首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experiment-based investigations of magnesium dust explosion characteristics   总被引:1,自引:0,他引:1  
An experimental investigation was carried out on magnesium dust explosions. Tests of explosion severity, flammability limit and solid inerting were conducted thanks to the Siwek 20 L vessel and influences of dust concentration, particle size, ignition energy, initial pressure and added inertant were taken into account. That magnesium dust is more of an explosion hazard than coal dust is confirmed and quantified by contrastive investigation. The Chinese procedure GB/T 16425 is overly conservative for LEL determination while EN 14034-3 yields realistic LEL data. It is also suggested that 2000-5000 J is the most appropriate ignition energy to use in the LEL determination of magnesium dusts, using the 20 L vessel. It is essential to point out that the overdriving phenomenon usually occurs for carbonaceous and less volatile metal materials is not notable for magnesium dusts. Trends of faster burning velocity and more efficient and adiabatic flame propagation are associated with fuel-rich dust clouds, smaller particles and hyperbaric conditions. Moreover, Inerting effectiveness of CaCO3 appears to be higher than KCl values on thermodynamics, whereas KCl represents higher effectiveness upon kinetics. Finer inertant shows better inerting effectiveness.  相似文献   

2.
In order to explore flame propagation characteristics during wood dust explosions in a semi-closed tube, a high-speed camera, a thermal infrared imaging device and a pressure sensor were used in the study. Poplar dusts with different particle size distributions (0–50, 50–96 and 96–180 μm) were respectively placed in a Hartmann tube to mimic dust cloud explosions, and flame propagation behaviors such as flame propagation velocity, flame temperature and explosion pressure were detected and analyzed. According to the changes of flame shapes, flame propagations in wood dust explosions were divided into three stages including ignition, vertical propagation and free diffusion. Flame propagations for the two smaller particles were dominated by homogeneous combustion, while flame propagation for the largest particles was controlled by heterogeneous combustion, which had been confirmed by individual Damköhler number. All flame propagation velocities for different groups of wood particles in dust explosions were increased at first and then decreased with the augmentation of mass concentration. Flame temperatures and explosion pressures were almost similarly changed. Dust explosions in 50–96 μm wood particles were more intense than in the other two particles, of which the most severe explosion appeared at a mass concentration of 750 g/m3. Meanwhile, flame propagation velocity, flame propagation temperature and explosion pressure reached to the maximum values of 10.45 m/s, 1373 °C and 0.41 MPa. In addition, sensitive concentrations corresponding to the three groups of particles from small to large were 500, 750 and 1000 g/m3, separately, indicating that sensitive concentration in dust explosions of wood particles was elevated with the increase of particle size. Taken together, the finding demonstrated that particle size and mass concentration of wood dusts affected the occurrence and severity of dust explosions, which could provide guidance and reference for the identification, assessment and industrial safety management of wood dust explosions.  相似文献   

3.
The explosivity of dust clouds is greatly influenced by several parameters which depend on the operating conditions, such as the initial turbulence, temperature or ignition energy, but obviously also on the materials composition. In the peculiar case of a mixture of two combustible powders, the physical and chemical properties of both dusts have an impact on the cloud flammability and on its explosivity. Nevertheless, no satisfactory ‘mixing laws’ predicting the mixture behavior are currently available and the composition variable to be considered for such models greatly depend on the safety parameters which have to be determined: from volume ratios for some thermal exchanges and ignition phenomena, to surface proportions for some heterogeneous reactions and molar contents for chemical reactions. This study is mainly focused on graphite/magnesium mixtures as they are encountered during the decommissioning activities of UNGG reactors (Natural Uranium Graphite Gas). Due to the different nature and reactivity of both powders, these mixtures offer a wide range of interests. Firstly, the rate-limiting steps for the combustion of graphite are distinct from those of metals (oxygen diffusion or metal vaporization). Secondly, the flame can be thickened by the presence of radiation during metal combustion, whereas this phenomenon is negligible for pure graphite. Finally, the turbulence of the initial dust cloud is modified by the addition of a second powder. In order to assess the explosivity of graphite/magnesium clouds, a parametric study of the effects of storage humidity, particle size distribution, ignition energy, and initial turbulence has been carried out. In particular, it was clearly demonstrated that the turbulence significantly influences the explosion severity by speeding up the rate of heat release on the one hand and the oxygen diffusion through the boundary layer surrounding particles on the other hand. Moreover, it modifies the mean particle size and the spatial dust distribution in the test vessel, impacting the uniformity of the dust cloud. Thus, the present work demonstrates that the procedures developed for standard tests are not sufficient to assess the dust explosivity in industrial conditions and that an extensive parametric study is relevant to figure out the explosive behavior of solid/solid mixtures subjected to variations of operating conditions.  相似文献   

