首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 626 毫秒
1.
The development of carbon dioxide(CO_2) sorbents that can operate at elevated temperatures is significant for the advancement of pre-combustion capture technologies.Recently, promoter-based systems composed of alkali/alkaline earth metal nitrates and/or carbonates have been considered as next-generation solid sorbents due to their improved CO_2 uptake and kinetics. However, obtaining stable MgO sorbents against temperature swing regeneration still remained challenging. Herein, we report MgO-TiO_2 solid sorbents promoted by eutectic mixture(KNO_3 and LiNO_3) for elevated temperature CO_2 sorption. The developed sorbents show improved CO_2 sorption capacity, which may be attributed to the alternative CO_2 sorption pathway provided by the ionization of highly dispersed MgO in the eutectic mixture. The MgO-TiO_2 framework was also shown to assist in retaining the MgO configuration by constraining its interaction with CO_2. Furthermore, it is demonstrated that constructing composite structures is essential to improve the CO_2 sorption characteristics,mainly recyclability, at elevated temperatures. The developed promoter integrated sorbents showed exceptionally high CO_2 sorption capacity of 30 wt.% at an elevated temperature(300°C) with pronounced stability under temperature swing operation.  相似文献   

2.
The cement industry is one of the largest carbon dioxide (CO2) emitters in the Thai industry. The cement sector accounted for about 20,633 kilotonnes (ktonnes) CO2 emissions in 2005 in Thailand. A bottom-up CO2 abatement cost curve (ACC) is constructed in this study for the Thai cement industry to determine the potentials and costs of CO2 abatement, taking into account the costs and CO2 abatement of different technologies. The period of 2010–2025 is chosen as the scenario period. We analyzed 41 CO2 abatement technologies and measures for the cement industry. Using the bottom-up CO2 ACC model, the cost-effective annual CO2 abatement potential for the Thai cement industry during the 15 year scenario period (2010–2025) is equal to 3095 ktonnes CO2/year. This is about 15% of the Thai cement industry’s total CO2 emissions in 2005. The total technical annual CO2 abatement potential is 3143 ktonnes CO2/year, which is about 15.2% of the Thai cement industry’s total CO2 emissions in 2005. We also conducted a sensitivity analysis for the discount rate parameter.  相似文献   

3.
The projected increase of atmospheric CO2 concentration [CO2] is expected to increase yield of agricultural C3 crops, but little is known about effects of [CO2] on lodging that can reduce yield. This study examined the interaction between [CO2] and nitrogen (N) fertilization on the lodging of rice (Oryza sativa L.) using free-air CO2 enrichment (FACE) systems installed in paddy fields at Shizukuishi, Iwate, Japan (39°38′N, 140°57′E). Rice plants were grown under two levels of [CO2] (ambient = 365 μmol mol−1; elevated [CO2] = 548 μmol mol−1) and three N fertilization regimes: a single initial basal application of controlled-release urea (8 g N m−2, CRN), split fertilization with a standard amount of ammonium sulfate (9 g N m−2, MN), and ample N (15 g N m−2, HN). Lodging score (six ranks at 18° intervals, with larger scores indicating greater bending), yield, and yield components were measured at maturity. The lodging score was significantly higher under HN than under CRN and MN, but lodging was alleviated by elevated [CO2] under HN. This alleviation was associated with the shortened and thickened lower internodes, but was not associated with a change in the plant's mass moment around the culm base. A positively significant correlation between lodging score and ripening percentage indicated that ripening percentage decreased by 4.5% per one-unit increase in lodging score. These findings will be useful to develop functional algorithm that can be incorporated into mechanistic crop models to predict rice production more accurately in a changing climate and with different cultural practices.  相似文献   

