首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The development of gill chloride cells was examined in premetamorphic larvae (leptocephali) and juveniles (glass eels) of the Japanese eel, Anguilla japonica. Branchial chloride cells were detected by immunocytochemistry using an antiserum specific for Na+,K+-ATPase. The specificity and availability of the antiserum for the detection of Japanese eel chloride cells were confirmed by Western blot analysis. The chloride cells first appeared on the developing gill filaments in a mid larval stage of leptocephalus (32.2 mm). Both immunoreactivity and the number of chloride cells gradually increased as the fish grew to a late stage of leptocephalus over 54 mm. In glass eels just after metamorphosis, gill lamellae developed from the gill filaments, and a rich population of chloride cells was observed in the gill filaments. In glass eels collected at a coastal area, chloride cells were extensively distributed in the gill filaments. The chloride cell size decreased progressively in glass eels transferred from seawater (SW) to freshwater (FW), whereas there was no difference in cell number. In contrast, some Na+,K+-ATPase immunoreaction distinct from typical chloride cells was observed in the gill lamellae throughout FW-transferred fish, but disappeared in control fish maintained in SW for 14 days. These findings indicate that the gill and gill chloride cells developed slowly during the extremely long larval stage, followed by rapid differentiation during a short period of metamorphosis. The excellent euryhalinity of glass eels may be due to the presence of the filament chloride cells and lamellar Na+,K+-ATPase-immunoreaction, presumably being responsible for SW and FW adaptation, respectively.  相似文献   

2.
To evaluate the osmoregulatory ability of eyedstage embryos of laboratory-reared chum salmon, Oncorhynchus keta, we examined changes in osmolality of the perivitelline fluid and blood following transfer to 50 and 100% seawater (SW), together with morphological changes in chloride cells present in the yolk sac membrane. Transfer to SW did not cause any significant change in the whole egg weight. However, the embryos shrank when the eggs were transferred to SW, whereas the perivitelline space increased at the expense of the embryo. Osmolality of the perivitelline fluid increased rapidly to reach environmental levels 3 h after transfer, indicating that the egg shell is permeable to ions and water. Blood osmolality increased after transfer to SW, reached a peak level at 3 h, and then decreased gradually. The chloride cells in the yolk sac membrane became activated following transfer, as shown by increased cell size and frequent appearance of apical openings. These results indicate that the eyed-stage embryos of chum salmon possess hypoosmoregulatory ability and that chloride cells in the yolk sac membrane may be involved in salt extrusion, in place of gill chloride cells, during the late embryonic stage.  相似文献   

3.
The osmoregulatory abilities of one freshwater and two brackish water (Baltic Sea) populations of the euryhaline teleost fish Gasterosteus aculeatus were studied with respect to evolutionary physiology. Plasma osmolality, activities of Na+K+-ATPase, citrate synthase, creatine kinase in the gill and free amino acids in liver, axial muscle and pectoral fin muscle were measured. After transfer from 10 to 35 ppt at 15 °C, time-course changes of plasma osmolality and gill Na+K+-ATPase showed no significant fundamental differences between the freshwater and one of the Baltic Sea populations. In a multi-factorial experiment, each population was exposed to four different abiotic regimes. Both brackish water populations had high mortality in freshwater at 4 °C, which is discussed as a failure of osmotic regulation (reduced taurine concentrations). Freshwater specimens had higher levels of glycine in the axial and pectoral fin muscles compared to the brackish water populations. This is interpreted as a genetically based effect. In brackish (20 ppt) water of 15 °C, the freshwater population had high activities of Na+K+-ATPase, but low activities of creatine kinase, whereas both brackish water populations behaved in the opposite way. A fundamental difference between the freshwater and brackish water populations on the level of the osmoregulatory machinery was not observed. Received: 10 December 1998 / Accepted: 22 September 1999  相似文献   