4.
为探究混合金属粉尘爆炸危险性及与单一粉体爆炸特性差异,确保车间安全生产,采用粉尘云点火能量测试系统对车间混合金属粉尘及铝粉最小点火能量在不同影响因素下的变化规律及2种粉尘火焰变化特征进行测试。研究结果表明:混合金属粉尘和铝粉最小点火能量在一定范围内(38~96 μm)与粒径呈正相关性,当混合金属粉尘粒径大于75 μm时,所需最小点火能量大于1 000 mJ,其爆炸敏感性迅速降低,此时铝粉仍有较强爆炸敏感性;2种粉尘最小点火能量随质量浓度增加呈先降低后升高的趋势,最小点火能分别为295,15 mJ,对应的敏感质量浓度为600,1 000 g/m3,混合金属粉尘在质量浓度为500~700 g/m3时具有较大爆炸危险性;同铝粉相比,混合金属粉尘点火能量更高、火焰燃烧时间更短、火焰高度更低、爆炸剧烈程度更弱。  相似文献   

5.
Mixing an inert solid or a less flammable compound with a combustible dust can be regarded as a direct application of the inherent safety principle of moderation. An experimental investigation was carried out to determine the evolution of the ignition sensitivity and the explosion severity of such various mixtures as a function of their compositions. It demonstrates that the introduction of small amounts of highly combustible powders (such as sulphur or nicotinic acid) to a less flammable dust (such as microcrystalline cellulose or carbon black) can strongly influence the ignition sensitivity as well as the explosion severity.It has notably been shown that the ignition sensitivity of solid/solid mixtures significantly rises up when only 10–5%wt. of highly flammable dust is introduced. Simple models can often be applied to estimate the minimum ignition energy, minimum ignition temperature and minimum explosive concentration of such mixtures. Concerning the dust explosivity, three cases have been studied: mixtures of combustibles dusts without reaction, dusts with reactions between the powders, combustible dusts with inert solid. If the evolution of the maximum explosion pressure can be estimated by using thermodynamic calculations, the maximum rate of pressure rise is more difficult to predict with simple models, and both combustion kinetics and hydrodynamics of the dust clouds should be taken into account. These results were also extended to flammable dust/solid inertant mixture. They clearly show that the concentration of solid inertant at which the ignition is not observed anymore could reach 95%wt. As a consequence, the common recommendation of solid inertant introduction up to 50–80%wt. to prevent dust explosion/ignition should be reconsidered.  相似文献   

6.
Explosibility of polyurethane dusts produced in the recycling process of refrigerator and the ways to prevent the dust explosion were studied. In recent years, cyclopentane is often used as the foaming agent and this produces explosive atmosphere in the shredding process. The minimum explosive concentration of polyurethane dust, influence of coexisting cyclopentane gas on the explosibility, effect of relative humidity on the minimum explosive concentration of polyurethane dusts, the minimum ignition energy, influence of cyclopentane mixture on the explosion severity, etc. were investigated.The minimum explosive dust concentration decreased with the increase of cyclopentane concentration and increased with the increase of relative humidity. The minimum ignition energy was about 11 mJ. The ignition energy decreased with the increase of the cyclopentane gas concentration. The cyclopentane gas concentration up to about 5300 ppm did not influence too much on the explosion index (Kst) and maximum explosion pressure. From these, it would be a good way to increase the relative humidity and to regulate the cyclopentane concentration in the shredding process to prevent the dust explosion hazard.  相似文献   