4.
The present investigation deals with an application of integrated sequential oxic and anoxic bioreactor(SOABR) and fluidized immobilized cell carbon oxidation(FICCO) reactor for the treatment of domestic wastewater with minimum sludge generation. The performance of integrated SOABR-FICCO system was evaluated on treating the domestic wastewater at hydraulic retention time(HRT) of 3 hr and 6 hr for 120 days at organic loading rate(OLR)of 191 ± 31 mg/(L·hr). The influent wastewater was characterized by chemical oxygen demand(COD) 573 ± 93 mg/L; biochemical oxygen demand(BOD5) 197 ± 35 mg/L and total suspended solids(TSS) 450 ± 136 mg/L. The integrated SOABR-FICCO reactors have established a significant removal of COD by 94% ± 1%, BOD5 by 95% ± 0.6% and TSS by 95% ± 4% with treated domestic wastewater characteristics COD 33 ± 5 mg/L; BOD59 ± 0.8 mg/L and TSS 17 ± 9 mg/L under continuous mode of operation for 120 days. The mass of dry sludge generated from SOABR-FICCO system was 22.9 g/m~3. The sludge volume index of sludge formed in the SOABR reactor was 32 mL/g and in FICCO reactor it was 46 mL/g. The sludge formed in SOABR and FICCO reactor was characterized by TGA, DSC and SEM analysis. Overall, the results demonstrated that the integrated SOABR-FICCO reactors substantially removed the pollution parameters from domestic wastewater with minimum sludge production.  相似文献   

5.
The effects of O_3/Cl_2 disinfection on corrosion and the growth of opportunistic pathogens in drinking water distribution systems were studied using annular reactors(ARs).The corrosion process and most probable number(MPN) analysis indicated that the higher content of iron-oxidizing bacteria and iron-reducing bacteria in biofilms of the AR treated with O_3/Cl_2 induced higher Fe_3O_4 formation in corrosion scales.These corrosion scales became more stable than the ones that formed in the AR treated with Cl_2 alone.O_3/Cl_2 disinfection inhibited corrosion and iron release efficiently by changing the content of corrosion-related bacteria.Moreover,ozone disinfection inactivated or damaged the opportunistic pathogens due to its strong oxidizing properties.The damaged bacteria resulting from initial ozone treatment were inactivated by the subsequent chlorine disinfection.Compared with the AR treated with Cl_2 alone,the opportunistic pathogens M.avium and L.pneumophila were not detectable in effluents of the AR treated with O_3/Cl_2,and decreased to(4.60 ± 0.14) and(3.09 ± 0.12) log10(gene copies/g corrosion scales) in biofilms,respectively.The amoeba counts were also lower in the AR treated with O_3/Cl_2.Therefore,O_3/C_l2 disinfection can effectively control opportunistic pathogens in effluents and biofilms of an AR used as a model for a drinking water distribution system.  相似文献   

6.
Measured carbon dioxide (CO2) flux from peat soils using the closed chamber technique combines root-related (autotrophic + heterotrophic where rhizosphere organisms are involved) and peat-based (heterotrophic) respiration. The latter contributes to peat loss while the former is linked to recent CO2 removal through photosynthesis. The objective of this study was to separate root- from peat-based respiration. The study was conducted on peatland under 6 and 15 year old oil palm (Elaeis guineensis Jacq.) plantations in Jambi Province, Indonesia in 2011 to 2012. CO2 emissions were measured in the field from 25 cm diameter and 25 cm tall closed chambers using an infrared gas analyser. Root sampling and CO2 emissions measurements were at distances of 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, and 4.5 m from the centre of the base of the palm tree. The emission rate for the six and 15 year old oil palm plantations at ≥3.0 m from the centre of the tree were 38.2?±?9.5 and 34.1?±?15.9 Mg CO2 ha?1 yr?1, respectively. At distances <2.5 m, total respiration linearly decreased with distances from the trees. Heterotrophic respirations were 86 % of the 44.7?±?11.2 and 71 % of 47.8?±?21.3 Mg CO2 ha?1 yr?1 of weighted surface flux, respectively for the 6 and 15 year old plantations. We propose that CO2 flux measurements in oil palm plantations made at a distance of ≥3 m from the tree centre be used to represent the heterotrophic respiration that is relevant for the environmental impact assessment.  相似文献   