4.
Bostrychus sinensis is a facultative air breather that inhabits waters of a wide range of salinities. This study aimed to elucidate whether branchial and intestinal osmoregulatory acclimation occurred in B. sinensis transferred from 5‰ water through a progressive increase in salinities to seawater. Our results indicate that B. sinensis acted as a hyperosmotic regulator in 5‰ water, but exhibited hypoosmotic hypoionic regulation in seawater. During short- (1 day) and medium- (10 days) term acclimation to seawater, there were only minor perturbations in plasma osmolality and [Na+], which returned to control levels after 45 days of exposure to seawater. Branchial Na+/K+-ATPase activity was unaffected by 1, 10 or 45 days of exposure to seawater. However, prolonged (45 days) acclimation to seawater led to a significant increase in Na+/K+-ATPase α-subunit protein abundance. Taken together, these results indicate that there could be changes in the expression of Na+/K+-ATPase isoforms and/or post-translational modification of Na+/K+-ATPase in the gills of fish exposed to seawater. Immunofluorescence microscopy revealed that acclimation to seawater for 10 days only resulted in no change in branchial Na+/K+-ATPase protein expression, but there were increases in protein expression of cystic fibrosis transmembrane regulator (CFTR)-like chloride channel and Na+:K+:2Cl cotransporter (NKCC; probably NKCC1). Indeed, NKCC was undetectable in gills of fish kept in 5‰ water by Western blotting, but it became weakly detectable in fish exposed to seawater for 10 days and prominently expressed in fish exposed to seawater for 45 days. Therefore, our results indicate that branchial CFTR-like chloride channel and NKCC1 were the determining factors in the transition between hyperosmotic regulation and hypoosmotic hypoionic regulation in B. sinensis. Furthermore, the intestine of B. sinensis also served as an important osmoregulatory organ, since there were significant increases in both the activity and protein abundance of intestinal Na+/K+-ATPase in fish acclimated to seawater for 45 days. The effectiveness of branchial and intestinal osmoregulatory acclimation in B. sinensis during seawater acclimation led to only a minor increase in plasma osmolality, and thus resulted in relatively unchanged free amino acid contents in muscle and liver.  相似文献   

5.
The Anguillid juvenile glass eel must deal with the osmoregulatory consequences of highly variable environmental salinities on its recruitment migration from coastal to fresh waters. Changes in ionoregulatory parameters and branchial ion transport protein [Na+/K+-ATPase, Na+:K+:2Cl cotransporter (NKCC), cystic fibrosis transmembrane regulator (CFTR) anion channel, V-type proton ATPase] expression (activities, protein and/or mRNA level expression and/or cellular localization) in response to acclimation to a broad range of ionic strengths [distilled water (DW) to hypersaline water (HSW; 150%) sea water (SW 32‰)] was studied. The estuarine glass eels were very euryhaline and successfully acclimated to acute changes in environmental ionic strength from 50% SW, with high mortality only observed in HSW (51%) and sublethal osmoregulatory indicators (whole body water content and sodium levels) disturbed at the extremes (DW and HSW). Central to a high salinity acclimation were elevated branchial Na+/K+-ATPase, NKCC and CFTR expression. At lower salinity, Na+/K+-ATPase expression was maintained and NKCC and CFTR expressions were reduced. Branchial chloride cells increased in size up to SW but decreased in HSW. During hypotonic disturbance (DW), no compensatory elevation in V-ATPase or Na+/K+-ATPase expression was observed.  相似文献   

