首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents a risk assessment methodology for high-pressure CO2 pipelines developed at the Health and Safety Laboratory as part of the EU FP7 project CO2Pipehaz.Traditionally, consequence modelling of dense gas releases from pipelines at major hazard impact levels is performed using integral models with limited or no consideration being given to weather bias or topographical features of the surrounding terrain. Whilst dispersion modelling of CO2 releases from pipelines using three-dimensional CFD models may provide higher levels of confidence in the predicted behaviour of the cloud, the use of such models is resource-intensive and usually impracticable. An alternative is to use more computationally efficient shallow layer or Lagrangian dispersion models that are able to account for the effects of topography whilst generating results within a reasonably short time frame.In the present work, the proposed risk assessment methodology for CO2 pipelines is demonstrated using a shallow-layer dispersion model to generate contours from a sequence of release points along the pipeline. The simulations use realistic terrain taken from UK topographical data. Individual and societal risk levels in the vicinity of the pipeline are calculated using the Health and Safety Laboratory's risk assessment tool QuickRisk.Currently, the source term for a CO2 release is not well understood because of its complex thermodynamic properties and its tendency to form solid particles under specific pressure and temperature conditions. This is a key knowledge gap and any subsequent dispersion modelling, particularly when including topography, may be affected by the accuracy of the source term.  相似文献   

2.
This paper discusses the validation of discharge and subsequent atmospheric dispersion for both unpressurised and pressurised carbon dioxide releases using the consequence modelling package Phast.The paper first summarises the validation of the Phast dispersion model (UDM) for unpressurised releases. This includes heavy gas dispersion from either a ground-level line source (McQuaid wind-tunnel experiments) or an area source (Kit-Fox field experiments). For the McQuaid experiments minor modifications of the UDM were made to support line sources. For the Kit Fox experiments steady-state and 20-s finite-duration releases were simulated for both neutral and stable conditions. Most accurate predictions of the concentrations for finite duration releases were obtained using the UDM Finite Duration Correction method.Using experiments funded by BP and Shell and made available via DNV's CO2PIPETRANS JIP, the paper secondly summarises the validation of the Phast discharge and dispersion models for pressurised CO2 releases. This modelling accounted for the possible presence of the solid CO2 phase following expansion to atmospheric pressure. These experiments included both high-pressure steady-state and time-varying cold releases (liquid storage) and high-pressure time-varying supercritical hot releases. Both the flow rate and the concentrations were found to be predicted accurately.The above validation was carried out with no fitting whatsoever of the Phast extended discharge and dispersion models.  相似文献   

3.
The consequence modelling package Phast examines the progress of a potential incident from the initial release to the far-field dispersion including the modelling of rainout and subsequent vaporisation. The original Phast discharge and dispersion models allow the released substance to occur only in the vapour and liquid phases. The latest versions of Phast include extended models which also allow for the occurrence of fluid to solid transition for carbon dioxide (CO2) releases.As part of two projects funded by BP and Shell (made publicly available via CO2PIPETRANS JIP), experimental work on CO2 releases was carried out at the Spadeadam site (UK) by GL Noble Denton. These experiments included both high-pressure steady-state and time-varying cold releases (liquid storage) and high-pressure time-varying supercritical hot releases (vapour storage). The CO2 was stored in a vessel with attached pipework. At the end of the pipework a nozzle was attached, where the nozzle diameter was varied.This paper discusses the validation of Phast against the above experiments. The flow rate was predicted accurately by the Phast discharge models (within 10%; considered within the accuracy at which the BP experimental data were measured), and the concentrations were found to be predicted accurately (well within a factor of two) by the Phast dispersion model (UDM). This validation was carried out with no fitting whatsoever of the Phast extended discharge and dispersion models.  相似文献   

