首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 106 毫秒
1.
Solvent extraction of iron(III) from actual sulphate waste pickle liquor was investigated using trialkylphosphine oxide diluted with kerosene. The waste pickle liquor was procured from a local company which deals with the manufacturing of pipes and tubes made of iron and steel. Various parameters were studied to optimise a suitable condition for the maximum extraction of iron. The composition of the aqueous feed used in the experiment was 60.88 g/L Fe(III), 53 g/L acid with traces of Cu, Ni and Co. An ambient extraction at 30 °C yielded acceptable kinetics and loading efficiency for 40% trialkylphosphine oxide with a saturated loading capacity of 51.85 g/L in four contacts at O/A ratio of 1/1 in a multiple contact mode. Iron from the loaded organic was stripped using various strippants such as distilled water, H2SO4 and oxalic acid. Since only 32% of loaded Fe could be stripped with 2 M H2SO4 in five contacts, further stripping was done with 5% oxalic acid which showed a very promising result. It was found that almost 100% of Fe(III) could be stripped out with 5% oxalic acid at O/A of 1/1 in five contacts.  相似文献   

2.
The adsorption of As(V) and As(III) on synthetic two-line ferrihydrite in the presence and absence of a peat humic acid (HAp), Suwannee River fulvic acid (FA), or citric acid (CA) was investigated. Previous work with goethite has demonstrated the ability of dissolved organic carbon (DOC) to decrease As(V) and As(III) adsorption. The results obtained demonstrate that As(V) adsorption on ferrihydrite was decreased only in the presence of CA. Arsenate decreased the adsorption of all organic acids except HAp. Both FA and CA reduced As(III) adsorption on ferrihydrite, while HAp had no effect. Fulvic and citric acid adsorption on ferrihydrite was decreased in the presence of As(III); however, FA and CA adsorption increased at lower pH, which was consistent with decreased As(III) adsorption. Peat humic acid did not decrease As(III) adsorption, and we believe that the adsorption process of HAp and As(III) and As(V) on ferrihydrite are independent of each other. Previously, we observed that As(V) adsorption on goethite decreased in the presence of HAp > FA > CA, while As(III) adsorption on goethite was decreased similarly to that on ferrihydrite in the presence of CA > FA approximately HAp, yet As(III) adsorption on ferrihydrite was greater than on goethite. The observed differences between this study and the earlier study on goethite are believed to be an intricate function of ferrihydrite's surface characteristics, which affect the mechanisms of adsorption and hence the affinity of organic acids such as HAp, FA, and CA for the ferrihydrite surface. As such, the adsorption of DOCs to ferrihydrite are assumed to be less favorable and to occur with a fewer number of ligands, resulting in lower surface coverage of weaker bond strength.  相似文献   

3.
Animal manure contains partially digested feed fiber and grains where phosphorus (P) is bound in organic compounds that include myo-inositol 1,2,3,5/4,6-hexakis dihydrogenphosphate or phytic acid (IP6). Information is needed on the effects of other (non-IP6) organic ligands (LIGND) on the enzymatic dephosphorylation of IP6, which is a potential source of dissolved orthophosphate P (PO4-P) in the soil-manure-water system. The effects of 1,2-cyclohexane diamino-tetraacetate (CDTA), diethylenetriamine-N,N,N',N',N'-pentaacetate (DTPA), ethylenediamine-N,N,N',N'-tetraacetate (EDTA), oxalate (OXA), and phthalate (PHTH) and LIGND to IP6 molar ratio and charge concentration ratio on IP6 dephosphorylation were studied to determine controlling mechanisms of IP6 persistence in manure. Solution PO4-P concentrations were analyzed by ion chromatography as the phosphomolybdate-ascorbic acid method partly includes IP6-P. Uncomplexed IP6 dephosphorylation by Aspergillus ficuum (Reichardt) Henn. phytase EC 3.1.3.8 at pH 4.5 and 6 is unaffected by the presence of LIGNDs. As the concentrations of Ca2+, Al3+, or Fe3+ increase, dephosphorylation is reduced. Their inhibitory effect lessens in the presence of LIGNDs, in the following order: CDTA = EDTA > DTPA > OXA > or = PHTH. Whether CDTA or EDTA is the most effective LIGND depends upon the acidity of the suspension and LIGND charge concentration, reducing the inhibitory effect of polyvalent counterions to the point of promoting the hydrolysis of a manure phytase-hydrolyzable phosphorus (PHP) fraction that is otherwise unavailable. Therefore, ligand-induced changes increase the mobilization and dephosphorylation of complexed organic P, above and beyond the simple dissolution of inorganic phosphates. An analytical method for potentially bioavailable PHP in animal manure should include a LIGND as extracting reagent. Also, potential LIGNDs in an organic carbon-rich dairy wastewater may increase the release of PHP and environmental dispersion of PO4-P.  相似文献   