7.
Silver nanoparticles with average diameter of 10 ± 3 nm were synthesized within the sieves of poly(N-isopropylacrylamide-2-hydroxyethylmethacrylate-acrylic acid)(p(NIPAAm-HEMA-AAc))polymer microgels. Free radial emulsion polymerization was employed for synthesis of p(NIPAAm-HEMA-AAc) polymer microgels. Silver nanoparticles were introduced within the microgels sphere by in situ reduction method. Microgels and hybrid microgels were characterized by Fourier transform infrared spectroscopy, ultra violet-visible spectroscopy,transmission electron microscopy and dynamic light scattering measurements. Catalytic activity of Ag-p(NIPAAm-HEMA-AAc) hybrid microgels was studied using catalytic reduction of 4-nitrophenol(4-NP) as a model reaction in aqueous media. The influence of sodium borohydride(Na BH4) concentration, catalyst dose and 4-NP concentration on catalytic reduction of 4-NP was investigated. A linear relationship was found between catalyst dose and apparent rate constant(kapp). The mechanism of catalysis by hybrid microgels was explored for further development in this area. The deep analysis of catalytic process reveals that the unique combination of NIPAAm, HEMA and AAc does not only stabilize silver nanoparticles in polymer network but it also enhances the mass transport of hydrophilic substrate like 4-NP from outside to inside the polymer network.  相似文献   

8.
In this work we present the experimental results of absorption rates and absorption capacity for the CO2 absorption by ammonia (NH3) aqueous solutions. Experiments are carried out in a thermoregulated Lewis-type cell reactor and are achieved in temperature and concentration ranges of 278–303 K and 2–5wt.% NH3 respectively. The obtained values for absorption kinetic rates and absorption capacity are compared with those available for alkanolamine solvents, commonly used to absorb CO2. In order to achieve this comparison, data available in studies about alkanolamine solvents at 303–333 K and 5–50wt.% for alkanolamines solutions were considered. Results show that CO2 absorption by NH3 is faster than the one carried out by MDEA, except for 2wt.% NH3 at 288 K. At 278 K and using aqueous solutions of 3wt.% NH3, the absorption rate is almost identical to the one reached with MDEA solvent. The highest absorption capacity, also compared with alkanolamine solution, is reached with aqueous solutions of 5wt.% NH3 at 278 K and 303 K.  相似文献   

9.
The combined ecological toxicity of TiO2 nanoparticles (nano-TiO2) and heavy metals has been paid more attention. As the common pollutants in water environment, surfactants could affect the properties of nanoparticles and heavy metals, and thus further influence the combined toxicity of nano-TiO2 and heavy metals. In this study, the effects of sodium dodecyl benzene sulfonate (SDBS) and Tween 80 on the single and combined toxicities of Cd2 + and nano-TiO2 to Escherichia coli (E. coli) were examined, and the underlying influence mechanism was further discussed. The results showed both SDBS and Tween 80 enhanced the toxicity of Cd2 + to E. coli in varying degrees. The reaction of SDBS and Cd2 + could increase the outer membrane permeability and the bioavailability of Cd, while Tween 80 itself could enhance the outer membrane permeability. The combined toxicity of nano-TiO2 and Cd2 + to E. coli in absence of surfactant was antagonistic because of the adsorption of Cd2 + to nano-TiO2 particles. However, in the presence of SDBS, both SDBS and nano-TiO2 influenced the toxicity of Cd2 +, and also SDBS could adsorb to nano-TiO2 by binding to Cd2 +. The combined toxicity was reduced at Cd2 + lower than 4 mg/L and enhanced at Cd2 + higher than 4 mg/L under multiple interactions. Tween 80 enhanced the combined toxicity of nano-TiO2 and Cd2 + by increasing the outer membrane permeability. Our study firstly elucidated the effects of surfactants on the combined toxicity of nano-TiO2 and Cd2 + to bacteria, and the underlying influencing mechanism was proposed.  相似文献   

10.
Abandonment of marginal agricultural areas with subsequent secondary succession is a widespread type of land use change in Mediterranean and mountain areas of Europe, leading to important environmental consequences such as change in the water balance, carbon cycling, and regional climate. Paired eddy flux measurement design with grassland site and tree/shrub encroached site has been set-up in the Slovenian Karst (submediterranean climate region) to investigate the effects of secondary succession on ecosystem carbon cycling. The invasion of woody plant species was found to significantly change carbon balance shifting annual NEE from source to an evident sink. According to one year of data succession site stored ?126 ± 14 g C m?2 y?1 while grassland site emitted 353 ± 72 g C m?2 y?1. In addition, the seasonal course of CO2 exchange differed between both succession stages, which can be related to differences in phenology, i.e. activity of prevailing plant species, and modified environmental conditions within forest fragments of the invaded site. Negligible effect of instrument heating was observed which proves the Burba correction in our ecosystems unnecessary. Unexpectedly high CO2 emissions and large disagreement with soil respiration especially on the grassland site in late autumn indicate additional sources of carbon which cannot be biologically processes, such as degassing of soil pores and caves after rain events.  相似文献   