6.
A. Oikari 《Marine Biology》1978,44(4):345-355
Hydromineral regulation was studied by examining the response to different environmental salinities in two Baltic brackish-water (BW) teleosts—a species of marine ancestry, Myoxocephalus scorpius (L.), and a glacial relict, M. quadricornis (L.). M. scorpius tolerated fresh water (FW) and M. quadricornis sea water (SW) for only about 24 h, but the survival time of M. scorpius in SW and M. quadricornis in FW was one to several weeks. M. scorpius seems able to balance plasma ionic concentrations in salinities down to about 2 to 3. Death of M. scorpius in FW was associated with partial haemolysis, increased volume of red blood cells (RBC), increased plasma K+ concentration, and decreased concentrations of Na+, Cl- and Mg2+ in plasma and, to a lesser extent, in urine. Death of M. quadricornis in SW was associated with increased plasma osmolality, and Na+, Cl- and Mg2+ concentrations, but the renal excretion of ions approached that generally found in marine teleosts. In most cases, RBC volume followed the changes in plasma osmolality or Na+ and Cl- concentrations. Both species showed an ability to increase tubular Mg2+ secretion much over that needed in BW, and increased secretion was associated with high urine Cl- concentration. M. quadricornis, but not M. scorpius, reabsorbed Na+ effectively in SW also. Differences between Oceanic and Baltic specimens of M. scorpius are discussed.  相似文献   

7.
Changes of plasma osmolality, chloride concentration and gill Na–K-ATPase activity in tilapia Oreochromis mossambicus (obtained from Tainan Fish Culture Station of Taiwan Fisheries Research Institute, 1987) during seawater acclimation were examined. Three experiments were performed. (1) Freshwater (FW) to 30 salinity seawater (SW): plasma osmolality and chloride rose violently immediately post-transfer. At 6 h, gill Na–K-ATPase activity began to increase but most fish died from excessive plasma osmolality and Cl. (2) FW to 20 salinity SW: plasma osmolality and chloride increased immediately post-transfer, but more slowly than in (1), and began to decrease at 24 h. However it was not until 12 h post-transfer that gill Na–K-ATPase activity rose slowly. (3) FW to 20 salinity SW for 24 h, then to 30 salinity SW: after transfer to 30 salinity, plasma osmolality and chloride showed only a small increase initially then declined, while gill Na–K-ATPase activity started to rise rapidly within 3 h. The present results coincided with our previous morphological data concerning the ultrastructural responses of gill chloride cells. These are discussed to elucidate the osmoregulation mechanisms in tilapia during seawater acclimation.  相似文献   

8.
The effects of exposure to sediment-associated tri-n-butyltin chloride (TBTCl) were examined in the euryhaline European flounder, Platichthys flesus (L.). The effects were quantified by measuring the changes in sodium efflux; Na+/K+-ATPase activity; and the numbers, areas, and distribution of chloride cells in the gills of freshwater-adapted fish, following a rapid transfer to seawater. Following the transfer to seawater, the Na+/K+-ATPase activity and the sodium efflux were significantly increased in the control group but remained unchanged in the TBTCl-exposed group. The normal morphological changes to the gill epithelium associated with seawater adaptation, which involve chloride cell distribution, took place in the control group but were significantly inhibited or delayed in the TBTCl group. The results presented in this study lead to the conclusion that environmental concentrations of tri-n-butyltin chloride in sediments are capable of significantly disrupting both the physiological and the morphological components of iono-regulatory functions of an estuarine flatfish.  相似文献   

9.
In this study, the effects of environmental hypercapnia on hemato-immunological parameters and the activities of respiratory enzymes such as carbonic anhydrase (CA) and Na+, K+-ATPase were investigated in rainbow trout (Oncorhynchus mykiss) tissues (gill, liver and kidney). Batches of 12 fish were exposed to 4.5 mg L?1 (control) and 14 mg L?1 CO2. No mortalities occurred during the 14 days of the experimental period. Red blood cell (RBC), hemoglobin (Hb), and hematocrit (Ht) levels, and innate immune parameters such as nitro blue tetrazolium (NBT), lysozyme, and myeloperoxidase activities, and the melano-macrophage frequency were negatively affected by elevated CO2 levels. Patterns of change in CA activity differed among the gill, liver, and kidney. Compared with the activities of CA in the control group, the CA enzyme was significantly stimulated at day 7 in the gill tissue, whereas it was stimulated at day 14 of the experiment in the liver tissue of fish exposed to 14 mg L?1 CO2 (P < 0.05). In contrast to the pattern of CA enzyme activities, the Na+, K+-ATPase enzymes were stimulated significantly in the liver after day 7 but inhibited in the kidney and gill (P < 0.05). These results suggest that a subchronic exposure to hypercapnia of rainbow trout tissues may lead to adaptive changes in the respiratory enzymes and negatively affects hemato-immunological parameters.  相似文献   

