首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To achieve the rapid prediction of minimum ignition energy (MIE) for premixed gases with wide-span equivalence ratios, a theoretical model is developed based on the proposed idea of flame propagation layer by layer. The validity and high accuracy of this model in predicting MIE have been corroborated against experimental data (from literature) and traditional models. In comparison, this model is mainly applicable to uniform premixed flammable mixtures, and the ignition source needs to be regarded as a punctiform energy source. Nevertheless, this model can exhibit higher accuracy (up to 90%) than traditional models when applied to premixed gases with wide-span equivalence ratios, such as C3H8-air mixtures with 0.7–1.5 equivalence ratios, CH4-air mixtures with 0.7–1.25 equivalence ratios, H2-air mixtures with 0.6–3.15 equivalence ratios et al. Further, the model parameters have been pre-determined using a 20 L spherical closed explosion setup with a high-speed camera, and then the MIE of common flammable gases (CH4, C2H6, C3H8, C4H10, C2H4, C3H6, C2H2, C3H4, C2H6O, CO and H2) under stoichiometric or wide-span equivalence ratios has been calculated. Eventually, the influences of model parameters on MIE have been discussed. Results show that MIE is the sum of the energy required for flame propagation during ignition. The increase in exothermic and heat transfer efficiency for fuel molecules can reduce MIE, whereas prolonging the flame induction period can increase MIE.  相似文献   

2.
We study flame acceleration and DDT in a two-dimensional staggered array of square obstacles by solving the compressible multidimensional reactive Navier–Stokes equations. The energy release rate for a stoichiometric H2-air mixture is modeled by a one-step Arrhenius kinetics. The space between obstacles is filled with a stoichiometric H2-air mixture at 1 atm and 298 K. Initially, the flow is at rest, and a flame is ignited at the center of the array. Computations show effects of the obstacles as a series of events leading to DDT. During the initial flame acceleration, the speed of the flame depends on the direction of flame propagation since some directions are more obstructed than others. This affects the macroscopic shape of the expanding burned region, which forms concave boundaries in more obstructed directions. As the flame accelerates, shocks form ahead of the flame, reflect from obstacles, and interact with the flame. There are more shock–flame interactions in more obstructed directions, and this leads to a greater flame acceleration and stronger leading shocks. When the shocks become strong enough, their collisions with obstacles ignite the gas mixture, and detonations form. The simulation shows four independent DDT events within a 90-degree sector, all in more obstructed directions. Resulting detonations spread in all directions. Some parts of detonation fronts are quenched by diffractions around obstacles, but they are reignited by collisions of decoupled shocks, or overtaken by other detonations. Thus detonations continue to spread and quickly burn all the material between the obstacles.  相似文献   

3.
Evaluation of accident scenarios including flame acceleration and deflagration-to-detonation transition (DDT) in chemical plant piping systems increases the need for an efficient numerical simulation tool capable of dealing with this phenomenon. In this work, a hybrid pressure-density-based solver including deflagrative flame propagation as well as detonation propagation is presented. The initial incompressible acceleration stage is covered by the pressure-based solver until the flame velocity reaches the fast flame regime and transition to the density-based solver is done. The deflagration source term is formulated in terms of a turbulent flame speed closure model incorporating various physical effects crucial for flame acceleration at low turbulence conditions (Katzy and Sattelmayer, 2018). Modelling of the detonation source term is based on a quadratic heat release function (Hasslberger, 2017). The presented numerical approach is validated in terms of DDT locations and pressure data from Schildberg (2015) as well as recently completed flame tip position measurements. For this purpose, H2/O2/N2 mixtures ranging from 25.6 vol-% H2 to 29.56 vol-% H2 in two different pipe geometries are considered. The focus of the current work is on predicting the DDT location correctly and good agreement is observed for the investigated cases.  相似文献   

