首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
以活性炭为载体,负载活性组分金属Co,制备了Co/AC催化剂,采用催化过氧化氢氧化技术(CWPO)处理腈纶废水,考察其催化氧化性能。实验结果表明:将预处理后的20-40目粒状活性炭浸渍于质量浓度为7%Co(NO3)2溶液中,浸渍9h后,经自然晾干,在500℃的条件下焙烧4h得到的Co/AC催化剂催化效果最好。  相似文献   

2.
马超 《四川环境》2021,(2):8-13
以高锰酸钾溶液作为烟气中汞元素的氧化吸收液,通过单因素试验研究了氧化吸收液浓度、反应时间、初始汞浓度、反应温度、pH值对KMnO4对Hg0吸收效率的影响,阐明方法适应性,并将现行采样方法进一步优化。结果表明,15min后,氧化吸收基本平衡,KMnO4浓度为5mmol/L,反应温度为60℃时KMnO4氧化吸收最佳。强酸和强碱环境的吸收效率均高于中性条件,初始汞浓度变化对KMnO4吸收效率的影响不大,抗冲击负荷的能力较强,最优实验条件下,氧化吸收效率提高显著,具有统计学意义。  相似文献   

3.
低浓度Fe(Ⅱ)和Mn(Ⅱ)催化氧化脱除烟气中SO2的研究   总被引:5,自引:0,他引:5  
许丽  苏仕军 《四川环境》2005,24(2):27-31
生物法烟气脱硫是一种新的脱硫工艺,不仅可以较好地解决SO2废气对环境的污染问题,而且将烟气脱硫与单质硫的生产联系在一起,能带来一定的经济效益。将生物法烟气脱硫过程分成两个阶段:SO2的吸收过程和含硫吸收液的生物脱硫过程。本文重点研究了第一阶段的SO2吸收过程。考察了温度、pH值对SO2的吸收的影响,水溶液中低浓度的Fe(Ⅱ)和Mn(Ⅱ)对SO2的催化氧化,以及低浓度的Fe(Ⅱ)和Mn(Ⅱ)协同催化氧化SO2,并初探了引入甲醇和亚纳米SiO2颗粒作为添加剂对脱硫的影响及其机理。  相似文献   

4.
通过浸渍法制备了载铜活性炭(Cu/AC)催化剂,用于催化过氧化物氧化干法腈纶废水,结果表明:Cu/AC催化活性高于均相催化剂Cu(NO3)2,Cu溶出量则小于均相催化剂.非均相催化氧化对干法腈纶废水有很好的处理效果.催化剂的活性和稳定性与制备条件关系很大,通过单因子影响实验,确定催化剂的最佳制备条件为焙烧温度700℃,焙烧时间4小时,浸渍溶液初始浓度10.6gCu/L,浸渍时间20小时.  相似文献   

5.
通过程序升温反应考察活性炭负载铈(Ce/AC)催化剂选择性催化还原NO的性能。探讨反应温度、空速、NO初始浓度、O2浓度、NH3浓度以及SO2的存在对其催化性能的影响。实验结果表明,催化剂的催化活性随温度的上升而逐渐增加,在150℃后趋于平稳,NO转化率接近100%;NO进口浓度的增加,催化剂对NO的脱除效率有较小幅度下降;在没有氧气的存在时,NO的转化率只有20%左右,随着氧气的加入,转化率明显增加,当氧含量到1%以后,NO的转化率趋于平缓,稳定在90%以上;SO2对催化剂有很强的毒性,烟气中加入SO2后,催化剂对NO的去除率明显的下降。  相似文献   

6.
利用链状Salen型高分子希夫碱金属配合物PLSBM(M:CoⅡ,MnⅡ,ZnⅡ,CuⅡ)作为催化剂,催化分子氧氧化苯乙烯.结果表明,在不添加任何助剂和共还原剂的条件下,氧化产物以苯甲醛(Ⅰ)和环氧苯乙烷(Ⅱ)为主,PLSBCuⅡ具有最佳的催化活性和产物选择性.考察了影响氧化反应的因素,发现在反应温度为90℃、反应时间为9h和催化剂与苯乙烯用量比为1mg∶2mL时,苯乙烯具有最优的转化率(61%)和产物选择性(Ⅰ:57%,Ⅱ:36%).  相似文献   