10.
Inhibition of Na+/K+-ATPase from gill plasma membranes of the shore crab Carcinus maenas by cadmium was investigated and compared with inhibitory effects by known antagonists (ouabain and Ca2+). For comparative considerations the Cd2+-inhibition of the enzyme from dog kidney was also tested. Na+/K+-ATPase from dog kidney and from crab gill differed greatly in sensitivity against ouabain. The inhibition constant K i of the dog enzyme amounted to 9.1 × 10−7 mol l−1, i.e. more than 300-fold smaller than the K i of 2.9 × 10−4 mol l−1 determined for the crab enzyme. Ca2+ inhibited the activity of Na+/K+-ATPase from crab gill plasma membranes with a K i of 4.3 × 10−4 mol l−1. The Na+/K+-ATPase from crab gill was inhibited by Cd2+ with a K i of 9.1 × 10−5 mol l−1. Cd2+ inhibited the Na+/K+-ATPase from dog kidney with a K i (6.4 × 10−5 mol l−1) comparable to that observed in the crab gill enzyme. Under experimental conditions Cd2+-inhibition of Na+/K+-ATPase was irreversible. Repeated washing, centrifugation and homogenization of the plasma membranes (four times) with Cd2+-free buffer did not restore any activity lost in the presence of 1 × 10−3 mol l−1 Cd2+. Since ouabain-insensitive (nonspecific) ATPases in the plasma membrane fraction of crab gills were inhibited by Cd2+ in the same way as Na+/K+-ATPase, the heavy metal is considered as an unspecific ATPase inhibitor. Comparing these results with literature data on Cd2+-binding to electrophoretically separated proteins suggests that Na+/K+-ATPase is a Cd2+-binding enzyme. The results obtained on Na+/K+-ATPase were reflected by Cd2+-inhibition of the branchial ion-transport functions depending on this enzyme. The transepithelial short-circuit current of isolated gill half lamellae, a direct measure of area-specific active ion uptake, and the transepithelial potential difference of isolated, perfused whole gills, also indicative of active ion uptake, were inhibited by the heavy metal in a time- and dose-dependent mode. Remarkably these inhibitions were also irreversible. These findings are ecologically and biomedically significant: even when the actual environmental or tissue concentrations measured are low, biological microstructures such as Na+/K+-ATPase may accumulate the heavy metal by tight binding over prolonged periods until the first inhibitory effects occur. Received: 25 June 1997 / Accepted: 25 August 1997  相似文献   

11.
To assess the interaction between testosterone (T) treatment and acclimation to different salinities, seawater-acclimated gilthead sea bream (Sparus auratus) were implanted with slow-release coconut oil implants alone (control) or containing T (5 μg/g body mass). After 5 days, eight fish of control and T-treated groups were sampled. The same day, eight fish of each group were transferred to low salinity water (LSW, 6 ppt, hypoosmotic test), seawater (SW, 38 ppt, control test) and high salinity water (HSW, 55 ppt, hyperosmotic test) and sampled 9 days later. Gill Na+, K+-ATPase activity increased in HSW-acclimated fish with respect to SW- and LSW-acclimated fish in both control and T-treated groups. Kidney Na+, K+-ATPase activity was also enhanced in HSW-acclimated fish, but only in T-treated group. From a metabolic point of view, most of the changes observed can be attributed to the action of salinity and T treatment alone, since few interactions between T treatment and osmotic acclimation to different salinities were observed. Those interactions included in treated fish: in the liver, decreased capacity in using glucose in fish acclimated to extreme salinities; in the gills, decreased capacity in using amino acids in HSW; in the kidneys increased capacity in using amino acids in extreme salinities; and in the brain, decreased glycogen and acetoacetate levels of fish in LSW.  相似文献   