4.
A sequential extraction procedure was applied to two anaerobic methanogenic sludges (Eerbeek and Nedalco) to examine the speciation of micro- and macronutrients in the sludges after cobalt sorption by exposing the sludge to a 1 mM Co solution for 4 d at pH 7 and 30 degrees C. The effect of different physicochemical conditions on cobalt sorption was studied as well: effect of pH (6-8), effect of competition by a second trace element (Ni or Fe), modification of the granular matrix by glutaraldehyde or heat treatment, and EDTA (ethylenediaminetetraacetic acid) addition. Sorbed Co was found to distribute between the carbonates, organic matter + sulfides, and residual fractions. Cobalt adsorption resulted in an antagonistic interaction with other metals present in the granular matrix, evidenced by the solubilization of other trace elements (e.g., Ni, Cu, and Zn) as well as macronutrients (especially Ca and Fe). Modification of the sludge matrix by glutaraldehyde or heat treatment, or exposure to EDTA, led to serious modifications of the Co sorption capacity and strong interactions with multivalent cations (i.e., Ca(2+) and Fe(2+)).  相似文献   

5.
A three-step sequencing batch reactor (SBR) was used for nutrient removal from synthetic wastewater with different glucose-organic acid mixtures (1/1). Acetic, butyric, propionic and citric acids were used as organic acids along with glucose. The operation consisted of anaerobic, anoxic and oxic (An/Ax/Ox) phases with durations of 2/1/4.5h. Sludge age was kept constant for 10 days. Phosphate release and uptake rates were determined for different glucose-organic acid mixtures in the feed wastewater. Maximum phosphate uptake (8.1mgPl(-1)h(-1)) and release rates (2.23mgPl(-1)h(-1)) were obtained with the glucose-citric acid mixture. The highest (96%) percent phosphate removal at the end of the nutrient removal cycle (7.5h) was also obtained with the glucose-citric acid mixture while the glucose-acetic acid mixture resulted in comparable percent phosphate removal (95%).  相似文献   

6.
利用有机酸改性壳聚糖和交联法制备酸化壳聚糖载体,然后用改性壳聚糖载体固定漆酶。结果表明,甲酸、酒石酸改性壳聚糖的最适条件是壳聚糖与酸的量比分别为100/1(g/mol)、100/0.5(g/mol),戊二醛的浓度分别为1%、2%,缓冲溶液的pH分别为4.4、3.6,反应时间分别为3h、4.5h。两种酸改性的壳聚糖用于漆酶的固定,其酶活都有所提高,尤其用酒石酸改性的壳聚糖载体的效果最好,其酶活提高了57%。  相似文献   