7.
制备了一种铁碳基/过渡金属复合催化剂,其物质摩尔配比为Fe:C:TiO2:MnO2:ZnO=2:1:1:1:0.3,使用该催化剂拟定了二次催化—固定床生物氧化降解流程。在pH=6、温度=90℃的条件下,用该流程处理煤化工工业所产生的洗煤气净化脱酚、蒸氨剩余废水,在无需对原废水进行稀释的前提下可很好地对此废水进行处理,使处理后的出水指标达到《污水综合排放标准》(GB89r78—1966)中规定的二级排放标准。  相似文献   

8.
挥发性有机废气净化技术研究进展   总被引:20,自引:4,他引:16  
樊奇  羌宁 《四川环境》2005,24(4):40-44,49
本文对生物净化技术、等离子体净化技术、吸附和催化氧化技术在控制废气中挥发性有机物的研究进展及应用进行了综述。气体生物净化技术在VOCs混合物和改进设备工艺方面开展的研究工作较多,等离子体净化技术与催化技术的组合越来越受到关注。吸附和催化氧化方面则着重在吸附剂(活性炭和沸石)吸附性能的进一步研究和新型催化剂的研制。  相似文献   

9.
氨气选择性催化还原(SCR)脱硝技术已成熟应用于玻璃窑炉脱硝工艺。文章介绍了SCR脱硝工艺的核心V_2O_5-WO_3/TiO_2蜂窝催化剂应用方案的设计要素,并列举了典型工程实例的设计方案,进行催化剂性能分析。设计要素包括催化剂节距的选择、体积用量及元件长度的计算、催化剂层数、模块布置和最低喷氨温度等。通过催化剂性能分析,得出结论:脱硝效率与烟气流量及入口NO_x浓度成反比,而与NH_3/NO_x摩尔比成正比,NH_3/NO_x摩尔比的增高会加大氨逃逸;在一定温度范围内,烟气温度与脱硝效率及SO_2/SO_3转化率均成正比;烟气流量的增大和催化剂化学使用时间的延长,导致了催化剂压降的升高。  相似文献   

10.
为降低高浓度氨氮废水中的氨氮含量,使其达到国家排放标准,文章通过研究反应比、pH、温度、钙离子浓度等因素确定了MAP法去除氨氮的最佳反应条件。结果表明:最佳反应比为n(NH4^+):n(PO4^3-):n(Mg^2+)=1:(1.2~1.4):1.2;最佳反应pH为8.5~10.0;最佳反应温度为20-28℃;Ca^2+浓度的最佳值则接近于零。实验采用搅拌10min,沉淀20min,调整到最佳反应条件。氨氮去除率可以达到96%以上。  相似文献   

11.
The CO2 absorption capacities of potassium glycinate, potassium sarcosinate (choline, proline), mono-ethanolamine (MEA), and tri-ethanolamine were evaluated to find the optimal absorbent for separating CO2 from gaseous products by a CO2 purification process. The absorption loading, desorption efficiency, cost, and environmental tolerance were assessed to select the optimal absorbent. MEA was found to be the optimum absorbent for separating the CO2 and H2 mixture in gaseous product. The maximum absorption loading rate was 0.77 mol CO2 per mol MEA at temperature of 20°C and absorbent concentration of 2.5 mol/L, whereas desorption efficiency was 90% by heating for 3 h at 130°C. MEA was found to be an optimal absorbent for the purification process of CO2 during gaseous production.  相似文献   

12.
固定化真菌漆酶对分散兰-2BLN的脱色和降解   总被引:3,自引:0,他引:3  
采用改良壳聚糖固定化的真菌漆酶对染料分散兰-2BLN进行脱色和降解条件的研究,探索了固定化漆酶活力、处理时间、染料浓度、温度和pH对其降解效果的影响。结果表明,固定化漆酶脱色降解分散兰-2BLN的适宜条件为:固定化漆酶活力18.2U/mL,染料浓度100mg/L,温度40℃,pH4.6,在上述条件下降解1.5h,分散兰-2BLN脱色率能达到87.68%。重复分批使用固定化漆酶处理2BLN兰,在使用6批次后,脱色率仍能保持在55%以上,其催化效率得到了较大提高。  相似文献   

