb concentrations were determined. The plants were typically greenish with linear growth profiles at all metal doses, indicating some level of tolerance. Dry biomass yields decreased as metal dose increased. Poultry manure enhanced roselle biomass yields better than swine manure. Tissue Cu/Pb concentrations increased linearly as metal doses increased in unamended soils; whereas nonlinear responses were observed in manure-amended soils. Soil-to-plant transfer factors, T f (%) indicated that Cu (13≤T f (% )≤60) was more phytoavailable to roselle than Pb (11≤T f (% )≤20). Tissue metal concentrations were modelled from soil pH, organic matter, plant available and pseudototal metal; but the models appeared more reliable with plant available metal as a covariate than with pseudototal metal content. These observations may become useful whenever phytoextraction is the remedial option for soils moderately contaminated by toxic metals.  相似文献   

10.
A greenhouse study was conducted as a completely randomised design in a factorial arrangement to assess how inoculation of AMF (arbuscular mycorrhizal fungus) and application of EDTA (ethylenediaminetetracetic acid) as biological and chemical amendments can affect the Ni (nickel) phytoremediation in Ni-polluted soils using sunflower plant. The results showed that the inoculation of AMF increased root colonisation while applying EDTA and high level of Ni decreased it. Microbial incubation has a positive effect on both shoot and root dry yields; however, co-application of Ni and EDTA demoted the growth rate. Shoot nutrients uptake of plants decreased as Ni levels increased. In inoculated plants, shoot uptake of Zn, Fe and Mn was higher in all Ni levels than non-inoculated plants. Ni uptake in plant shoots and roots increased with applying both AMF and EDTA. However, the mean Ni concentration and uptake in inoculated plants along with applying EDTA are higher in sunflower shoots than in roots. As Ni levels increased, Ni extraction and uptake efficiencies increased; it can be concluded co-application of EDTA and AMF was effective in increasing phytoextraction potential of sunflower plants in Ni-contaminated sites. This study highlights that AMF could be suitable for cleaning Ni-polluted areas and it could significantly contribute to phytoremediation technology.  相似文献   

11.
丛枝菌根对土壤-植物系统中重金属迁移转化的影响   总被引:9,自引:0,他引:9  
丛枝菌根真菌(arbuscular mycorrhizal fungi, AMF)是一类在自然和农业生态系统中广泛存在并能与多数陆生植物形成共生关系的土壤真菌,在重金属污染土壤中对宿主植物的生长及吸收累积重金属具有重要影响,因而对污染土壤的生物修复具有潜在应用价值。以重金属从根际土壤进入植物并在植物体内再分配过程为主线,介绍丛枝菌根在这一过程中对重金属环境行为,特别是根际土壤中重金属赋存形态及植物吸收重金属的影响。最后,对丛枝菌根影响植物重金属耐性机制研究前沿和菌根修复技术的应用前景进行展望。  相似文献   

12.
A pot experiment was conducted to evaluate the potential effects of arbuscular mycorrhizal fungi (AMF) on growth, nutrient uptake, and inoculation effectiveness on Phragmites japonica. Spores of AMF strains (Gigaspora margarita Becker &; Hall) were collected from the commercial product ‘Serakinkon’. Four treatments, namely, natural soil (NS), natural soil inoculated by AM fungi, sterilised soil (SS) inoculated by AM fungi, and SS without AM fungi inoculation were selected to determine the effects of applied and indigenous AMF on P. japonica. The average colonisation level of P. japonica was 24–33%, whereas no colonisation was found in the SS. AMF colonisation increased the chlorophyll content (r?=?0.84, p?r?=?0.89, p?相似文献   