7.
The Pittsburgh Research Laboratory of the National Institute for Occupational Safety and Health (NIOSH) conducted a study of the explosibility of various metals and other elemental dusts, with a focus on the experimental explosion temperatures. The data are useful for understanding the basics of dust cloud combustion, as well as for evaluating explosion hazards in the minerals and metals processing industries. The dusts studied included boron, carbon, magnesium, aluminum, silicon, sulfur, titanium, chromium, iron, nickel, copper, zinc, niobium, molybdenum, tin, hafnium, tantalum, tungsten, and lead. The dusts were chosen to cover a wide range of physical properties—from the more volatile materials such as magnesium, aluminum, sulfur, and zinc to the highly “refractory” elements such as carbon, niobium, molybdenum, tantalum, and tungsten. These flammability studies were conducted in a 20-L chamber, using strong pyrotechnic ignitors. A unique multiwavelength infrared pyrometer was used to measure the temperatures. For the elemental dusts studied, all ignited and burned as air-dispersed dust clouds except for nickel, copper, molybdenum, and lead. The measured maximum explosion temperatures ranged from 1550 K for tin and tungsten powders to 2800 K for aluminum, magnesium, and titanium powders. The measured temperatures are compared to the calculated, adiabatic flame temperatures.  相似文献   

8.
为了将本质安全原理中的缓和原则与粉尘爆炸事故的风险控制联系起来,利用Swiek20 L球形爆炸装置考察了烟煤粉、甘薯粉和镁粉的最大爆炸压力、最大爆压上升速率和爆炸下限等特性,重点考察了点火能量、环境压力以及添加惰化剂等因素的影响。结果表明:降低点火能量能有效缩减粉尘可燃浓度范围,提高粉尘爆炸下限;爆炸危害正相关于环境压力;碳酸钙和碳酸氢钠能有效抑制烟煤尘爆炸,且碳酸钙抑爆效果更好;氯化钾对镁尘爆炸动力学特性的抑制效果更好,而碳酸钙对镁尘爆炸热力学特性的抑制效果更好,且小粒径的惰化剂表现出更好的抑爆炸能力。降低点火能量、控制环境压力和添加惰化剂均可降低粉尘爆炸危害,有助于控制粉尘爆炸风险。  相似文献   

9.
为了研究初始温度变化对湿法成型硫磺粉尘燃烧爆炸特性的影响,通过对初始温度分别为35℃、 45℃、 55℃、 65℃、 75℃的硫磺粉尘试样进行测试,发现随着初始温度的上升硫磺粉尘的粉尘云最低着火温度,粉尘云最小点火能逐渐降低;随着初始温度的上升硫磺粉尘的爆炸下限和粉尘层最低着火温度不发生变化。随着温度的升高,硫磺粉尘的燃烧爆炸危险性增加,因此在气温较高的夏秋季节要提高硫磺粉尘燃爆的防护等级。  相似文献   

10.
Combustible dust explosions continue to present a significant threat toward industries processing, storing, or pneumatically conveying metal dust hazards. Through recent years, investigations have observed the influence of particle size, polydispersity, and chemical composition on dust explosion sensitivity and severity. However, studies characterizing the effect of particle shape (or morphology) on metal dust explosibility are limited and merit further consideration. In this work, high-purity aluminum dust samples of three unique particle morphologies were examined (spherical granular, irregular granular, and dry flake). To maintain consistency in results obtained, all samples were procured with similar particle size distribution and polydispersity, as verified by laser diffraction particle size analysis. Scanning electron microscopy (SEM) imaging and Brunauer-Emmett-Teller (BET) experiments were executed to confirm supplier claims on morphology and to quantify the effective surface area associated with each sample, respectively. Investigations performed in a Kühner MIKE3 minimum ignition energy apparatus and a Siwek 20 L sphere combustion chamber resulted in the direct characterization of explosion sensitivity and severity, respectively, as a function of suspended fuel concentration and variable particle morphology. Recommendations to standard risk/hazard analysis procedures and to existing design guidance for the mitigation of deflagrations that originate from ignition of distinctively processed metal dust fuels have been provided.  相似文献   