4.
Ethylene (C2H4) is a hydrocarbon fuel and widely used in chemical industry, however, ethylene is highly flammable and therefore presents a serious fire and explosion hazard. This work is initiated by addressing the hazard assessment of ethylene mixtures in different scale channels (d = 5 mm, 10 mm and 20 mm) from the aspect of flame acceleration (FA) and deflagration-to-detonation transition (DDT) by using large eddy simulation (LES) method coupled with the artificially thickened flame (ATF) approach. The fifth order local characteristics based weighted essentially non-oscillatory (WENO) conservative finite difference scheme is employed to solve the governing equations. The numerical results confirm that flame velocity increase rapidly at the beginning stage in three channels, and the flame acceleration rate is slower in the subsequent stage, afterwards, the flame velocity has an abrupt increase, and the onset of detonation occurs. Due to the fact that wall effect is significant in the narrow channel (e.g.,5 mm), especially in the ignition stage of the flame, flames have different shapes in wider channels (10 mm and 20 mm) and narrow channel (5 mm). Both the pressure and temperature profiles confirm DDT run-up distances are 0.251 m, 0.203 m and 0.161 m in 20 mm, 10 mm and 5 mm channels, respectively, which indicates that a shorter run-up distance is required in narrower channel. The cellular detonation structures for the ethylene-air mixture in different channels indicate that multi-headed detonation structures can be found in 20 mm channel, as the channel width decreases to 10 mm, detonation has a single-headed spinning structure, as the width is further reduced to 5 mm, only large longitudinal oscillation of the pressure can be observed.  相似文献   

5.
The method described in this paper enabled reliable and accurate positioning of an overdriven detonation by calculation of shock wave velocities (detonation and retonation) for hydrogen explosions in a closed 18 m long horizontal DN150 pipe. This enabled an empirical correlation between the ignition position and the run-up distance to DDT to be determined. It was shown that the initial ability of the flame to expand unobstructed and the piston-like effect of burnt gas expanding against the closed end of the tube contributed to initial flame acceleration and hence were able to affect the run-up distance to overdriven detonation. Flame speeds and rates of initial pressure rise were also used to explain how these two competing effects were able to produce a minimum in the run-up distance to DDT. The shortest run-up distance to DDT, relative to the ignition position, for this pipe and gas configuration was found when the ignition position was placed 5.6 pipe diameters (or 0.9 m) from the closed pipe end. The shortest run-up distance to DDT relative to the end of the pipe was recorded when the ignition source was placed 4.4 pipe diameters or 0.7 m from the pipe end.  相似文献   

6.
To study the occurrence conditions and propagation characteristics of deflagration to detonation transition (DDT) in linked vessels, two typical linked vessels were investigated in this study. The DDT of the methane–air mixture under different pipe lengths and inner diameters was studied. Results showed that the CJ detonation pressure of the methane–air mixture was 1.86 MPa, and the CJ detonation velocity was 1987.4 m/s. Compared with a single pipe, the induced distance of DDT is relatively short in the linked vessels. With the increase in pipeline length, DDT is more likely to occur. Under the same pipe diameter, the DDT induction distance in the vessel–pipe–vessel structure is shorter than that in the vessel–pipe structure. With the increase in pipeline diameter, the length of the pipe required to form the DDT is reduced. For linked vessels in which detonation formed, four stages, namely, slow combustion, deflagration, deflagration to detonation, and stable detonation, occurred in the vessels. Moreover, for a pipe diameter of 60 mm and a length of 8 m, overdriven detonation occurred in the vessel–pipe–vessel structure.  相似文献   

7.
The methane–air detonation experiments are performed to characterize high pressure explosion processes that may occur in sealed areas of underground coal mines. The detonation tube used for these studies is 73 m long, 105 cm internal diameter, and closed at one end. The test gas is 97.5% methane with about 1.5% ethane, and the methane–air test mixtures varied between 4% and 19% methane by volume. Detonations were successfully initiated for mixtures containing between 5.3% and 15.5% methane. The detonations propagated with an average velocity between 1512 and 1863 m/s. Average overpressures recorded behind the first shock pressure peak varied between 1.2 and 1.7 MPa. The measured detonation velocities and pressures are close to their corresponding theoretical Chapman-Jouguet (CJ) detonation velocity (DCJ) and detonation pressure (PCJ). Outside of these detonability limits, failed detonations produced decaying detached shocks and flames propagating with velocities of approximately 1/2 DCJ. Cell patterns on smokefoils during detonations were very irregular and showed secondary cell structures inside primary cells. The measured width of primary cells varied between 20 cm near the stoichiometry and 105 cm (tube diameter) near the limits. The largest detonation cell (105 cm wide and 170 cm long) was recorded for the mixture containing 15.3% methane.  相似文献   