7.
Biostimulation has been used at various contaminated sites to promote the reductive dechlorination of trichloroethylene (TCE), but the addition of carbon and energy donor also stimulates bacteria that use Fe(III) as the terminal electron acceptor (TEA) in potential competition with dechlorination processes. Microcosm studies were conducted to determine the influence of various carbon donors on the extent of reductive dissolution of aquifer solids containing Fe(III) and arsenic. Glucose, a fermentable and respirable carbon donor, led to the production of 1500 mg Fe(II) kg(-1), or 24% of the total Fe in the aquifer sediment being reduced to Fe(II), whereas the same concentration of carbon as acetate resulted in only 300 mg Fe(II) kg(-1) being produced. The biogenic Fe(II) produced with acetate was exclusively associated with the solid phase whereas with fermentable carbon donors as whey and glucose, 22 and 54% of the Fe(II) was in solution. With fermentation, some of the metabolites appear to be electron shuttling chemicals and chelating agents that facilitate the reductive dissolution of even crystalline Fe(III) oxides. Without the presence of electron shuttling chemicals, only surficial Fe in direct contact with the bacteria was bioavailable, as illustrated when acetate was used. Regardless of carbon donor type and concentration, As concentrations in the water exceeded drinking water standards. The As dissolution appears to have been the result of the direct use of As as an electron acceptor by dissimilatory arsenic reducing bacteria. Our findings indicate that selection of the carbon and energy donor for biostimulation for remediation of chlorinated solvent impacted aquifers may greatly influence the extent of the reductive dissolution of iron minerals in direct competition with dechlorination processes. Biostimulation may also result in a significant release of As to the solution phase, contributing to further contamination of the aquifer.  相似文献   

8.
为了提高零价铁(ZVI)活化过硫酸盐(PS)的ZVI/PS体系对有机污染物萘普生(NAP)处理的技术水平,即实现对污水中NAP的有效降解.采用对比试验,通过设置不同投加量的PS与ZVI的方式,观察在不同酸碱度条件下NAP的降解量.研究结果表明,酸性条件下,当PS投加量为0.5mM或ZVI投加量为1.50mM时,NAP的...  相似文献   

9.
Oxytetracycline sorption to organic matter by metal-bridging   总被引:11,自引:0,他引:11  
The sorption of oxytetracycline to metal-loaded ion exchange resin and to natural organic matter by the formation of ternary complexes between polyvalent metal cations and sorbent- and sorbate ligand groups was investigated. Oxytetracycline (OTC) sorption to Ca- and Cu-loaded Chelex-100 resin increased with increasing metal/sorbate ratio at pH 7.6 (OTC speciation: 55% zwitterion, 45% anion). Greater sorption to Cu- than Ca-loaded resin was observed, consistent with the greater stability constants of Cu with both the resin sites and with OTC. Oxytetracycline sorption to organic matter was measured at pH 5.5 (OTC speciation: 1% cation, 98% zwitterion, 1% anion). No detectable sorption was measured for cellulose or lignin sorbents that contain few metal-complexing ligand groups. Sorption to Aldrich humic acid increased from "clean" < "dirty" (no cation exchange pretreatment) < Al-amended < Fe(III)-amended clean humic acid with K(d) values of 5500, 32000, 48000, and 250000 L kg(-1) C, respectively. Calcium amendments of clean humic acid suggested that a portion of the sorbed OTC was interacting by cation exchange. Oxytetracycline sorption coefficients for all humic acid sorbents were well-correlated with the total sorbed Al-plus-Fe(III) concentrations (r(2) = 0.87, log-log plot), suggesting that sorption by ternary complex formation with humic acid is important. Results of this research indicate that organic matter may be an important sorbent phase in soils and sediments for pharmaceutical compounds that can complex metals by the formation of ternary complexes between organic matter ligand groups and pharmaceutical ligand groups.  相似文献   