11.
To evaluate the explosion hazard of ITER-relevant dusts, a standard method of 20-l-sphere was used to measure the explosion indices of fine graphite and tungsten dusts and their mixtures. The effect of dust particle size was studied on the maximum overpressures, maximum rates of pressure rise, and lower explosive concentrations of graphite dusts in the range 4 μm to 45 μm. The explosion indices of 1 μm tungsten dust and its mixtures with 4 μm graphite dust were measured. The explosibility of these dusts and mixtures were evaluated. The dusts tested were ranked as St1 class. Dust particle size was shown to be very important for explosion properties. The finest graphite dust appeared to have the lowest minimum explosion concentration and be able to explode with 2 kJ ignition energy.  相似文献   

12.
In the work presented in this paper, the explosion and flammability behavior of combustible dust mixtures was studied. Lycopodium, Nicotinic acid and Ascorbic acid were used as sample dusts.In the case of mixtures of two dusts, the minimum explosive concentration is reproduced well by a Le Chatelier's rule-like formula, whereas the minimum ignition energy is a linear combination of the ignition energies of the pure dusts.An unexpected behavior has been found in relation to the explosion behavior and the reactivity. When mixing Lycopodium and Nicotinic acid or Ascorbic acid, the rate of pressure rise of the mixture is much higher than the rate of pressure rise obtained by linearly averaging the values of the pure dusts (according to their weight proportions), thus suggesting that strong synergistic effects arise; but it is comparable to that of the most reactive dust in the mixture.The observed behavior seems to be linked to the presence of minerals in the Lycopodium particles which catalyze oxidation reactions of Nicotinic acid and Ascorbic acid, as suggested by TG analysis.In the case of mixtures of three dusts, a similar behavior is observed when the concentration of Lycopodium is twice that of the other two dusts.  相似文献   

13.
When aluminum magnesium alloy dust floats in the air, a certain ignition energy can easily cause an accidental explosion. To prevent and control the occurrence of accidental explosions and reduce the severity of accidents, it is necessary to carry out research on the explosion suppression of aluminum magnesium alloy dust. This paper uses a vertical glass tube experimental device and a 20 L spherical explosive experimental device to carry out experimental studies on the suppression of the flame propagation and explosion overpressure of aluminum magnesium alloy dust with melamine polyphosphate (MPP) and Al(OH)3. With increasing MPP and Al(OH)3 concentrations, the flame brightness darkened, the flame velocity and propagation distance gradually decreased, and Pmax and (dp/dt)max decreased significantly. When the amount of MPP added reached 60%, the flame propagation distance decreased to 188 mm, which is a decrease of 68%, and the explosion overpressure decreased to 0.014 MPa, effectively suppressing the explosion of aluminum magnesium alloy dust. The experimental results showed that MPP was more effective than Al(OH)3 in inhibiting the flame propagation and explosion overpressure of the aluminum magnesium alloy dust. Finally, the inhibitory mechanisms of the MPP and Al(OH)3 were further investigated. The MPP and Al(OH)3 endothermic decomposition produced an inert gas, diluted the oxygen concentration and trapped active radicals to terminate the combustion chain reaction.  相似文献   