8.
We investigate the PAN dust explosion inhibition behaviors of NaHCO3 and Al(OH)3 in a 20 L spherical explosion system and a transparent pipe explosion propagation test system. The results show that, in the standard 20 L spherical explosion system, the highest PAN dust explosion concentration is 500 g/m3, the maximum explosion pressure is 0.661 MPa, and the maximum explosion pressure increase rate is 31.64 MPa/s; adding 50% NaHCO3 and 60% Al(OH)3 can totally inhibit PAN dust explosion. In the DN0.15 m transparent pipe explosion propagation test system, for 500 g/m3 PAN dust, the initial explosion flame velocity is 102 m/s, the initial pressure is 0.46 MPa, and the initial temperature is 967 °C; adding 60% NaHCO3 and 70% Al(OH)3 can totally inhibit PAN dust explosion flames. Through FTIR and TG analyses, we obtain the explosion products and pyrolysis patterns of the explosion products of PAN dust, NaHCO3, and Al(OH)3. On this basis, we also summarize the PAN dust explosion inhibition mechanisms of NaHCO3 and Al(OH)3.  相似文献   

9.
For the case where a dust or gas explosion can occur in a connected process vessel, it would be useful, for the purpose of designing protection measures and also for assessing the existing protection measures such as the correct placement, to have a tool to estimate the time for flame front propagation along the connecting pipe. Measurements of data from large-scale explosion tests in industrially relevant process vessels are reported. To determine the flame front propagation time, either a 1 m3 or a 4.25 m3 primary process vessel was connected via a pipe to a mechanically or pneumatically fed 9.4 m3 secondary silo. The explosion propagation started after ignition of a maize starch/air mixture in the primary vessel. No additional dust was present along the connecting pipe. Systematic investigations of the explosion data have shown a relationship between the flame front propagating time and the reduced explosion over-pressure of the primary explosion vessel for both vessel volumes. Furthermore, it was possible to validate this theory by using explosion data from previous investigations. Using the data, a flame front propagation time prediction model was developed which is applicable for:
  • •gas and dust explosions up to a K value of 100 and 200 bar m s−1, respectively, and a maximum reduced explosion over-pressure of up to 7 bar;
  • •explosion vessel volumes of 0.5, 1, 4.25 and 9.4 m3, independent of whether they are closed or vented;
  • •connecting pipes of pneumatic systems with diameters of 100–200 mm and an air velocity up to 30 m s−1;
  • •open ended pipes and pipes of interconnected vessels with a diameter equal to or greater than 100 mm;
  • •lengths of connecting pipe of at least 2.5–7 m.
  相似文献   

10.
The separation distance (or pitch) between two successive obstacles or rows of obstacles is an important parameter in the acceleration of flame propagation and increase in explosion severity. Whilst this is generally recognised, it has received little specific attention by investigators. In this work a vented cylindrical vessel 162 mm in diameter 4.5 m long was used to study the effect of separation distance of two low blockage (30%) obstacles. The set up was demonstrated to produce overpressure through the fast flame speeds generated (i.e. in a similar mechanism to vapour cloud explosions). A worst case separation distance was found to be 1.75 m which produced close to 3 bar overpressure and a flame speed of about 500 m/s. These values were of the order of twice the overpressure and flame speed with a double obstacle separated 2.75 m (83 characteristic obstacle length scales) apart. The profile of effects with separation distance was shown to agree with the cold flow turbulence profile determined in cold flows by other researchers. However, the present results showed that the maximum effect in explosions is experienced further downstream than the position of maximum turbulence determined in the cold flow studies. It is suggested that this may be due to the convection of the turbulence profile by the propagating flame. The present results would suggest that in many previous studies of repeated obstacles the separation distance investigated might not have included the worst case set up, and therefore existing explosion protection guidelines may not be derived from worst case scenarios.  相似文献   