10.
Root exudates can chelate inorganic soil contaminants, change rhizosphere pH, and may increase degradation of organic contaminants by microbial cometabolism. Root-zone stress may increase exudation and enhance phytoremediation. We studied the effects of low K+, high NH4+/NO3- ratio, drought, and flooding on the quantity and composition of exudates. Crested wheatgrass (Agropyron cristatum) was grown in Ottawa sand in sealed, flow-through glass columns under axenic conditions for 70 d. Root exudates were collected and analyzed for total organic carbon (TOC) and organic acid content to compare treatment effects. Plants in the low K+ treatment exuded 60% more TOC per plant per day (p = 0.01) than the unstressed control. Drought stress increased cumulative TOC exuded per gram dry plant by 71% (p = 0.05). The flooded treatment increased TOC exuded per gram dry plant by 45%, although this was not statistically significant based on the two replicate plants in this treatment. Exudation from the high NH4+/NO3- ratio treatment was 10% less than the control. Exudation rates in this study ranged from 8 to 50% of rates in four other published studies. Gas chromatography-mass spectrometry (GC-MS) analysis indicated that malic acid was the predominant organic acid exuded. Fumaric, malonic, succinic, and oxalic acids were also detected in the exudates of all treatments. These results demonstrate that nutrient and water stress have significant effects on the quantity and composition of root exudates. Cultural manipulations to induce stress may change the quantity of root exudates and thus increase the effectiveness of phytoremediation.  相似文献   

11.
Pesticide-contaminated soil may require remediation to mitigate ground and surface water contamination. We determined the effectiveness of zerovalent iron (Fe(0)) to dechlorinate metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methyl ethyl) acetamide] in the presence of aluminum and iron salts. By treating aqueous solutions of metolachlor with Fe(0), we found destruction kinetics were greatly enhanced when Al, Fe(II), or Fe(II) salts were added, with the following order of destruction kinetics observed: Al2(SO4)3 > AlCl3 > Fe2(SO4)3 > FeCl3. A common observation was the formation of green rusts, mixed Fe(II)-Fe(III) hydroxides with interlayer anions that impart a greenish-blue color. Central to the mechanism responsible for enhanced metolachlor loss may be the role these salts play in facilitating Fe(II) release. By tracking Al and Fe(II) in a Fe(0) + Al2(SO4)3 treatment of metolachlor, we observed that Al was readily sorbed by the corroding iron with a corresponding release of Fe(II). The manufacturing process used to produce the Fe(0) also profoundly affected destruction rates. Metolachlor destruction rates with salt-amended Fe(0) were greater with annealed iron (indirectly heated under a reducing atmosphere) than unannealed iron. Moreover, the optimum pH for metolachlor dechlorination in water and soil differed between iron sources (pH 3 for unannealed, pH 5 for annealed). Our results indicate that metolachlor destruction by Fe(0) treatment may be enhanced by adding Fe or Al salts and creating pH and redox conditions favoring the formation of green rusts.  相似文献   

12.
Switchgrass biochar affects two aridisols   总被引:1,自引:0,他引:1  
The use of biochar has received growing attention because of its ability to improve the physicochemical properties of highly weathered Ultisols and Oxisols, yet very little research has focused on its effects in Aridisols. We investigated the effect of low or high temperature (250 or 500°C) pyrolyzed switchgrass () biochar on two Aridisols. In a pot study, biochar was added at 2% w/w to a Declo loam (Xeric Haplocalcids) or to a Warden very fine sandy loam (Xeric Haplocambids) and incubated at 15% moisture content (by weight) for 127 d; a control (no biochar) was also included. Soils were leached with 1.2 to 1.3 pore volumes of deionized HO on Days 34, 62, 92, and 127, and cumulative leachate Ca, K, Mg, Na, P, Cu, Fe, Mn, Ni, Zn, NO-N, NO-N, and NH-N concentrations were quantified. On termination of the incubation, soils were destructively sampled for extractable Cr, Cu, Fe, K, Mg, Mn, Na, Ni, P, Zn, NO-N, and NH-N, total C, inorganic C, organic C, and pH. Compared with 250°C, the 500°C pyrolysis temperature resulted in greater biochar surface area, elevated pH, higher ash content, and minimal total surface charge. For both soils, leachate Ca and Mg decreased with the 250°C switchgrass biochar, likely due to binding by biochar's functional group sites. Both biochars caused an increase in leachate K, whereas the 500°C biochar increased leachate P. Both biochars reduced leachate NO-N concentrations compared with the control; however, the 250°C biochar reduced NO-N concentrations to the greatest extent. Easily degradable C, associated with the 250°C biochar's structural make-up, likely stimulated microbial growth, which caused NO-N immobilization. Soil-extractable K, P, and NO-N followed a pattern similar to the leachate observations. Total soil C content increases were linked to an increase in organic C from the biochars. Cumulative results suggest that the use of switchgrass biochar prepared at 250°C could improve environmental quality in calcareous soil systems by reducing nutrient leaching potential.  相似文献   