13.
Effect of chloride ions on the oxidation of aniline by Fenton's reagent   总被引:3,自引:0,他引:3  
The objective of this study was to experimentally probe the mechanism of chloride ions specifically affecting aniline oxidation by Fenton's reagent. Batch experiments were carried out to investigate the effects of pH, Fe2+, H2O2 and chloride concentration on the oxidation reaction. Results show that the inhibition caused by chloride ions can be overcome by extending the reaction time if the concentration of chloride ions is low. At a high concentration of chloride ions, however, the oxidation of aniline was inhibited, and actually ceased due to the complexation of Fe-Cl. In this study, the chloride ion concentration was kept at 0.2 M in the experiments when studying the effect of ferrous ion concentration on the Fenton reaction. If the ratio of [Cl-]/[Fe2+] was < or = 200, the inhibition effect was very significant. In other words, adding more ferrous ions rather than hydrogen peroxide can break the inhibition originating from the chloride ions at an initial stage of pH 3. The inhibition effect of chloride ions on the aniline reaction depended on the reaction pH; the extent of inhibition decreased with increasing the initial pH as long as the pH was less than 5. Consequently, the inhibition effect by chloride ions was primarily due to the complexation of iron species and chloride ions. The influence of chloride ions on aniline oxidation due to the competition of hydroxyl radicals was not significant.  相似文献   

14.
The influence of different environmental factors on methane oxidation and degradation of hydrochlorofluorocarbons (HCFCs) was investigated in microcosms containing soil sampled at Skellingsted Landfill, Denmark. The soil showed a high capacity for methane oxidation resulting in a maximum oxidation rate of 104 microg CH4 g(-1) h(-1) and a low affinity of methane with a half-saturation constant of 2.0% v/v. The hydrochlorofluorocarbons HCFC-21 (dichlorofluoromethane) and HCFC-22 (chlorodifluoromethane) were rapidly oxidized and the oxidation occurred in parallel with the oxidation of methane. The maximal HCFC oxidation rates were 0.95 and 0.68 microg g(-1) h(-1) for HCFC-21 and HCFC-22, respectively. Increasing concentrations of HCFCs resulted in decreased methane oxidation rates. However, compared with typical concentrations in landfill gas, relatively high HCFC concentrations were needed to obtain a significant inhibition of methane oxidation. In general, the environmental factors studied influenced the degradation of HCFCs in almost the same way as they influenced methane oxidation. Temperature had a strong influence on the methanotrophic activity giving high Q10 values of 3.4 to 4.1 over the temperature range of 2 to 25 degrees C. Temperature optimum was around 30 degrees C; however, oxidation occurred at temperatures as low as 2 degrees C. A moisture content of 25% w/w yielded the maximum oxidation rate as it allowed good gas transport together with sufficient microbial activity. The optimum pH was around neutrality (pH = 6.5-7.5) showing that the methanotrophs were optimally adapted to the in situ pH, which was 6.9. Copper showed no inhibitory effect when added in relatively high concentrations (up to 60 mg kg(-1)), most likely due to sorption of copper ions to soil particles. At higher copper concentrations the oxidation rates decreased. The oxidation rates for methane, HCFC-21, and HCFC-22 were unaltered in ammonium-amended soil up to 14 mg kg(-1). Higher ammonium concentrations inhibited the oxidation process. The most important parameters controlling oxidation in landfill cover soil were found to be temperature, soil moisture, and methane and oxygen supply.  相似文献   

15.
An acidophilic, sulfur-oxidizing Acidithiobacillus thiooxidans MET bacterium was isolated from anaerobically digested, dewatered sewage sludge. This bacterium showed sulfur-oxidizing ability at both acidic and neutral conditions, and allowed metal leaching even at a high (130 g L(-1)) sludge solids concentration. We found that low metal leaching efficiency at high solids concentration was mainly due to an increase in buffering capacity resulting in retardation of pH reduction. Therefore, metal leaching was mainly influenced not by sludge solids concentration, but by the pH (or sulfate concentration per unit sludge mass) of the sludge solutions. The relationship between the pH of the sludge solution and the efficiency of metal leaching was obtained by quantitatively investigating the effect of pH reduction or the amount of sulfate produced per unit sludge mass on leaching of each metal. Furthermore, the relationship between total metal content in the sludge and metal leached to the solution was obtained for each metal. Such a relationship allowed estimation of leachable metal at various amounts of total metal content in sludge.  相似文献   

