首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
防晒剂对氨基苯甲酸在硝酸根溶液中的光解研究   总被引:1,自引:0,他引:1  
孟翠  季跃飞  曾超  杨曦 《环境科学》2011,32(9):2549-2553
以氙灯为模拟太阳光光源,研究了防晒剂分子对氨基苯甲酸(PABA)在硝酸根溶液中的光解,探讨了pH值、硝酸根离子的浓度和天然水体中广泛存在的腐殖质浓度对防晒剂PABA光解速率的影响.结果表明,PABA在硝酸根溶液中的光解反应符合一级动力学规律,PABA的光化学反应速率随硝酸根离子浓度的提高显著增大,其速率常数可由0.00...  相似文献   

2.
含碳酸盐水溶液中扑热息痛的光解研究   总被引:2,自引:2,他引:0  
高颖  杨曦  刘钰 《环境科学》2008,29(3):643-649
采用动力学方法研究了环境浓度范围内的扑热息痛在含碳酸盐溶液中的光解,比较了碳酸盐自由基和羟基自由基对扑热息痛的光解效果,探讨了pH值、硝酸根离子、腐殖质、氯化钠、钙镁离子等因素对扑热息痛光解的影响.利用GC/MS技术鉴定了扑热息痛的光解产物,并探讨了扑热息痛在碳酸根体系中可能的光解途径.结果表明,扑热息痛与碳酸盐自由基反应的二级反应速率常数为 k.=5.0×107L·(mol·s)-1,低于与羟基自由基反应的二级反应速率常数kb=8.1×109L·(tool·s)-1,但是由于天然水体中碳酸盐自由基的稳态浓度较高,所以碳酸盐自由基对扑热息痛光解的影响和羟基自由基大致相当.提高体系pH值,加入硝酸根离子、氯化钠或者钙镁离子都会加快扑热息痛的光解速率;而加入Suwannee河富里酸则会降低光解速率.  相似文献   

3.
阿替洛尔在硝酸根溶液中的光降解研究   总被引:1,自引:0,他引:1  
季跃飞  曾超  孟翠  杨曦  高士祥 《环境科学》2012,33(2):481-487
以氙灯为模拟太阳光光源,研究了β阻滞剂阿替洛尔(ATL)在硝酸根溶液中的光解,探讨了硝酸根离子浓度、溶液pH值、碳酸氢根离子浓度和腐殖质浓度对ATL光解的影响.结果表明,ATL在不同浓度硝酸根溶液中的光解反应符合准一级动力学规律,增大硝酸根离子浓度促进了ATL的光降解率,当硝酸根离子浓度由0增至5 mmol.L-1时其速率常数由0.002 26min-1增至0.009 4 min-1;酸性或碱性溶液有利于ATL在硝酸根溶液中的光解,碳酸氢根离子浓度对光解无明显影响,而加入Suwannee富里酸(SRFA)对光解产生抑制作用.采用异丙醇作为羟基自由基分子探针检测到.OH存在于ATL光解过程中.采用SPE-LC-MS方法鉴定了ATL在硝酸根溶液中的主要光解产物,并提出了可能的光解途径.  相似文献   

4.
以1000W氙灯为光源,研究了阿替洛尔在模拟太阳光照射下的光降解行为,采用HPLC和SPE-LC-MS技术鉴定了阿替洛尔在250~600nm波长照射下的主要光解产物并提出了可能的光解途径.探讨了溶液pH值、硝酸根离子浓度、腐殖质和碳酸氢根离子等因素对阿替洛尔在模拟太阳光照射下光解的影响.结果表明,阿替洛尔在模拟太阳光下的直接光解很难发生,且改变溶液pH值不能促进直接光解.而在250~600nm波长照射下,阿替洛尔4h光解率达42%,光解途径主要有母体羟基化和支链的断裂反应.在模拟太阳光照下,NO3-对阿替洛尔光解有显著的光敏化作用,而富里酸(SRFA)光敏化作用微弱.HCO3-抑制了模拟太阳光照下阿替洛尔在NO3-溶液中的光解,腐殖质则通过自由基淬灭和内滤机制抑制了阿替洛尔在NO3-溶液中的光解.  相似文献   