13.
Removal of selenate from water by zerovalent iron   总被引:1,自引:0,他引:1  
Zerovalent iron (ZVI) has been widely used in the removal of environmental contaminants from water. In this study, ZVI was used to remove selenate [Se(VI)] at a level of 1000 microg L(-1) in the presence of varying concentrations of Cl-, SO(2-)4, NO(-)3, HCO(-)3, and PO(3-)4. Results showed that Se(VI) was rapidly removed during the corrosion of ZVI to iron oxyhydroxides (Fe(OH)). During the 16 h of the experiments, 100 and 56% of the added Se(VI) was removed in 10 mM Cl- and SO(2-)4 solutions under a closed contained system, respectively. Under an open condition, 100 and 93% of the added Se(VI) were removed in the Cl- and SO(2-)4 solutions, respectively. Analysis of Se species in ZVI-Fe(OH) revealed that selenite [Se(IV)] and nonextractable Se increased during the first 2 to 4 h of reaction, with a decrease of Se(VI) in the Cl- experiment and no detection of Se(VI) in the SO(2-)4 experiment. Two mechanisms can be attributed to the rapid removal of Se(VI) from the solutions. One is the reduction of Se(VI) to Se(IV), followed by rapid adsorption of Se(IV) to Fe(OH). The other is the adsorption of Se(VI) directly to Fe(OH), followed by its reduction to Se(IV). The results also show that there was little effect on Se(VI) removal in the presence of Cl- (5, 50, and 100 mM), NO(-)3 (1, 5, and 10 mM), SO(2-)4 (5 mM), HCO(-)3 (1 and 5 mM), or PO(3-)4 (1 mM) and only a slight effect in the presence of SO(2-)4 (50 and 100 mM), HCO(-)3 (10 mM), and PO(3-)4 (5 mM) during a 2-d experiment, whereas 10 mM PO(3-)4 significantly inhibited Se(VI) removal. This work suggests that ZVI may be an effective agent to remove Se from Se-contaminated agricultural drainage water.  相似文献   

14.
Excessive Cu concentrations in water systems can negatively affect biological systems. Because Cu can form strong associations with organic functional groups, we examined the ability of biochar (an O-C-enriched organic bioenergy by-product) to sorb Cu from solution. In a batch experiment, KOH steam-activated pecan shell biochar was shaken for 24 h in pH 6, 7, 8, or 9 buffered solutions containing various Cu concentrations to identify the effect of pH on biochar Cu sorption. Afterward, all biochar solids from the 24-h shaking period were air-dried and analyzed using X-ray absorption fine structure (XAFS) spectroscopy to determine solid-phase Cu speciation. In a separate batch experiment, biochar was shaken for 30 d in pH 6 buffered solution containing increasing Cu concentrations; the Cu sorption maximum was calculated based on the exponential rise to a maximum equation. Biochar sorbed increasing amounts of Cu as the solution pH decreased from 9 to 6. The XAFS spectroscopy revealed that Cu was predominantly sorbed onto a biochar organic phase at pH 6 in a molecular structure similar to Cu adsorbed on model humic acid (Cu-humic acid [HA]). The XAFS spectra at pH 7, 8, and 9 suggested that Cu was associated with the biochar as three phases: (i) a complex adsorbed on organic ligands similar to Cu-HA, (ii) carbonate phases similar to azurite (Cu(CO)(OH)), and (iii) a Cu oxide phase like tenorite (CuO). The exponential rise equation fit to the incubated samples predicted a Cu sorption maximum of 42,300 mg Cu kg. The results showed that KOH steam-activated pecan shell biochar could be used as a material for sorbing excess Cu from water systems, potentially reducing the negative effects of Cu in the environment.  相似文献   