4.
A methodology is presented for global sensitivity analysis of consequence models used in process safety applications. It involves running a consequence model around a hundred times and using the results to construct a statistical emulator, which is essentially a sophisticated curve fit to the data. The emulator is then used to undertake the sensitivity analysis and identify which input parameters (e.g. operating temperature and pressure, wind speed) have a significant effect on the chosen output (e.g. vapour cloud size). Performing the sensitivity analysis using the emulator rather than the consequence model itself leads to significant savings in computing time.To demonstrate the methodology, a global sensitivity analysis is performed on the Phast consequence model for discharge and dispersion. The scenarios studied consist of above-ground, horizontal, steady-state discharges of dense-phase carbon dioxide (CO2), with orifices ranging in diameter from ½ to 2 inch and the liquid CO2 stagnation conditions maintained at between 100 and 150 bar. These scenarios are relevant in scale to leaks from large diameter above-ground pipes or vessels.Seven model input parameters are varied: the vessel temperature and pressure, orifice size, wind speed, humidity, ground surface roughness and height of the release. The input parameters that have a dominant effect on the dispersion distance of the CO2 cloud are identified, both in terms of their direct effect on the dispersion distance and their indirect effect, through interactions with other varying input parameters.The analysis, including the Phast simulations, runs on a standard office laptop computer in less than 30 min. Tests are performed to confirm that a hundred Phast runs are sufficient to produce an emulator with an acceptable degree of accuracy. Increasing the number of Phast runs is shown to have no effect on the conclusions of the sensitivity analysis.The study demonstrates that Bayesian analysis of model sensitivity can be conducted rapidly and easily on consequence models such as Phast. There is the potential for this to become a routine part of consequence modelling.  相似文献   

5.
This paper discusses the modelling of the discharge and subsequent atmospheric dispersion for carbon dioxide releases using extensions of models in the consequence modelling package Phast. Phast examines the progress of a potential incident from the initial release to the far-field dispersion including the modelling of rainout and subsequent vaporisation. The original Phast discharge and dispersion models allow the released chemical to occur only in the vapour and liquid phases. As part of the current work these models have been extended to also allow for the occurrence of liquid to solid transition or vapour to solid transition. This applies both for the post-expansion state in the discharge model, as well as for the thermodynamic calculations by the dispersion model. Solid property calculations have been added where necessary. The above extensions are generally valid for fluid releases including CO2. Using the extended dispersion formulation, a sensitivity study has been carried out for mixing of solid CO2 with air, and it is demonstrated that solid effects may significantly affect the predicted concentrations.  相似文献   

6.
A dispersion model validation study is presented for atmospheric releases of dense-phase carbon dioxide (CO2). Predictions from an integral model and two different Computational Fluid Dynamics (CFD) models are compared to data from field-scale experiments conducted by INERIS, as part of the EU-funded CO2PipeHaz project.The experiments studied consist of a 2 m3 vessel fitted with a short pipe, from which CO2 was discharged into the atmosphere through either a 6 mm or 25 mm diameter orifice. Comparisons are made to measured temperatures and concentrations in the multi-phase CO2 jets.The integral dispersion model tested is DNV Phast and the two CFD models are ANSYS-CFX and a research and development version of FLACS, both of which adopt a Lagrangian particle-tracking approach to simulate the sublimating solid CO2 particles in the jet. Source conditions for the CFD models are taken from a sophisticated near-field CFD model developed by the University of Leeds that simulates the multi-phase, compressible flow in the expansion region of the CO2 jet, close to the orifice.Overall, the predicted concentrations from the various models are found to be in reasonable agreement with the measurements, but generally in poorer agreement than has been reported previously for similar dispersion models in other dense-phase CO2 release experiments. The ANSYS-CFX model is shown to be sensitive to the way in which the source conditions are prescribed, while FLACS shows some sensitivity to the solid CO2 particle size. Difficulties in interpreting the results from one of the tests, which featured some time-varying phenomena, are also discussed.The study provides useful insight into the coupling of near- and far-field dispersion models, and the strengths and weaknesses of different modelling approaches. These findings contribute to the assessment of potential hazards presented by Carbon Capture and Storage (CCS) infrastructure.  相似文献   