5.
天然水体腐殖质对双酚A光降解影响的研究   总被引:13,自引:1,他引:12  
以中压汞灯模拟太阳光光源,研究了双酚A(BPA)在水体腐殖质中的光降解过程,探讨了不同来源的腐殖质、腐殖质浓度、BPA初始浓度、溶解氧等因素对BPA光解速率的影响,实验结果表明,BPA在纯水体系中直接光解很慢,但在腐殖质溶液中光解迅速,符合拟一级动力学反应,改变BPA初始浓度对BPA光解速率的影响不明显,增大溶解氧浓度会抑制BPA光解,通过活性氧分子探针鉴定了腐殖质吸收光辐射产生的羟基与单线态氧,利用GC-MS鉴定了双酚A在Nordic湖富里酸(NOFA)中的光敏化降解产物,推测出BPA敏化降解的可能历程为能量转移导致的直接光解、羟基加成和羟基氧化。  相似文献   

6.
扑热息痛在硝酸根溶液中的光解研究   总被引:7,自引:3,他引:4  
刘钰  杨曦  高颖 《环境科学》2007,28(6):1274-1279
以中压汞灯为光源模拟阳光,研究了环境浓度范围内的硝酸根溶液中扑热息痛(paracetamol)的光解;探讨了pH值、硝酸根浓度以及天然水体中广泛存在的腐殖质、碳酸盐等因素对扑热息痛间接光解的影响.结果表明,扑热息痛的光解符合一级动力学,提高硝酸根浓度,其光解速率可由0.79×10-3 min-1增至8.90×10-3 min-1.提高体系pH值,加入碳酸氢根或高浓度的Suwannee河富里酸(SRFA)会促进扑热息痛的间接光解;而加入Nordic湖腐殖酸(NOHA)或低浓度的SRFA产生抑制作用.采用分子探针方法鉴定了硝酸根在光照过程中产生的羟基自由基.利用GC/MS技术鉴定了扑热息痛的光解产物,探讨了扑热息痛在硝酸根体系中可能的光解反应历程.  相似文献   

7.
环境因素对针铁矿光解泰乐菌素的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
为了正确评估抗生素的环境风险,了解抗生素在水环境中自然光转化的规律,考察了抗生素的初始浓度、pH值、离子强度及腐殖酸对针铁矿光降解泰乐菌素的影响.结果表明:针铁矿光解泰乐菌素的速率随着溶液pH值的增加先减小再增加,而与泰乐菌素的初始浓度及离子强度成反比;同时,腐殖酸的存在有助于光解作用,而且腐殖酸的浓度越高,泰乐菌素的光解速率越快.泰乐菌素在针铁矿上的光解作用可能包括溶液中的均相反应和针铁矿表面的异相反应两个过程.在评估抗生素的环境风险时,应当综合考虑环境因素对其转化过程的影响.  相似文献   

8.
环境因素对针铁矿光解泰乐菌素的影响   总被引:1,自引:0,他引:1  
为了正确评估抗生素的环境风险,了解抗生素在水环境中自然光转化的规律,考察了抗生素的初始浓度、pH值、离子强度及腐殖酸对针铁矿光降解泰乐菌素的影响.结果表明:针铁矿光解泰乐菌素的速率随着溶液pH值的增加先减小再增加,而与泰乐菌素的初始浓度及离子强度成反比;同时,腐殖酸的存在有助于光解作用,而且腐殖酸的浓度越高,泰乐菌素的光解速率越快.泰乐菌素在针铁矿上的光解作用可能包括溶液中的均相反应和针铁矿表面的异相反应两个过程.在评估抗生素的环境风险时,应当综合考虑环境因素对其转化过程的影响.  相似文献   

9.
研究了高压汞灯光源下己唑醇在不同pH缓冲液中的光化学降解特性及NO3-和NO2-对光解的影响.结果表明,己唑醇在水溶液中的光解符合一级动力学规律.不同pH值缓冲溶液中的光解速率排序为:pH=7>pH=9>pH=5.在己唑醇水溶液中添加不同浓度的NO3-及NO2-,均会不同程度地影响己唑醇的光解速率.在0~20mg·L-1的浓度范围内,NO3-对己唑醇的光解均表现为促进作用,且随着添加浓度的增大促进作用增强;NO2-在0.4和2mg·L-1浓度下,对己唑醇的光解有一定的促进作用,而在10~20mg·L-1浓度时,表现为抑制作用.  相似文献   