11.
With the increasing use of tropical peatland for agricultural development, documentation of the rate of carbon dioxide (CO2) emissions is becoming important for national greenhouse gas inventories. The objective of this study was to evaluate soil-surface CO2 fluxes from drained peat under different land-use systems in Riau and Jambi Provinces, Sumatra, Indonesia. Increase of CO2 concentration was tracked in measurement chambers using an Infrared Gas Analyzer (IRGA, LI-COR 820 model). The results showed that CO2 flux under oil palm (Elaeis guineensis) plantations ranged from 34?±?16 and 45?±?25 Mg CO2 ha–1 year–1 in two locations in Jambi province to 66?±?25 Mg CO2 ha–1 year–1 for a site in Riau. For adjacent plots within 3.2 km in the Kampar Peninsula, Riau, CO2 fluxes from an oil palm plantation, an Acacia plantation, a secondary forest and a rubber plantation were 66?±?25, 59?±?19, 61?±?25, 52?±?17 Mg ha–1 year–1, respectively, while on bare land sites it was between 56?±?30 and 67?±?24 Mg CO2 ha–1 year–1, indicating no significant differences among the different land-use systems in the same landscape. Unexplained site variation seems to dominate over land use in influencing CO2 flux. CO2 fluxes varied with time of day (p?<?0.001) with the noon flux as the highest, suggesting an overestimate of the mean flux values with the absence of night-time measurements. In general, CO2 flux increased with the depth of water table, suggesting the importance of keeping the peat as wet as possible.  相似文献   

12.
To investigate the effect of air-exposed biocathode(AEB) on the performance of singlechamber microbial fuel cell(SCMFC), wastewater quality, bioelectrochemical characteristics and the electrode biofilms were researched. It was demonstrated that exposing the biocathode to air was beneficial to nitrogen removal and current generation. In Test 1 of 95%AEB, removal rates of ammonia, total nitrogen(TN) and chemical oxygen demand(COD)reached 99.34% ± 0.11%, 99.34% ± 0.10% and 90.79% ± 0.12%, respectively. The nitrogen removal loading rates were 36.38 g N/m~3/day. Meanwhile, current density and power density obtained at 0.7 A/m3 and 104 m W/m~3 respectively. Further experiments on opencircuit(Test 2) and carbon source(Test 3) indicated that this high performance could be attributed to simultaneous biological nitrification/denitrification and aerobic denitrification, as well as bioelectrochemical denitrification. Results of community analysis demonstrated that both microbial community structures on the surface of the cathode and in the liquid of the chamber were different. The percentage of Thauera, identified as denitrifying bacteria, maintained at a high level of over 50% in water, but decreased gradually in the AEB. Moreover, the genus Nitrosomonas, Alishewanella, Arcobacter and Rheinheimera were significantly enriched in the AEB, which might contribute to both enhancement of nitrogen removal and electricity generation.  相似文献   

13.
Hybrid rice (Oryza sativa L.) cultivars play an important role in rice production due to its heterosis, resistance to environmental stress and high yield potential. However, no attention has been given to its yield responses to rising atmospheric CO2 concentration ([CO2]). To address this need, we conducted a Free Air CO2 Enrichment (FACE) experiment at Yangzhou, Jiangsu, China, in 2004–2006. A two-line inter-subspecific hybrid rice variety Liangyoupeijiu, recently bred in China, was grown at ambient or elevated (c. 570 μmol mol?1) [CO2] under two levels of nitrogen (N) application (12.5 and 25 g N m?2). Elevated [CO2] slightly accelerated phenological development (1–2 days), and substantially enhanced grain yield (+30%). The magnitude of yield response to [CO2] was independent of N fertilization, but greatly varied among years. On average, elevated [CO2] increased panicle number per unit land area by 8%, due to an increase in maximum tiller number under FACE, while productive tiller ratio remained unaffected. Spikelet number per panicle showed an average increase of 10% due to elevated [CO2], which was also supported by increased plant height and dry weight per stem. Meanwhile, Elevated [CO2] caused a significant enhancement in both filled spikelet percentage (+5%) and individual grain mass (+4%). Compared with previous rice FACE studies, this hybrid cultivar appears to profit much more from elevated [CO2] than inbred japonica cultivars (c. +13%), not only due to its stronger sink generation, but also enhanced capacity to utilize the carbon sources in a high [CO2] environment. As sufficient intraspecific variation in yield response exists under field conditions, there is a pressing need to identify genotypes which would produce maximum grain yield under projected future [CO2] levels.  相似文献   