16.
Combined chemical and biological oxidation of penicillin formulation effluent   总被引:12,自引:0,他引:12  
Antibiotic formulation effluent is well known for its important contribution to environmental pollution due to its fluctuating and recalcitrant nature. In the present study, the chemical treatability of penicillin formulation effluent (average filtered COD(o)=830 mg/l; average soluble COD(o)=615 mg/l; pH(o)=6.9) bearing the active substances penicillin Amoxicillin Trihydrate (C(16)H(19)N(3)O(5)S.3H(2)O) and the beta-lactamase inhibitor Potassium Clavulanate (C(8)H(8)KNO(5)) has been investigated. For this purpose, the penicillin formulation effluent was subjected to ozonation (applied ozone dose=2500 mg/(lxh)) at varying pH (2.5-12.0) and O(3)+H(2)O(2) (perozonation) at different initial H(2)O(2) concentrations (=2-40 mM) and pH 10.5. According to the experimental results, the overall Chemical Oxygen Demand (COD) removal efficiency varied between 10 and 56% for ozonation and 30% (no H(2)O(2)) and 83% (20 mM H(2)O(2)) for the O(3)+H(2)O(2) process. The addition of H(2)O(2) improved the COD removal rates considerably even at the lowest studied H(2)O(2) concentration. An optimum H(2)O(2) concentration of 20 mM existed at which the highest COD removal efficiency and abatement kinetics were obtained. The ozone absorption rate ranged between 53% (ozonation) and 68% (perozonation). An ozone input of 800 mg/l in 20 min was sufficient to achieve the highest BOD(5)/COD (biodegradability) ratio (=0.45) and BOD(5) value (109 mg/l) for the pre-treated penicillin formulation effluent. After the establishment of optimum ozonation and perozonation conditions, mixtures of synthetic domestic wastewater+raw, ozonated and perozonated penicillin formulation effluent were subjected to biological activated sludge treatment at a food-to-microorganisms (F/M) ratio of 0.23 mg COD/(mg MLSSxd), using a consortium of acclimated microorganisms. COD removal efficiencies of the activated sludge process were 71, 81 and 72% for pharmaceutical wastewater containing synthetic domestic wastewater mixed with either raw, ozonated or perozonated formulation effluent, respectively. The ultimate COD value obtained after 24-h biotreatment of the synthetic domestic wastewater+pre-ozonated formulation effluent mixture was around 100 mg/l instead of 180 mg/l which was the final COD obtained for the wastewater mixture containing raw formulation effluent, indicating that pre-ozonation at least partially removed the non-biodegradable COD fraction of the formulation effluent.  相似文献   

17.
Mesoporous Fe2O3–Al2O3–CuO catalysts promoted with alkali oxides were synthesized and used in water gas shift reaction (WGSR) at high temperatures for hydrogen purification. These chromium-free catalysts were characterized using nitrogen adsorption/desorption, hydrogen temperature programmed reduction, X-ray diffraction (XRD), and transmission electron microscopy techniques. The synthesized catalysts with narrow single-modal pore size distribution in mesopore region possessed high specific surface area. The catalytic results revealed that except Cs, the addition of other alkali promoters declined the catalytic activity. However, all catalysts showed higher catalytic performance than the conventional commercial catalyst. The results showed an optimum content of Cs promoter (3 wt.%) for the promoted Fe–Al–Cu catalyst (3 wt.% Cs-FAC), which exhibited the highest activity in WGSR at high temperature.  相似文献   

18.
光化学氧化法对阴离子表面活性剂降解的初步研究   总被引:3,自引:1,他引:3  
姜少红  杨勇  季民 《四川环境》2006,25(1):11-13
本试验采用UV/H2O2光氧化法处理含有较高浓度阴离子表面活性剂(LAS)的模拟废水,研究了H2O2投加量、pH值、光照时间、紫外灯光强对LAS降解率的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号