11.
This work aimed to experimentally evaluate the effects of a carbon monoxide-dominant gas mixture on the explosion characteristics of methane in air and report the results of an experimental study on explosion pressure measurement in closed vessel deflagration for a carbon monoxide-dominant gas mixture over its entire flammable range. Experiments were performed in a 20-L spherical explosion tank with a quartz glass window 110 mm in diameter using an electric spark (1 J) as the ignition source. All experiments were conducted at room temperature and at ambient pressure, with a relative humidity ranging from 52 to 73%. The peak explosion pressure (Pmax), maximum pressure rise rate ((dp/dt)max), and gas deflagration index (KG) were observed and analyzed. The flame propagation behavior in the initial stage was recorded using a high-speed camera. The spherical outward flame front was determined on the basis of a canny method, from which the maximum flame propagation speed (Sn) was calculated. The results indicated that the existence of the mixture had a significant effect on the flame propagation of CH4-air and increased its explosion risk. As the volume fraction of the mixed gas increases, the Pmax, (dp/dt)max, KG and Sn of the fuel-lean CH4-air mixture (7% CH4-air mixture) increase nonlinearly. In contrast, addition of the mixed gas negatively affected the fuel-rich mixture (11% CH4-air mixture), exhibiting a decreasing trend. Under stoichiometric conditions (9.5% CH4-air mixture), the mixed gas slightly lowered Pmax, (dp/dt)max, KG, and Sn. The Pmax of CH4-air mixtures at volume fractions of 7%, 9.5%, and 11% were 5.4, 6.9, and 6.8 bar, respectively. The Sn of CH4-air mixtures at volume fractions of 7%, 9.5%, and 11% were 1.2 m/s, 2.0 m/s, and 1.8 m/s, respectively. The outcome of the study is comprehensive data that quantify the dependency of explosion severity parameters on the gas concentration. In the storage and transportation of flammable gases, the information is required to quantify the potential severity of an explosion, design vessels able to withstand an explosion and design explosion safety measures for installations handling this gas.  相似文献   

12.
Experimental data from vented explosion tests using gasoline-air mixtures with concentrations from 0.88 to 2.41% vol. are presented. A 2L vessel was used for the tests with vent sizes of 25 cm2, 50 cm2 and 100 cm2. The tests were focused on the effect of gasoline vapor concentration and vent size on the pressure development and the flame behavior inside and outside the vessel. It was found that the inner flame propagation speed was mainly dependent on the initial concentration, while the maximum flame spreading distance was mainly influenced by the vent size. The external flame speed and duration could be influenced by the combination of the two properties. The internal pressure increases gradually with the flame propagated inside the vessel and decreased sharply when the vent failed. High-pressure durations containing pressure peaks were recorded by transducers in front of the vent and oscillations could be observed besides the vent. At any measure point, the maximum external pressures for A = 25 cm2 or 50 cm2 were significantly larger than those for A = 100 cm2.  相似文献   

13.
A study of explosions in several elongated cylindrical vessels with length to diameter L/D = 2.4–20.7 and ignition at vessel's bottom is reported. Ethylene–air mixtures with variable concentration between 3.0 and 10.0 vol% and pressures between 0.30 and 1.80 bara were experimentally investigated at ambient initial temperature. For the whole range of ethylene concentration, several characteristic stages of flame propagation were observed. The height and rate of pressure rise in these stages were found to depend on ethylene concentration, on volume and asymmetry ratio L/D of each vessel. High rates of pressure rise were found in the early stage; in later stages lower rates of pressure rise were observed due to the increase of heat losses. The peak explosion pressures and the maximum rates of pressure rise differ strongly from those measured in centrally ignited explosions, in all examined vessels. In elongated vessels, smooth p(t) records have been obtained for the explosions of lean C2H4–air mixtures. In stoichiometric and rich mixtures, pressure oscillations appear even at initial pressures below ambient, resulting in significant overpressures as compared to compact vessels. In the stoichiometric mixture, the frequency of the oscillations was close to the fundamental characteristic frequency of the tube.  相似文献   