14.
Experiments using an open space dust explosion apparatus and a standard 20 L explosion apparatus on nano and micron polymethyl methacrylate dust explosions were conducted to reveal the differences in flame and pressure evolutions. Then the effect of combustion and flame propagation regimes on the explosion overpressure characteristics was discussed. The results showed that the flame propagation behavior, flame temperature distribution and ion current distribution all demonstrated the different flame structures for nano and micron dust explosions. The combustion and flame propagation of 100 nm and 30 μm PMMA dust clouds were mainly controlled by the heat transfer efficiency between the particles and external heat sources. Compared with the cluster diffusion dominant combustion of 30 μm dust flame, the premixed-gas dominant combustion of 100 nm dust flame determined a quicker pyrolysis and combustion reaction rate, a faster flame propagation velocity, a stronger combustion reaction intensity, a quicker heat release rate and a higher amount of released reaction heat, which resulted in an earlier pressure rise, a larger maximum overpressure and a higher explosion hazard class. The complex combustion and propagation regime of agglomerated particles strongly influenced the nano flame propagation and explosion pressure evolution characteristics, and limited the maximum overpressure.  相似文献   

15.
The risk assessment of combustible explosive dust is based on the determination of the probability of dust dispersion, the identification of potential ignition sources and the evaluation of explosion severity. It is achieved in most of cases with the two main experimental normalized devices such as the Hartmann tube (spark ignition) and the 20 L spherical bomb (with two 5 kJ pyrotechnic ignitors).Ignition energy of the 5 kJ ignitor is well calibrated and generates a reproducible ignition. But, on the other hand, this ignition is not punctual and the over pressure produced is nearly 2 bar. Moreover, the pyrotechnic igniter accelerates the combustion with multi ignition points in a large volume and that disturbs the flame propagation. In this way, this ignition source does not allow to analyze the combustion products because the composition of the pyrotechnic igniter was found in the combustion products.This paper deals with the comparison of two ignition sources in the 20 L spherical bomb. Different explosive dusts of great industrial interest are studied with electrical and pyrotechnic ignitors, in order to understand, first, the influence of each type of igniter on the explosion behaviour and then to evaluate the possibility of establishing a correspondence between parameters obtained with these two ignition sources.Severity parameters of nicotinic acid, aluminium powder and titanium alloy were measured by using the two types of ignition system in our 20 L spherical bomb equipped with the Kühner dihedral injector. The explosion overpressure P and the rate of pressure rise (dPdt) were measured in a large range of concentration allowing to propose correlations between electrical and pyrotechnic ignition for each parameter and each type of powder. These correlations aim to link the tests used with two different collections of experimental parameters for the same dust. The relevance of these correlations will be discussed.  相似文献   

16.
A correlation of the lower flammability limit for hybrid mixtures was recently proposed by us. The experimental conditions including ignition energy and turbulence which play a primary role in a gas or dust explosion were at fixed values. The sensitivity of such experimental conditions to the accuracy of the proposed formula was not thoroughly discussed in the previous work. Therefore, this work studied the effect of varying the ignition energy and turbulence intensity to the formula proposed in our previous paper. For ignition energy effect, results from methane/niacin mixture demonstrated that the MEC and LFL will not be affected by changing ignition energy. There is no distinguishable difference among gas explosion index (KG) and dust explosion index (KSt) derived from tests with every ignition energy (2.5 kJ, 5 kJ and 10 kJ) in a 36 L vessel. The proposed formula is independent of ignition energy. For turbulence effect, the proposed formula can have a good prediction of the explosion and non-explosion zone if the ignition delay time is within a certain range. The formula prediction is good as the ignition delay time increases up to 100 ms in this work. Propane/niacin and propane/cornstarch mixtures are also tested to validate the proposed formula. It has been confirmed that the proposed formula predicts the explosion and non-explosion zone boundary of such mixtures.  相似文献   

17.
The authors investigated the ignitability of aluminium and magnesium dusts that are generated during the shredding of post-consumer waste. The relations between particle size and the minimum explosive concentration, the minimum ignition energy, the ignition temperature of the dust clouds, etc. the relation between of oxygen concentration and dust explosion, the effect of inert substances on dust explosion, etc. were studied experimentally.