12.
采用不同质量浓度的溴氰菊酯(0.0070 mg·L~(-1)、0.014 mg·L~(-1)、0.020 mg·L~(-1)、0.027 mg·L~(-1))对菲律宾蛤仔进行20 d半静置染毒,测定不同时间淋巴液中乙酰胆碱酯酶(ACh E)和钠离子-钾离子-三磷酸腺苷酶(Na~+-K~+-ATPase)活性、鳃和肝脏中谷胱甘肽转硫酶(GST)活性的变化,并观察染毒20 d后鳃丝组织和消化盲囊组织的损伤情况。酶活性分析结果显示,与对照组相比,低浓度组(0.0070 mg·L~(-1))试验期间酶活性均无显著差异(P0.05);中浓度组(0.014 mg·L~(-1)、0.020 mg·L~(-1))淋巴液中ACh E和Na~+-K~+-ATPase均呈先激活后抑制的变化规律(P0.05),鳃和肝脏中GST活性均呈上升趋势(P0.05);高浓度组(0.027mg·L~(-1))淋巴液中ACh E和Na~+-K~+-ATPase、肝脏中GST活性在试验期间持续下降(P0.01),而鳃中GST活性呈先抑制后升高的趋势(P0.05)。研究表明,低中浓度的溴氰菊酯对菲律宾蛤仔体内的酶活性表现为先诱导后抑制,具有明显的时间、剂量效应;高浓度的溴氰菊酯对菲律宾蛤仔体内酶活持续抑制,且染毒浓度越高,组织细胞变异越显著,表现为鳃丝上皮细胞纤毛层萎缩、纤毛脱落,消化盲囊上皮细胞膨胀,出现包涵体样结构。  相似文献   

13.
Adult sockeye salmon (Oncorhynchus nerka, N = 179) from six Fraser River populations (British Columbia) were intercepted in continental shelf waters ∼215 km from the Fraser River mouth, gastrically implanted with acoustic transmitters, non-lethally biopsied for blood biochemistry, gill Na+,K+-ATPase activity and somatic energy density and then released. Migration behaviour and travel times to the river mouth and into the river were monitored by underwater telemetry receivers positioned at the river mouth and in the river. Post-release survival of salmon was excellent, with 84% (N = 150) of fish reaching the furthest receiving station ∼85 km upriver. Fish from Late-summer run populations (Adams and Weaver Creek) averaged a migration rate of ∼20 km day−1 through the marine area and held at the river mouth and adjacent areas for 7–9 days before entering the river. Summer-run populations (Birkenhead, Chilko, Horsefly and Stellako) had a migration rate ∼33 km day−1 and held for only 1–3 days. Once in river, similar patterns were observed: Late-run populations migrated at ∼28 km day−1 and Summer-run populations at ∼40 km day−1. From point of release to the river mouth, males migrated faster than females, but once in river migration rates did not differ between sexes. Among all females, a correlation was discovered between levels of circulating testosterone and river entry timing. This correlation was not observed among males. Plasma K+, Cl, glucose, lactate and osmolality were also correlated with entry timing in both sexes.  相似文献   