14.
A typical building consists of a number of rooms; often with windows of different size and failure pressure and obstructions in the form of furniture and décor, separated by partition walls with interconnecting doorways. Consequently, the maximum pressure developed in a gas explosion would be dependent upon the individual characteristics of the building. In this research, a large-scale experimental programme has been undertaken at the DNV GL Spadeadam Test Site to determine the effects of vent size and congestion on vented gas explosions. Thirty-eight stoichiometric natural gas/air explosions were carried out in a 182 m3 explosion chamber of L/D = 2 and KA = 1, 2, 4 and 9. Congestion was varied by placing a number of 180 mm diameter polyethylene pipes within the explosion chamber, providing a volume congestion between 0 and 5% and cross-sectional area blockages ranging between 0 and 40%. The series of tests produced peak explosion overpressures of between 70 mbar and 3.7 bar with corresponding maximum flame speeds in the range 35–395 m/s at a distance of 7 m from the ignition point. The experiments demonstrated that it is possible to generate overpressures greater than 200 mbar with volume blockages of as little as 0.57%, if there is not sufficient outflow through the inadvertent venting process. The size and failure pressure of potential vent openings, and the degree of congestion within a building, are key factors in whether or not a building will sustain structural damage following a gas explosion. Given that the average volume blockage in a room in a UK inhabited building is in the order of 17%, it is clear that without the use of large windows of low failure pressure, buildings will continue to be susceptible to significant structural damage during an accidental gas explosion.  相似文献   

15.
Liquefied petroleum gas (LPG) has potential pool fire risks due to its flammability. The configuration of pool fires plays a significant role when applying the solid flame model or point source model to assess the risks from heat radiation. However, no existing correlations can precisely predict the configuration of large LPG (100% propane) pool fires. To enhance the fundamental understanding on how pool diameter and wind velocity can influence the configuration of large LPG pool fires, an experimentally validated Computational Fluid Dynamics (CFD) model is employed to simulate fires using different burning rate models. Fire temperature profiles, flame heights, and flame tilts predicted by the CFD model were compared with empirical models and experimental data. Accordingly, new correlations for flame height and flame tilt as functions of pool diameter D and wind velocity uw have been developed. The comparisons demonstrate that the new correlations have the best overall accuracy in the prediction of flame height and tilt for large LPG pool fires under different conditions (10 m ≤ D ≤ 20 m, 0 ≤ uw ≤ 3 m·s−1).  相似文献   

16.
When aluminum magnesium alloy dust floats in the air, a certain ignition energy can easily cause an accidental explosion. To prevent and control the occurrence of accidental explosions and reduce the severity of accidents, it is necessary to carry out research on the explosion suppression of aluminum magnesium alloy dust. This paper uses a vertical glass tube experimental device and a 20 L spherical explosive experimental device to carry out experimental studies on the suppression of the flame propagation and explosion overpressure of aluminum magnesium alloy dust with melamine polyphosphate (MPP) and Al(OH)3. With increasing MPP and Al(OH)3 concentrations, the flame brightness darkened, the flame velocity and propagation distance gradually decreased, and Pmax and (dp/dt)max decreased significantly. When the amount of MPP added reached 60%, the flame propagation distance decreased to 188 mm, which is a decrease of 68%, and the explosion overpressure decreased to 0.014 MPa, effectively suppressing the explosion of aluminum magnesium alloy dust. The experimental results showed that MPP was more effective than Al(OH)3 in inhibiting the flame propagation and explosion overpressure of the aluminum magnesium alloy dust. Finally, the inhibitory mechanisms of the MPP and Al(OH)3 were further investigated. The MPP and Al(OH)3 endothermic decomposition produced an inert gas, diluted the oxygen concentration and trapped active radicals to terminate the combustion chain reaction.  相似文献   

17.
Deposition of combustible dust on a hot surface is a hidden danger of fire. In this work, polymethylmethacrylate (PMMA) dust was selected to analyse the influence of dust layer diameter, dust particle size and dust layer thickness on the ignition characteristics of PMMA dust layer. Critical heating temperatures and ignition time had been measured. The STA-GC/MS-FTIR analysis was used to determine that the main products of PMMA pyrolysis were MMA, CO, CO2, and C2H4, of which CO and C2H4 were transported to the ambient to cause gas phase combustion on the surface of the dust layer. For 10 mm thick dust layer, the critical heating temperatures of 5 μm PMMA, 100 nm PMMA, and 30 μm PMMA were 300 °C, 330 °C, and 320 °C. As the thickness of the dust layer increased, the gas transport path became longer, the critical heating temperature and ignition time increased. The characteristic particle size (D [3,2]) was utilized to represent the true particle size, and the ignition time increased with the increase of the characteristic particle size. The increase in the diameter of the dust layer had a slight effect on the temperature history and ignition time of the dust layer.  相似文献   