7.
The development of carbon capture and storage (CCS) brings challenges for safety issues regarding carbon dioxide (CO2) transmission pipelines. Once a pipeline is punctured or full-bore ruptured, the leaked CO2 is hazardous to personnel and the environment. Small-scale devices were established with the aim of studying the release and dispersion behaviour of gas and liquid CO2 from a punctured underground pipeline. A sandbox was built to simulate the underground conditions. The parameters of the sand used in the experiments were tested. CO2 concentrations on the ground and temperatures around the release orifice in the sand were analysed. The results indicate that in the CO2 gas release experiments, the CO2 concentration on the sand surface decreases with increasing horizontal distance in the form of a power function. CO2 concentrations in upward release are slightly larger than those in horizontal release at the same location but are obviously bigger than values in downward release. The temperature-drop region is much smaller than that in air. A frozen ice ball can be generated near the release orifice during the gas phase of the CO2-release process. In the liquid phase of CO2-release experiments, a large amount of dry ice is generated near the release orifice. Dry ice can only be generated in the area close to the release orifice, especially in the near-field area.  相似文献   

8.
Pressurized pipelines are the most reliable and cost-effective option for the long-distance transportation of CO2 from an emitter to an onshore storage site. Propagating or unstable factures are considered catastrophic pipeline failures, resulting in a massive escape of inventory within a short period of time. The decompression curve for CO2 exhibits a large drop in decompression wave speed at the phase transition pressure, leading to a higher driving force for crack propagation. The study of fracture control plans is very important for assessing the possibility of fracture propagation and preventing unstable fracturing along CO2 pipelines. Three full-bore rupture (FBR) experiments were performed using an industrial-scale (258 m long, 233 mm inner diameter) CO2 pipeline with initial CO2 states of gaseous, dense and supercritical phases, respectively. The relation between the decompression velocity and the pipeline fracture propagation velocity was analyzed during the process of buried CO2 pipeline release. A fracture propagation criterion was established for the buried CO2 pipeline. For the gaseous CO2 leakage, the pressure plateau corresponding to the decompression wave velocity only appeared near the closed end of the pipeline. For the dense CO2 leakage, the pressure plateau corresponding to the decompression wave velocity was observed near the saturation pressure after rapid decompression. For the supercritical CO2 leakage, the pressure plateau corresponding to the decompression wave velocity was observed in the stage when the supercritical CO2 transformed into the two phases of gas and liquid. Compared with the gaseous and dense CO2, for the supercritical CO2, the initial decompression wave velocity was the smallest, and the requirement of the pipeline safety factor was the highest.  相似文献   

9.
The numerical simulation of gas dispersion is of great importance in various areas of engineering such as optimisation, synthesis of chemical process, petroleum industry and process safety. The OpenFOAM (Open Field Operation and Manipulation) code is a free and open source computational fluid dynamics (CFD) program. The current research is focused on the development and customisation of a computational tool for handling gas dispersion of heavy gases, such a LNG and CO2. The novel CFD tool relies on OpenFOAM framework. The core of the work is based on the OpenFOAM solver rhoReactingBuoyantFoam to handle gas dispersion. A series of CFD simulations has been performed for methane and CO2. The source term of the former is modelled by HSM (Hybrid Switch Model). The model comprises contribution from HEM (Homogeneous Equilibrium Model) approach, frozen model and non-equilibrium model for CO2 leak. The novel approach switches between equilibrium and non-equilibrium conditions based on the meta-stable parameter on the grounds of thermodynamics and experimental observations. Good agreement with experimental data is observed. Numerical findings for methane leakage from the proposed CFD tool are compared with experimental data and FLACS. Good agreement is observed.  相似文献   