13.
Pot experiments were conducted on cole (Brassica) grown in soils jointly treated with traces of two heavy metals cadmium (Cd) and zinc (Zn). As the concentration of heavy metals in the soil increased, the uptake of these metals by the plants rose. However, the ratio of heavy metal concentration in soil to uptake by plants increased at a slower rate. Bioavailability of heavy metals considered between the roots and soil using non-linear regressions was shown to be statistically significant. Similarly, the bioavailability of these two heavy metals between leaves and roots using a linear regression was also statistically significant. The bioconcentration factors (BCFs) for Cd and Zn were 0.282 and 4.289, respectively. Significant variation of BCF with the heavy metal bioavailability in soil was noted from non-linear models. The transfer factors (TFs) were 4.49 for Cd and 1.39 for Zn. The Zn concentration in leaves under all treatments did not exceed threshold set standards, but Cd levels exceeded these standards when the concentration of Cd in the soil was more than 1.92 mg kg?1 dry weight (dw). Data indicate that cole (Brassica) is not a suitable crop for oasis soils because of plant contamination with heavy metals, especially Cd.  相似文献   

14.
The aim of this study was to assess the use of Osilinus atrata (Gastropoda, Mollusca) as a biomonitor of heavy metals (Cd, Cu, Pb and Zn) within the coastal zone of the Canary Islands. In general, this top-shell snail showed high intraspecific variability in its tissue metal concentrations, which decreased according to the following sequence: Cu≥Zn>Cd≥Pb. In particular, Cd and Zn concentrations were higher in males than in females, whereas Cu concentrations increased slightly with weight, and Pb concentrations decreased. Cd and Cu concentrations showed notable spatial variability; Cd concentrations were higher in the eastern islands (Alegranza, La Graciosa, Lanzarote and Fuerteventura) and La Palma, whereas Cu levels were highest in some western islands (Gran Canaria, La Gomera and El Hierro). The arrival of waters from the African coastal upwelling, the pollution of coastal waters with agricultural fertilisers and the competition for uptake between metals appear to be the likely causes within these patterns of accumulation. In conclusion, O. atrata presents a great potential as a biomonitor of heavy metals, however, more information and further studies are necessary.  相似文献   

15.
为探究草坪除草剂与重金属复合污染对高等植物的生态毒性效应,以小麦与黄瓜为敏感受试植物,采用滤纸发芽试验法,研究了典型草坪除草剂环草隆与4种重金属(Cu/Zn/Pb/Cd)单一及复合污染条件下,对2种植物种子萌发与幼苗生长的毒性效应并进行评估。在此基础上采用评估因子法外推环草隆在土壤中的预测无效应浓度(PNECsoil)。结果表明,2种植物的根长及小麦的芽长对环草隆与重金属非常敏感(P<0.01),且存在明显的剂量-效应关系。黄瓜根长对环草隆最敏感,根长半抑制浓度(RI50)为0.281 mg·L-1。小麦根长对Cu、Pb、Cd比黄瓜根长更敏感。环草隆与重金属复合污染时,黄瓜根长表现得最为敏感,可作为敏感生物标记物。环草隆与重金属复合污染对小麦及黄瓜根长抑制具有协同作用,并且随着重金属浓度的增大,黄瓜和小麦根生长对环草隆的敏感性增加。环草隆与重金属复合污染对小麦芽长的联合效应主要与重金属种类及其暴露浓度有关。以黄瓜的根伸长抑制率为急性毒性终点,利用外推法计算得环草隆在土壤中的PNECsoil为1.90μg·kg~(-1),远远低于环草隆田间推荐使用量1.5~9 mg·kg~(-1)。与重金属复合污染时,环草隆的PNECsoil明显降低,导致其生态风险提高。上述研究结果能够为草坪除草剂环草隆与重金属复合污染的生态风险评价提供数据支持。  相似文献   