15.
采用多级内循环厌氧反应器MIC/上升式厌氧反应器UASB串联工艺处理柠檬酸生产排放的高浓度有机废水,其中厌氧处理段的COD去除率>94%,整体COD去除率可达98.3%左右.最终排放口出水COD平均值为190 mg/L,pH值为6~9,达到柠檬酸行业废水排放标准.  相似文献   

16.
The agricultural practice of amending soils with composted municipal solid waste (MSW) adds significant amounts of organic matter and trace metals, including Cd. Under these conditions, soluble organic complexes of Cd formed in the compost may be more significant than previously thought, due to Cd bioavailability and mobility in the soil environment. To study the relative importance of different types of organic ligands in MSW compost for the binding of Cd, six fractions of the dissolved organic matter (DOM) in addition to humic acid (HA) and fulvic acid (FA) were extracted and their complexation of Cd quantified at pH 7 using an ion-selective electrode (ISE). The highest complexing capacities (CC) for Cd were found for the most humified ligands: HA (2386 micromol Cd g(-1) C of ligand), predialyzed FA (2468 micromol Cd g(-1) C), and HoA, a fulvic-type, easily soluble fraction (1042 micromol Cd g(-1) C). The differences in CC for Cd of the various organic ligands were not directly related to total acid-titratable or carboxylic groups, indicating the importance of sterical issues and other functional groups. The strength of association between Cd and the organic ligands was characterized by calculating stability constants for binding at the strongest sites (pK(int)) and modeling the distribution of binding site strengths. The pK(int) values of the DOM fractions ranged between 6.93 (HiN: polysaccharides) and 8.11 (HiB: proteins and aminosugars), compared with 10.05 for HA and 7.98 for FA. Hence, the highly complex and only partially soluble organic molecules from compost such as HA and FA demonstrated the highest capacity to sequester Cd. However, strong Cd binding of organic ligands containing N-functional groups (HiB) in addition to a high CC of soluble, humified ligands like HoA indicated the relevance of these fractions for the organic complexation of Cd in solution.  相似文献   

17.
Soils are contaminated with potentially toxic iron-cyanide complexes by some industrial activities. The influence of sulfate on the sorption of the iron-cyanide complexes ferricyanide, [Fe(CN)6]3-, and ferrocyanide, [Fe(CN)6]4-, on goethite was investigated in batch experiments. The experiments were conducted as influenced by pH and varying sulfate/iron-cyanide complex concentration ratios. Furthermore, the desorption of iron-cyanide complexes sorbed on goethite was studied using phosphate and chloride solutions as influenced by pH and anion concentration. Over the whole pH range (pH 3.5 to 8), ferricyanide and sulfate showed similar affinities for the goethite surface. The extent of ferricyanide sorption strongly depended on sulfate concentrations and vice versa. In contrast, ferrocyanide sorption was only decreased (approximately 12%) by sulfate additions at pH 3.5. Ferricyanide was completely desorbed by 1 M chloride, ferrocyanide not at all. Unbuffered phosphate solutions (pH 8.3) desorbed both iron-cyanide complexes completely. Even in 70-fold excess, pH-adjusted phosphate solutions could not desorb ferrocyanide completely at pH 3.5. For ferricyanide we propose a sorption mechanism that is similar to the sulfate sorption mechanism, including outer-sphere and weak inner-sphere surface complexes on goethite. Ferrocyanide appears to form inner-sphere surface complexes. Additionally, we assume that ferrocyanide precipitates probably as a Berlin Blue-like phase at pH 3.5. Hence, ferrocyanide should be less mobile in the soil environment than ferricyanide or sulfate.  相似文献   