18.
Experimental studies were done with a small pipe with a diameter of 0.043 m and a large pipe with a diameter of 0.49 m to demonstrate the flame propagation suppression with inertia isolation in a long duct. Tests were carried in an ignition section containing propylene/air mixture near stoichiometric concentration and generating a peak flame propagation speed of approximately 100 m/s. The ignition section is connected to a section filled with an inert gas, another section with flammable mixtures, and finally a sufficiently long, ambient section to accommodate flame propagation. The critical length of the inert gas section required for successful suppression of flame from the igniting the flammable section is found to be 0.6 m for CO2 and 0.9 m for N2 in the large pipe and 0.2 m for CO2 and 0.3 m for N2 in the small pipe. Additional tests with a 3 m of ignition section and peak flame propagation speed of 225 m/s showed that the critical length for successful suppression by CO2 is only increased slightly to 0.9 m, confirming that the suppression is a result of inertia isolation rather than inert gas dilution. Finally, application of the results in responding to large-scale leak into a long, underground duct is discussed.  相似文献   

19.
To restrict the progress of the global warming, A2L refrigerants such as 2,3,3,3-tetrafluoroprop-1-ene (R1234yf), (Z/E)-1,3,3,3-tetrafluoroprop-1-ene (R1234ze), and difluoromethane (R32) have been expected of alternatives to the standard refrigerants currently in use. The ignition hazard of A2L refrigerants under plausible accident situations in service and maintenance was examined experimentally for two cases: leakage of an A2L refrigerant from a pinhole in a pipe or hose (Scenario 1), and leakage of an A2L refrigerant into an item of equipment used for service and maintenance, such as a collection device (Scenario 2). In Scenario 1, the location of the flammable zone and the possibility of a jet flame being formed instantaneously on contact with an ignition source were examined. Even when R1234yf leaked from a 4 mmϕ pinhole (corresponding to breakage of a pipe), the flammable zone extended only about 10 cm from the pinhole in the downstream region. In an ignition test with a continuous spark as the ignition source, a pale emission appeared only near the spark, and the flame did not propagate to the rest of the refrigerant jet. In Scenario 2, the accumulation and ignition behaviors of A2L refrigerants in a model collection device were examined experimentally. Ignition and flame propagation occurred in a test on a model collection device lacking slits, whereas when slits wider than 20 mm were present, ignition and flame propagation did not occur. Even if R1234yf leaked into the model collection device, provided that slits of an effective width were present, the R1234yf could diffuse through slits and barely accumulated, and no ignition or flame propagation occurred.  相似文献   

20.
A study of vented explosions in a length over diameter (L/D) of 2 in cylindrical vessel connecting with a vent duct (L/D = 7) is reported. The influence of vent burst pressure and ignition locations on the maximum overpressure and flame speeds at constant vent coefficient, K of 16.4 were investigated to elucidate how these parameters affect the severity of a vented explosion. Propane and methane/air mixtures were studied with equivalence ratio, Φ ranges from 0.8 to 1.6. It is demonstrated that end ignition exhibited higher maximum overpressures and flame speeds in comparison to central ignition, contrary to what is reported in literature. There was a large acceleration of the flame toward the duct due to the development of cellular flames and end ignition demonstrated to have higher flame speeds prior to entry into the vent due to the larger flame distance. The higher vent flow velocities and subsequent flame speeds were responsible for the higher overpressures obtained. Rich mixtures for propane/air mixtures at Φ = 1.35 had the greatest flame acceleration and the highest overpressures. In addition, the results showed that Bartknecht's gas explosion venting correlation is grossly overestimated the overpressure for K = 16.4 and thus, misleading the impact of the vent burst pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号