16.
Seeds of three legumes, blue lupine (Lupinus hirsutus L.), sesbania (Sesbania macrocarpa Muhl.), and alfalfa (Medicago sativa L.) were broadcast planted on four soil materials (desert soil, overburden, overburden plus tailings, and tailings) associated with copper mines near Tucson, Arizona. Experiments were conducted to study the effects of the four soil materials on germination (emergence), seedling establishment, and growth over a two-year period (1974 and 1975). All species grew best on desert soil, followed by overburden, overburden plus tailings, and tailings, in decreasing order. The presence of copper in overburden plus tailings and in tailings may have created a toxicity effect that limited the growth of plants in these two soil materials. Alfalfa was superior on all soil materials. Sesbania and blue lupine grew equally well. All three species were able to adapt to the different soil materials. For revegetation on copper mine wastes, it is desirable to plant a variety of plant species rather than a single species, to help blend the disturbed areas into the surrounding environmentApproved for publication as Arizona Agricultural Experiment Station Research Contribution No. 3100.  相似文献   

17.
Abandoned metal mines in the Sierra de Guadarrama, Madrid, Spain, are often located in areas of high ecological value. This is true of an abandoned barium mine situated in the heart of a bird sanctuary. Today the area sustains grasslands, interspersed with oakwood formations of Quercus ilex and heywood scrub (Retama sphaerocarpa L.), used by cattle, sheep and wild animals. Our study was designed to establish a relationship between the plant biodiversity of these grasslands and the bioavailability of heavy metals in the topsoil layer of this abandoned mine. We conducted soil chemical analyses and performed a greenhouse evaluation of the effects of different soil heavy metal concentrations on biodiversity. The greenhouse bioassays were run for 6 months using soil samples obtained from the mine polluted with heavy metals (Cu, Zn, Pb and Cd) and from a control pasture. Soil heavy metal and Na concentrations, along with the pH, had intense negative effects on plant biodiversity, as determined through changes in the Shannon index and species richness. Numbers of grasses, legumes, and composites were reduced, whilst other species (including ruderals) were affected to a lesser extent. Zinc had the greatest effect on biodiversity, followed by Cd and Cu. When we compared the sensitivity of the biodiversity indicators to the different metal content variables, pseudototal metal concentrations determined by X-ray fluorescence (XRF) were the most sensitive, followed by available and soluble metal contents. Worse correlations between biodiversity variables and metal variables were shown by pseudototal contents obtained by plasma emission spectroscopy (ICP-OES). Our results highlight the importance of using as many different indicators as possible to reliably assess the response shown by plants to heavy metal soil pollution.  相似文献   

18.
张军  陈功锡  杨兵  廖斌 《生态环境》2011,(6):1133-1137
宝山堇菜Viola baoshanensis Shu,Liu et Lan是一种Cd超富集植物,但它对不同重金属的吸收和转运能力有待进一步研究。从湖南桂阳宝山多金属矿区中筛选4个宝山堇菜优势分布的小生境,分析这些生境中宝山堇菜及其根区土壤的重金属质量分数。化学分析结果显示,宝山堇菜优势分布土壤中Cd、Pb、Zn、Cu、Mn和Fe的平均质量分数(mg/kg)分别为471、15 044、8 273、1 776、4 702和69 054。宝山堇菜地上部Cd、Pb、Zn、Cu、Mn和Fe的平均质量分数(mg/kg)分别为387、1 077、1 037、99、379和1 812,其中Cd、Pb超过超富集植物标准,Zn、Cu的平均质量分数大约是Zn、Cu超富集植物标准的10%,Mn的平均质量分数低于Mn超富集植物标准的5%,Fe的平均质量分数高于1 000 mg/kg。上述结果表明,宝山堇菜可以超富集Cd和Pb,富集Zn、Cu和Fe以及低积累Mn。此外,宝山堇菜对不同重金属差别化吸收模式可能也代表了超富集植物适应重金属复合污染土壤的一种策略。  相似文献   