14.
In the present study, an attempt has been made to quantify the fenvalerate accumulated in different tissues (gill, muscle and liver) and observe changes involved in the levels of sodium, potassium and calcium ions and Na+–K+, Mg2+ and Ca2+ adenosine triphosphatase (ATPase) activities in the freshwater fish, Cirrhinus mrigala on short-term and long-term exposure to the median lethal and sublethal concentration of fenvalerate. Residue analysis using gas–liquid chromatography (GLC) technique revealed that fenvalerate accumulated in highest quantity in gill followed by liver and muscle under median lethal concentration (6?µg?L?1). Whereas in sublethal concentration (0.6?µg?L?1), muscle accumulated highest quantity followed by gill and liver, which might be due to the fact that fenvalerate is highly lyphophilic. The ion concentration and ATPase activity were found effected in fish exposed to lethal and sublethal concentrations of fenvalerate. Concentration of Na+, K+ and Ca2+ ions decreased in gill, muscle and liver on being exposed to median lethal concentration to a significant level. Whereas the changes were not highly pronounced at sub lethal level indicating low concentration of fenvalerate and its non-toxic effect at chronic exposure. Na+–K+, Mg2+ and Ca2+ ATPases activity were also found decreased in correspondence to the ionic change under median lethal and sub lethal concentrations in target tissues. This might have lead to behavioural changes and create wide-spread disturbance in the normal physiology, ultimately causing the death of the fish. The results suggest that in biomonitoring programmes, ions and associated ATPases can be a good diagnostic tool for fenvalerate toxicity.  相似文献   

15.
三甲基氯化锡对斑马鱼(Danio rerio)生理生化特性的影响   总被引:1,自引:1,他引:1  
为初步探讨三甲基氯化锡(trimethyltin chloride,TMT)对鱼类的毒性效应以及评价环境中TMT的安全性,采用静态鱼类急性毒性试验法测定了TMT对斑马鱼(Danio rerio)生理生化指标的影响;参考TMT的96 h-LC50值,设定3个浓度(0.39、0.78和1.17 mg·L-1)处理斑马鱼,测...  相似文献   

16.
With juvenile fish as the subject, the effects of low concentration ammonia on antioxidant system were studied using Mugil cephalus. Samples of gill and liver tissue were obtained from 0.35, 0.70, 1.5 and 3?mg/L ammonia groups at 0, 5, 10, 15 and 20 days of exposure, at which times the biomarkers were measured. Results showed that gill malondialdehyde (MDA) content exhibited an initial significant increase (p?≤?0.05) at unionised ammonia concentrations of 0.70, 1.5 and 3.0?mg/L on day 5, followed by subsequent declines, while liver MDA levels exhibited significant increases (p?≤?0.05) at unionised ammonia concentrations of 1.5?mg/L starting on day 10 and at 3.0?mg/L starting on day 5. With exposure to ammonia at different concentrations, Na+-K+-ATPase activity in liver and gill decreased over time. The Na+-K+-ATPase activity was negatively related to ammonia concentration from 0.70 to 3.0?mg/L. Overall, our results show that MDA and Na+-K+-ATPase, evaluated here as potential biomarkers of ammonia exposure, exhibited responses to sublethal concentrations of ammonia that were concentration dependent.  相似文献   

17.
Sodium- and potassium-activated ATPase (Na+–K+-ATPase) has been demonstrated in excretory organs of Sepia officinalis, using a cytochemical procedure. In the renal appendages, both epithelia of the pancreatic appendages, the folded epithelium of the branchial heart appendage and the transport-active epithelium of the gill, the enzyme is localized exclusively in the basolateral cell membranes, i.e., the membranes of the basal labyrinth and the lateral plasma membranes. In addition, Na+–K+-ATPase is also located in the sarcolemma of the muscle fibres of the branchial heart. Distribution and localization of the enzyme is further substantiated by [3H]-ouabain autoradiography. The possible involvement of Na+–K+-ATPase in the excretion of ammonia and in ionic regulation in dibranchiate cephalopods is discussed.This study was supported by the Deutsche Forschungsgemeinschaft and is part of a doctoral dissertation  相似文献   