10.
以黄河水及沉积物为研究对象 ,探讨了有机磷农药水胺硫磷和辛硫磷在黄河水体中的迁移规律 ,同时还研究了 pH值和离子强度等因素对迁移规律的影响。结果表明 ,沉积物对水胺硫磷和辛硫磷均有一定程度的吸附 ,且对辛硫磷的吸附量大于水胺硫磷 ,即辛硫磷在黄河水体中的迁移性小于水胺硫磷 ;其吸附等温线呈线性 ,是分配作用的结果。降低pH值和增加离子强度均使沉积物对水胺硫磷和辛硫磷吸附量减小。  相似文献   

11.
Humic substances are ubiquitous redox-active organic compounds of environment.In this study,experiments were conducted to determine the reduction capacity of humic acid in the matrix of bromate and Fe(Ⅲ) solutions and the role of Fe(Ⅲ) in this redox process.The results showed that the humic acid regenerated Fe(Ⅱ) and reduced bromate abiotically.The addition of Fe(Ⅲ) could accelerate the bromate reduction rate by forming humic acid-Fe(Ⅲ) complexes.Iron species acts as electron mediator and catalyst for the bromate reduction by humic acid,in which humic acid transfers electrons to the complexed Fe(Ⅲ) to form Fe(Ⅱ),and the regenerated Fe(Ⅱ) donate the electrons to bromate.The kinetics study on bromate reduction further indicated that bromate reduction by humic acid-Fe(Ⅲ) complexes is pH dependent.The rate decreased by 2-fold with the increase in solution pH by one unit.The reduction capacity of Aldrich humic acid was observed to be lower than that of humic acid or natural organic matter of Suwanne River,indicating that such redox process is expected to occur in the environment.  相似文献   

12.
使用盐酸羟胺(HA)促进Fe (Ⅲ)/Fe (Ⅱ)循环,强化铁基金属有机骨架(Fe-MOFs)/过硫酸盐(PS)体系降解水中磺胺嘧啶(SDZ).通过X射线衍射(XRD)、扫描电子显微镜(SEM)、傅立叶变换红外光谱(FTIR)和X射线光电子能谱仪(XPS)对Fe-MOFs进行结构和形貌的表征.探究了溶液初始pH值、PS浓度、Fe-MOFs投加量、HA浓度、SDZ浓度、共存离子、腐殖酸等对SDZ去除效果的影响,并考察了该体系的实际应用前景.结果表明,Fe-MOFs/PS/HA体系在较宽的初始pH值范围(3~6)内,对于SDZ的180min去除率可达到90.1%以上.适量的HA可以促进Fe-MOFs/PS体系降解SDZ的性能.自由基清扫实验和电子顺磁共振实验表明,Fe-MOFs/PS/HA体系降解SDZ的过程中产生了SO4-·、·OH、O2-·以及1O2.在本文考察范围内,Fe-MOFs/PS/HA体系对SDZ的降解性能随pH值(pH=3~6)升高逐渐下降;随着PS、HA、Fe-MOFs浓度的升高,SDZ去除率呈现率先上升后下降的趋势.氯离子、腐殖酸等因素对该体系应用于实际地表水存在负面作用,但HA可以强化该体系在自然环境下降解SDZ的效果.循环实验结果表明,Fe-MOFs具有良好的重复使用性,表现出了良好的应用潜力.  相似文献   

13.
Humic substances are ubiquitous redox-active organic compounds of environment. In this study, experiments were conducted to determine the reduction capacity of humic acid in the man-ix of bromate and Fe(Ⅲ) solutions and the role of Fe(Ⅲ) in this redox process. The results showed that the humic acid regenerated Fe(Ⅱ) and reduced bromate abiotically. The addition of Fe(Ⅲ) could accelerate the bromate reduction rate by forming humic acid-Fe(Ⅲ) complexes. Iron species acts as electron mediator and catalyst for the bromate reduction by humic acid, in which humic acid transfers electrons to the complexed Fe(Ⅲ) to form Fe(Ⅱ), and the regenerated Fe(Ⅱ) donate the electrons to bromate. The kinetics study on bromate reduction further indicated that bromate reduction by humic acid-Fe(Ⅲ) complexes is pH dependent. The rate decreased by 2-fold with the increase in solution pH by one unit. The reduction capacity of Aldrich humic acid was observed to be lower than that of humic acid or natural organic matter of Suwanne River, indicating that such redox process is expected to occur in the environment.  相似文献   