19.
通过温室根箱盆栽试验研究4种螯合剂EDTA、EDDS、AES和IDSA与AM菌根单一或联合对植物吸收重金属的影响,并通过改进的BCR三步法分析了玉米Zea mays L.菌根根际重金属的化学形态变化。AES和IDSA处理显著提高了玉米地上部重金属的吸收,对Cd、Cu的作用最为显著,Cd质量分数是对照的6.2倍和6.3倍,Cu质量分数是对照的21.8倍和7.7倍。AM&amp;EDDS处理Cd的质量分数是EDDS处理的6.4倍,较单一AM处理增加了120.7%;AM&amp;AES处理的Pb质量分数较之AES处理增加了71.5%,AM&amp;IDSA较之IDSA处理亦增加了32.0%。AM&amp;AES、AM&amp;IDSA处理较之单一AM处理,Zn质量分数增加了134.1%和21.8%,Cu质量分数前者是后者的8.4倍和3.3倍,Pb质量分数前者是后者的11.9倍和8.7倍。添加螯合剂处理较之对照亦显著提高了玉米根部重金属的质量分数(P&lt;0.05),其中EDTA处理Pb质量分数是对照的5.0倍,AES和IDSA处理Cu质量分数增加了229.1%和131.0%。AM与螯合剂联合处理后,玉米根部Cd质量分数较之单一螯合剂处理降低,与地上部呈相反趋势;AM&amp;EDDS处理较之EDDS处理,Zn质量分数增加了48.6%,AM&amp;AES与AES处理对比亦增加了24.6%;AM&amp;EDTA、AM&amp;EDDS和AM&amp;AES较之AM处理玉米根部Zn质量分数分别增加了70.0%、90.9%和51.3%,Cu质量分数前者是后者的2.6倍、1.8倍、4.0倍, Pb质量分数前者是后者的4.5倍、4.2倍和2.8倍。AM处理下根际土壤Zn、Cu、Pb结合态相对含量明显高于非根际。结果表明,新型螯合剂AES和IDSA对玉米地上部和根部重金属的吸收积累有较明显的促进作用;螯合剂和AM菌根联合提高了单一接种AM菌根或者添加螯合剂时玉米对重金属的吸收积累量,强化了植物提取的效果;AM菌根改变了根际土壤中重金属的形态,菌根的存在使得重金属的形态由松结合态向紧结合态转移,降低了重金属的生物有效性及过量重金属对宿主植物的毒害。  相似文献   

20.
Glassman SI  Casper BB 《Ecology》2012,93(7):1550-1559
Investigating how arbuscular mycorrhizal fungi (AMF)-plant interactions vary with edaphic conditions provides an opportunity to test the context-dependency of interspecific interactions. The relationship between AMF and their host plants in the context of other soil microbes was studied along a gradient of heavy metal contamination originating at the site of zinc smelters that operated for a century. The site is currently under restoration. Native C3 grasses have reestablished, and C4 grasses native to the region but not the site were introduced. Interactions involving the native mycorrhizal fungi, non-mycorrhizal soil microbes, soil, one C3 grass (Deschampsia flexuosa), and one C4 grass (Sorghastrum nutans) were investigated using soils from the two extremes of the contamination gradient in a full factorial greenhouse experiment. After 12 weeks, plant biomass and root colonization by AMF and non-mycorrhizal microbes were measured. Plants from both species grew much larger in soil from low-contaminated (LC) origin than high-contaminated (HC) origin. For S. nutans, the addition of a non-AMF soil microbial wash of either origin increased the efficacy of AMF from LC soils but decreased the efficacy of AMF from HC soils in promoting plant growth. Furthermore, there was high mortality of S. nutans in HC soil, where plants with AMF from HC died sooner. For D. flexuosa, plant biomass did not vary with AMF source or the microbial wash treatment or their interaction. While AMF origin did not affect root colonization of D. flexuosa by AMF, the presence and origin of AMF did affect the number of non-mycorrhizal (NMF) morphotypes and NMF root colonization. Adding non-AMF soil biota reduced Zn concentrations in shoots of D. flexuosa. Thus the non-AMF biotic context affected heavy metal sequestration and associated NMF in D. flexuosa, and it interacted with AMF to affect plant biomass in S. nutans. Our results should be useful for improving our basic ecological understanding of the context-dependency of plant-soil interactions and are potentially important in restoration of heavy-metal-contaminated sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号