18.
The caterpillars of the oleander hawk moth, Daphnis nerii (Linnaeus, 1758) (Lepidoptera: Sphingidae) feed primarily on oleander (Nerium oleander). This plant is rich in cardenolides, which specifically inhibit the Na+K+-ATPase. Since some insects feeding on cardenolide plants possess cardenolide-resistant Na+K+-ATPases, we tested whether D. nerii also possesses this strategy for circumventing cardenolide toxicity. To do so, we established a physiological assay, which allowed direct measurement of Na+K+-ATPase cardenolide sensitivity. Using Schistocerca gregaria, as a cardenolide-sensitive reference species, we showed that D. nerii Na+K+-ATPase was extremely sensitive to the cardenolide ouabain. Surprisingly, its sensitivity is even higher than that of the cardenolide-sensitive generalist, S. gregaria. The presence or absence of cardenolides in the diet of D. nerii did not influence the enzyme’s cardenolide sensitivity, indicating that target-site insensitivity is not inducible in this species. However, despite the sensitivity of their Na+K+-ATPase, caterpillars of D. nerii quickly recovered from an injection of an excessive amount of ouabain into their haemocoel. We conclude that D. nerii possesses adaptations, which enable it to feed on a cardenolide-rich diet other than that previously described in cardenolide specialized insects, and discuss other potential resistance mechanisms.  相似文献   

19.
Ecotoxicity of nanoparticles has received growing attention in recent years. This study investigated the influence of silver nanoparticles (Ag-NP) on earthworm Eisenia fetida. The experiment was performed with five test groups: control (without Ag-NP), 10?nm Ag-NP groups (20, 100 or 500?mg?kg?1) and positive control (787?mg?kg?1 AgNO3). After 14-day acute exposure, activities of various enzymes, including glutathione S-transferase (GST), glutathione reductase (GR), acid phosphatase (AP), and Na+, K+-ATPase were determined. Effects of Ag-NP with different sizes (10 and 80?nm) were also tested. Data showed that the activity of GR was significantly lower at 500?mg?kg?1. The activities of AP and Na+, K+-ATPase were inhibited following the increase of Ag-NP concentration. When treated with Ag-NP with different sizes, activities of AP and Na+, K+-ATPase of the 10?nm group were significantly lower than the control group, but those of the 80?nm group were similar to the control group. Data indicate that Ag-NP may be harmful to the earthworm E. fetida at 500?mg?kg?1, and the toxicity of Ag-NP with 10?nm size is greater than 80?nm. In addition, AP and Na+, K+-ATPase are sensitive biomakers to the effects of Ag-NP.  相似文献   

20.
Activities of the primary enzyme responsible for monovalent ion regulation, Na+-K+-adenosine triphosphatase (Na+-K+-ATPase), were measured in gills of marine teleost fishes with different depths of occurrence (0 to 4800 m), body weights (a range of five orders of magnitude), and locomotory capacities. Specimens were collected off the coasts of California and Oregon in 1983–1989, and at the Galápagos Spreading Center and 13°N East Pacific Rise hydrothermal vent sites in 1987 and 1988, respectively. Except for two hydrothermal vent fishes, deep-sea species had much lower Na+-K+-ATPase activities g–1 gill filament than shallow-living species, indicating that osmoregulatory costs, like total metabolic rate, are greatly reduced in most deep-living fishes. Within a species, the total branchial Na+-K+-ATPase activity per individual was dependent on size; the average allometric scaling exponent was 0.83. Using published values for oxygen consumption rates, and the total branchial Na+-K+-ATPase activities as an index of osmoregulatory costs, we estimated the maximal cost (as percent of ATP turnover) for osmoregulation in ten teleosts. Osmoregulatory costs averaged about 10% of total ATP turnover among these species, and maximal costs were no greater than about 20%. The percent costs of osmoregulation did not differ between shallow- and deep-living fishes. The reduced total ATP expenditure for osmoregulation in deep-living fishes is proposed to result from the sluggish locomotory habits of these fishes, not from selection for reduced osmotic coastper se. Thus, the reduced swimming abilities of these fishes lead to lower rates of water flow over the gills and less blood flow through the gills due to reduced demands for oxygen. Consequently, passive flux of water and ions through the gills is much lower than in more active fishes, and osmotic costs are thereby minimized. The relatively high activities of Na+-K+-ATPase in gills of the two hydrothermal vent fishes suggest that these fishes may be more active and have higher metabolic rates than other deep-sea fishes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号