14.
Effects of algae Nitzschia hantzschiana, Fe(Ⅲ) ions, humic acid, and pH on the photochemical reduction of Hg(Ⅱ) using the irradiation of metal halide lamps (λ 365 nm, 250 W) were investigated. The photoreduction rate of Hg(Ⅱ) was found to increase with increasing concentrations of algae, Fe(Ⅲ) ions, and humic acid. Alteration of pH value affected the photoreduction of Hg(Ⅱ) in aqueous solution with or without algae. The photoreduction rate of Hg(II) decreased with increasing initial Hg(Ⅱ) concentration in aqueous solution in the presence of algae. The photochemical kinetics of initial Hg(Ⅱ) and algae concentrations on the photoreduction of Hg(Ⅱ) were studied at pH 7.0. The study on the total Hg mass balance in terms of photochemical process revealed that more than 42% of Hg(Ⅱ) from the algal suspension was reduced to volatile metallic Hg under the conditions investigated.  相似文献   

15.
杨滨  应光国  赵建亮 《环境科学》2011,32(9):2543-2548
对高铁酸钾氧化降解水中微量三氯生(TCS)的反应动力学、反应机制及降解效果进行了实验研究.结果表明,高铁酸钾氧化降解TCS符合二级反应动力学模式,pH 8.5时表观二级反应动力学速率常数为531.9 L.(mol.s)-1,以10 mg.L-1的高铁酸钾计算,反应的半衰期是25.8 s.表观二级反应动力学速率常数随着p...  相似文献   

16.
文章以腐殖酸和纳米Fe2O3为对象,着重研究了腐殖酸分子在纳米Fe2O3表面的吸附过程中的疏水效应,借助红外光谱和热重等分析方法研究了腐殖酸吸附前后的疏水性随溶液环境变化的规律。结果表明,当离子强度为0、0.005、0.01和0.05 mol/kg,pH值从7变到12时,纳米Fe2O3吸附溶解性腐殖酸分子后形成的复合体的热失重量随着pH值的升高先减小后增大。当pH值从7升高到10时,亲水性降低,疏水性增强;当pH值从10升高到12时,亲水性增强,疏水性降低。当离子强度为0.001 mol/kg,pH值从7变到12时,复合体的热失重量随着pH值的升高而减小,亲水性降低,疏水性增强。当pH值为定值,离子强度变化时,纳米Fe2O3吸附溶解性腐殖酸分子后形成的复合体的热失重量随着离子强度的增加不断变化,曲线呈现出波动趋势,亲、疏水性在交替变化。红外光谱分析结果说明,对纳米Fe2O3吸附溶解性腐殖酸分子后形成的复合体的亲疏水性起主要影响的官能团可能是亲水性的羟基-OH、羰基C=O和疏水性的CH2烷烃。  相似文献   

17.
采用NaClO、UV和UV/NaClO复合消毒等方式研究了三氯卡班(TCC)在消毒过程中的去除特性,考察了3种消毒方式中TCC溶液的遗传毒性变化,鉴定了TCC的降解产物并探讨了其降解机制,以UV/NaClO复合消毒为研究对象,考察了NaClO投加量、TCC初始浓度、溶液pH值和腐殖酸(HA)等因素对TCC去除的影响.结果表明,3种消毒技术对TCC的去除效果依次为UV/NaClO、UV、NaClO.消毒处理不同程度增加了TCC溶液的遗传毒性.LC-MS鉴定出了8种TCC的降解产物,降解途径主要为脱氯、加氯以及·OH/O·氧化.UV/NaClO复合消毒对TCC的去除率在97%以上;TCC的去除与其初始浓度呈负相关;TCC的去除率随pH值的增大先升高后降低;低浓度的腐殖酸(HA)对TCC的去除有促进作用,高浓度则相反.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号