The minimum explosive concentration increased exponentially with particle size. The minimum explosive concentrations of the sample dusts were about 170 g/m3 (aluminium: 0–8 μm) and 90 g/m3 (magnesium: 0–20 μm). The minimum ignition energy tended to increase with particle size. It was about 6 mJ for the aluminium samples and 4 mJ for the magnesium samples. The ignition temperature of dust clouds was about 750 °C for aluminium and about 520 °C for magnesium. The lowest concentrations of oxygen to produce a dust explosion were about 10% for aluminium and about 8% for magnesium. A large mixing ratio (more than about 50%) of calcium oxide or calcium carbonate was necessary to decrease the explosibility of magnesium dust. The experimental data obtained in the present investigation will be useful for evaluating the explosibility of aluminium and magnesium dusts generated in metal recycling operations and thus for enhancing the safety of recycling plants.  相似文献   


18.
The research presented in this paper is focused on dust explosions of coarse and fine flocculent (or fibrous) samples of wood and polyethylene. Hybrid mixtures of fibrous polyethylene and admixed ethylene were also studied. Experimentation was conducted by following standardized test procedures and using standardized apparatus for determination of maximum explosion pressure, size-normalized maximum rate of pressure rise, minimum explosible concentration, minimum ignition energy, and minimum ignition temperature. A general trend was observed of enhanced explosion likelihood and consequence severity with a decrease in material diameter, as well as enhanced consequence severity with admixture of a flammable gas to the combustion atmosphere. The same phenomena are well-established for dusts composed of spherical particles; this highlights the importance of inherently safer design and the principle of moderation in avoiding the generation of fine sizes of flocculent dusts and hybrid mixtures of such materials with flammable gases.In addition to presenting experimental findings, the paper describes phenomenological modelling efforts for the flocculent polyethylene using four geometric equivalence models: radial equivalence, volumetric equivalence, surface area equivalence, and specific surface area equivalence. The surface area equivalence model was found to yield the best estimates of maximum rate of pressure rise for the flocculent polyethylene samples investigated experimentally.  相似文献   

19.
This work uses the ISO 1 m3 dust explosion equipment to study the explosion properties and combustion characteristics of pulverized biomass dust clouds. An unreported feature of this apparatus is that in rich concentrations only about half the dust injected is burned in the explosion, while the overpressures remain high. This work was undertaken to try to understand the mechanisms of these phenomena, through the accounting of the debris at the end of the explosion, some of which was found in the form of impacted “cake” against the vessel wall. One possible explanation is that the residue material was biomass dust blown ahead of the flame by the explosion induced wind, impacted on the walls where then the flame side underwent flame impingement pyrolysis and the metal (wall) side material was compacted but largely chemically unchanged. The results also show that the heat transfer insulation provided by the powder wall layer contributes to the higher observed pressures. The risk of explosion with significant overpressures remains at 100% in very rich environments (equivalence ratios of up to 6) although these environments are leaner than thought due to material sequestration within the “cake”. There was little indication that a rich combustion limit was approached, this was determined in standard testing equipment that has been modified and calibrated to handle larger quantities of powder than normal.  相似文献   

20.
In order to study the influences of coal dust components on the explosibility of hybrid mixture of methane and coal dust, four kinds of coal dust with different components were selected in this study. Using the standard 20 L sphere, the maximum explosion pressure, explosion index and lower explosion limits of methane/coal dust mixtures were measured. The results show that the addition of methane to different kinds of coal dust can all clearly increase their maximum explosion pressure and explosion index and decrease their minimum explosion concentration. However, the increase in the maximum explosion pressure and explosion index is more significant for coal dust with lower volatile content, while the decrease in the minimum explosion concentration is more significant for coal dust with higher volatile content. It is concluded that the influence of methane on the explosion severity is more pronounced for coal dust with lower volatile content, but on ignition sensitivity it is more pronounced for coal dust with higher volatile content. Bartknecht model for predicting the lower explosion limits of methane/coal dust mixture has better applicability than Le Chatelier model and Jiang model. Especially, it is more suitable for hybrid mixtures of methane and high volatile coal dust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号