14.
Developing countries situated mostly in latitudes that are projected for the highest climate change impact in the twenty-first century will also have a predictable increase in demand on energy sources. India presents us with a unique opportunity to study this phenomenon in a large developing country. This study finds that climate adaptation policies of India should consider the significance of air conditioners (A/Cs) in mitigation of human vulnerability due to unpredictable weather events such as heat waves. However, the energy demand due to air conditioning usage alone will be in the range of an extra ~750,000 GWh to ~1,350,000 GWh with a 3.7 °C increase in surface temperatures under different population scenarios and increasing incomes by the year 2100. We project that residential A/C usage by 2100 will result in CO2 emissions of 592 Tg to 1064 Tg. This is significant given that India's total contribution to global CO2 emissions in 2009 was measured at 1670 Tg and country's residential and commercial electricity consumption in 2007 was estimated at 145,000 GWh.  相似文献   

15.
Increasing evidences have shown that dissolved organic components are responsible for the significant C and N exports from terrestrial ecosystems to the surrounding aquatic ecosystems and very sensitive to CO2 enrichment. However, there is still a lack of direct evidence about CO2-led effects on these components at the ecosystem scale, especially in wetlands. We, therefore, simultaneously investigated the contents of dissolved organic carbon (DOC) and dissolved nitrogen (DN) in the surface water and soil layer in a paddy field under FACE facility in Eastern China. Elevated CO2 significantly increased the contents of DOC and DN in the surface water by 18.0% and 14.3% on average. Elevated CO2 also increased DOC content in the soil, but decreased DN content. The contents of DOC and DN in the soil–water interface of 0–1 cm soil layer were on average 22.4% and 47.5% higher than in the 5–15 cm soil layer. Besides, significant higher DOC and DN contents existed in the soil porewater than in the surface water. Due to multiple drainage regime and rainstorm-induced runoffs in rice cropping regions, CO2-led DOC and DN increments in the surface water may increase C and N exports from paddies to the surrounding aquatic ecosystems under future climate patterns.  相似文献   

16.
Predicting CO2 emissions is of significant interest to policymakers and scholars alike. The following article contributes to earlier work by using the recently released “shared socioeconomic pathways” (SSPs) to empirically model CO2 emissions in the future. To this end, I employ in-sample and out-of-sample techniques to assess the prediction accuracy of the underlying model, before forecasting countries’ emission rates until 2100. This article makes three central contributions to the literature. First, as one of the first studies, I improve upon the Representative Concentration Pathways (RCPs) by incorporating the SSPs, which did not exist when the RCPs have been released. Second, I calculate predictions and forecasts for a global sample in 1960–2100, which circumvents issues of limited time periods and sample selection bias in previous research. Third, I thoroughly assess the prediction accuracy of the model, which contributes to providing a guideline for prediction exercises in general using in-sample and out-of-sample approaches. This research presents findings that crucially inform scholars and policymakers, especially in light of the prominent 2 °C goal: none of the five SSP scenarios is likely to be linked to emission patterns that would suggest achieving the 2 °C goal is realistic.  相似文献   

17.
Great efforts have been devoted to improve the photocatalytic activity of TiO_2 in the visible light region. Rational design of the external structure and adjustment of intrinsic electronic status by impurity doping are two main effective ways to achieve this purpose. A facile onepot synthetic approach was developed to prepare C-doped hollow TiO_2 spheres, which simultaneously realized these advantages. The synthesized TiO_2 exhibits a mesoporous hollow spherical structure composed of fine nanocrystals, leading to high specific surface area(~180 m~2/g) and versatile porous texture. Carbonate-doping was achieved by a postthermal treatment at a relatively low temperature(200°C), which makes the absorption edge red-shifted to the visible region of the solar spectrum. Concomitantly, Ti~(3+) induced by C-doping also functions in improving the visible-light photocatalytic activity by reducing the band gap. There exists a synergistic effect from multiple stimulatives to enhance the photocatalytic effect of the prepared TiO_2 catalyst. It is not out of expectation that the asprepared C-doped hollow TiO_2 spheres exhibits an improved photocatalytic activity under visible light irradiation in organic pollutant degradation.  相似文献   