18.
Influence of soil properties and aging on Cu partitioning and toxicity was assessed on 10 artificial soils constituted using a statistical design considering pH (5.5 and 7.5), organic matter (1-30% [w/w]), and clay content (5-35% [w/w]). Total Cu as well as water-, CaCl2-, and diethylene triamine pentaacetic acid (DTPA)-extracted Cu fractions were determined for each soil mixture. Ecotoxic effect was assessed by determining growth inhibition of barley (Hordeum vulgare L.) and compost worm (Eisenia fetida) mortality. Analyses were repeated after a 16-wk aging period of the soils at pH 7.5 (8 x 2-wk wetting and drying cycle). Results indicated that pH was the main factor controlling Cu partitioning, ahead of organic matter and clay content. Calcium chloride (0.5 M)-extracted Cu fractions showed the best correlation with toxic responses (r = 0.55-0.66; p < 0.05), while total and DTPA-extracted Cu concentrations could not explain differences in toxicity. Direct regressions between toxicity and soil properties (pH, organic matter, and clay content) provided better explanation of variance: r2= 0.50 (p = 0.00006) for compost worm mortality, r2= 0.77 (p < 0.00001) for barley shoot inhibition, and r2= 0.92 (p < 0.00001) for barley root inhibition. Copper toxicity was mainly influenced by pH and, to a lesser extent, by organic matter and clay content. Aging in organic soils revealed a slight reduction in ecotoxicity while an increase was observed in soils with low organic matter content. Further investigation using longer aging periods would be necessary to assess the significance of this observation.  相似文献   

19.
The rates of Diuron elimination by some advanced oxidation processes (AOPs) such as Fe(III)/UV, Ferrioxalate/UV, Fe(III)/H(2)O(2)/UV, Ferrioxalate/UV/H(2)O(2) and Fe(III)/H(2)O(2) have been compared. Experiments have been conducted at pH=2.3+/-0.1 with a batch reactor equipped with a low-pressure mercury lamp emitting mainly at 253.7nm. Data obtained under the following experimental conditions ([H(2)O(2)](0)=10(-3)M, [Diuron](0)=5x10(-5)M and [Fe(III)](0)=10(-3)M) have shown that rates of Diuron oxidation were higher with the systems Fe(III)/H(2)O(2)/UV and Ferrioxalate/UV/H(2)O(2) than with Fe(III)/UV and Fe(III)/H(2)O(2). On the other hand, Fe(III)/UV was found to be very efficient in mineralization of Diuron solution in comparison to direct UV photolysis. The experimental results showed that radical ()OH is the major pathway in the process of Diuron degradation.  相似文献   

20.
Lead phytoextraction from contaminated soil with high-biomass plant species   总被引:5,自引:0,他引:5  
In this study, cabbage [Brassica rapa L. subsp. chinensis (L.) Hanelt cv. Xinza No 1], mung bean [Vigna radiata (L.) R. Wilczek var. radiata cv. VC-3762], and wheat (Triticum aestivum L. cv. Altas 66) were grown in Pb-contaminated soils. Application of ethylenediaminetetraacetic acid (EDTA) (3.0 mmol of EDTA/kg soil) to the soil significantly increased the concentrations of Pb in the shoots and roots of all the plants. Lead concentrations in the cabbage shoots reached 5010 and 4620 mg/kg dry matter on Days 7 and 14 after EDTA application, respectively. EDTA was the best in solubilizing soil-bound Pb and enhancing Pb accumulation in the cabbage shoots among various chelates (EDTA, diethylenetriaminepentaacetic acid [DTPA], hydroxyethylenediaminetriacetic acid [HEDTA], nitrilotriacetic acid [NTA], and citric acid). Results of the sequential chemical extraction of soil samples showed that the Pb concentrations in the carbonate-specifically adsorbed and Fe-Mn oxide phases were significantly decreased after EDTA treatment. The results indicated that EDTA solubilized Pb mainly from these two phases in the soil. The relative efficiency of EDTA enhancing Pb accumulation in shoots (defined as the ratio of shoot Pb concentration to EDTA concentration applied) was highest when 1.5 or 3.0 mmol EDTA/kg soil was used. Application of EDTA in three separate doses was most effective in enhancing the accumulation of Pb in cabbage shoots and decreased mobility of Pb in soil compared with one- and two-dose application methods. This approach could help to minimize the amount of chelate applied in the field and to reduce the potential risk of soluble Pb movement into ground water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号