18.
Tillage practices affect the fate of fertilizer nitrogen (N) through influencing transformations of N, but few studies have examined N2O and NH3 emissions, and N leaching from different rice tillage systems. Thus the objective of this study was to assess N2O emission, NH3 volatilization and N leaching from direct seeded rice in conventional tillage (CT) and no-tillage (NT) production systems in the subtropical region of China during the 2008 and 2009 rice growing seasons. Treatments were established following a split-plot design of a randomized complete block with tillage practices as the main plot and N fertilizer level as the sub-plot treatment, and there were four treatments: NT + no fertilizer (NT0), CT + no fertilizer (CT0), NT + compound fertilizer (NTC) and CT + compound fertilizer (CTC), respectively. Results showed that N fertilization significantly increased (p < 0.01) N2O emissions, NH3 volatilization and N leaching from rice fields in both years. In general, there was no significant difference in N2O emissions and NH3 volatilization between NT0 and CT0 in both years, while NTC had significantly higher (p < 0.05) N2O emissions and NH3 volatilization compared to CTC. Over the two rice growing seasons, NTC showed 32% and 47% higher N2O emissions, and 29% and 52% higher NH3 losses than CTC. Higher (p < 0.05) N2O emissions from NTC than CTC were presumably due to higher soil organic C and greater denitrification. Total N and NO3? concentrations were higher (p < 0.05) in CTC than NTC, but larger volumes of percolation water in NTC than CTC resulted in no significant difference in leakage of total N and NO3?. Hence, application of N fertilizer in combination with NT appeared to be ineffective in reducing N losses from N fertilizer in paddy fields.  相似文献   

19.
Using the organic fraction of municipal solid waste (OFMSW) for biogas production might contribute to greenhouse gas mitigation, but emissions linked with biogas production can reduce these beneficial effects. Therefore the emissions of NH3, CH4 and N2O and costs caused by treating OFMSW by co-fermentation with slurry were calculated in detail from literature data, and strategies for reducing emissions were evaluated. Emission factors were calculated for single gases during storage and after application. The sensitivity of the calculations concerning the organic dry matter content of OFMSW, retention time and CH4-yield was analyzed. The anaerobic co-fermentation of OFMSW increased biogas yields and contributed to the reduction of CO2 emissions with 32 to 152 kg CO2 t−1 organic waste depending on application and storage techniques used for the fermentation residues. Considering a payment of 0.1 €/kWh for the electricity produced, the costs for utilization of OFMSW in slurry based biogas plants were calculated to range between 34 and 38  t−1. Measures for mitigating greenhouse gas emissions by covering the fermentation residue stores proved to be more cost effective with 3–31  t−1 CO2 compared to immediate harrowing or injecting the residues during field application.  相似文献   

20.
Tropospheric ozone(O_3) is a major air pollutant and causes serious injury to vegetation. To protect sensitive plants from O_3 damage, several agrochemicals have been assessed,including cytokinin(e.g., kinetin, KIN) and ethylenediurea(EDU) with cytokinin-like activity.In higher plant, leaves are primarily injured by O_3 and protective agrochemicals are often applied by leaf spraying. To our knowledge, the mitigating abilities of EDU and KIN have not been compared directly in a realistic setup. In the present research, impacts of elevated O3(2 × ambient O_3, 24 hr per day, for 8 days) on an O_3 sensitive line(S156) of snap bean(Phaseolus vulgaris), which is often used for biomonitoring O_3 pollution, were studied in a free air controlled exposure system. The day before starting the O_3 exposure, plants were sprayed with a solution of EDU(300 ppm), KIN(1 mmol/L) or distilled water, to compare their protective abilities. The results demonstrated that 2 × ambient O_3 inhibited net photosynthetic rate and stomatal conductance, increased the minimal fluorescence yield of the dark-adapted state, decreased the maximal quantum yield of PSII photochemistry, and led to visible injury. KIN and EDU alleviated the reduction of the photosynthetic performance, and visible injury under O_3 fumigation. The plants sprayed with EDU showed greater ability to mitigate the O_3 damage than those sprayed with KIN. Chlorophyll fluorescence imaging may have detected more precisely the differences in O_3 response across the leaf than the conventional fluorometer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号