10.
Transportation safety is a key aspect of carbon capture and storage (CCS), which is a major technology used to reduce greenhouse gas emissions. Supercritical CO2 pipelines have been certified as an optimised choice for CO2 transportation. The results of this study show that the Peng–Robinson (PR) equation of state is recommended for analysis of the properties of supercritical CO2. The influence of nonpolar and polar impurities on the two-phase region and the location of the sharp discontinuity in the density are found by analysing the ternary phase equilibrium and physical parameters using the PR equation of state. A transitional area between the supercritical phase and the dense phase, where the density changes abruptly, is defined as the quasi-critical region. This study describes the functional relation between the temperature and the pressure that defines the quasi-critical line by calculating the partial derivative equations and then determines the effect of impurities on the quasi-critical region of transported CO2. Operational recommendations for pipeline transportation of flue CO2 are developed using a pipeline operated by Sinopec as an example, demonstrating the influence of impurities in flue CO2 on saturation pressure for control and prevention of fractures in CO2 pipelines.  相似文献   

11.
In many countries where electricity generation is based on their natural resources of fossil fuels a need arises to implement new power engineering technologies that allow carbon dioxide capture. Simultaneously, efforts are made to find new energy carriers which, if fired, do not involve carbon dioxide emissions. Hydrogen is one of such fuels with this future potential which is now becoming increasingly popular. Obviously, this means that the two gases mentioned above – carbon dioxide and hydrogen – will be produced in large quantities in future, which in many cases will necessitate their transport over considerable distances. If a pipeline failure occurs, the transport of the gases may pose a serious hazard to people in the immediate vicinity of the leakage site. This paper presents an analysis of the possibility of reducing the level of risk related to pipelines transporting CO2 and H2 by means of safety valves. It is shown that for a 50 km long and a 0.4 m diameter pipeline transporting gas with the pressure of 15 MPa the individual risk level can be reduced from 1·10−4 to 6.5·10−7 for CO2 and from 1·10−6 to 6·10−10 for H2. The social risk can be diminished in similar proportions.  相似文献   

12.
With the advent of Carbon Capture and Storage technology (CCS) the scale and extent of its handling is set to increase. Carbon dioxide (CO2) capture plants are expected to be situated near to power plants and other large industrial sources. Afterward CO2 is to be transported to storage site using one or a combination of transport media: truck, train, ship or pipeline. Transport by pipeline is considered the preferred option for large quantities of CO2 over long distances. The hazard connected with this kind of transportation can be considered an emerging risk and is the subject of this paper.The paper describes the Quantitative Risk Assessment of a hypothetical network pipeline located in UK, in particular the study of consequences due to a CO2 release from pipeline.The risk analysis highlighted that some sections of pipeline network cross densely populated areas. For this reason, some changes in the original path of the network have been proposed in order to achieve a significant reduction in the societal risk.  相似文献   

13.
Individual risk analysis of high-pressure natural gas pipelines   总被引:1,自引:0,他引:1  
Transmission pipelines carrying natural gas are not typically within secure industrial sites, but are routed across land out of the ownership of the pipeline company. If the natural gas is accidentally released and ignited, the hazard distance associated with these pipelines to people and property is known to range from under 20 m for a smaller pipeline at lower pressure to up to over 300 m for a larger pipeline at higher pressure. Therefore, pipeline operators and regulators must address the associated public safety issues.This paper focuses on a method to explicitly calculate the individual risk of a transmission pipeline carrying natural gas. The method is based on reasonable accident scenarios for route planning related to the pipeline's proximity to the surrounding buildings. The minimum proximity distances between the pipeline and buildings are based on the rupture of the pipeline, with the distances chosen to correspond to a radiation level of approximately 32 kW/m2. In the design criteria for steel pipelines for high-pressure gas transmission (IGE/TD/1), the minimum building proximity distances for rural areas are located between individual risk values of 10−5 and 10−6. Therefore, the risk from a natural gas transmission pipeline is low compared with risk at the building separated minimum distance from chemical industries.  相似文献   

14.
A significant number of pipeline operators use pipeline integrity management (PIM) to improve pipeline safety and reliability. Risk assessment is a critical step in PIM, because it determines the necessity of conducting the following steps in PIM for certain pipelines. Risk acceptance criteria are required in the process of risk assessment. Individual risk and societal risk are most frequently adopted as the two indicators of the risk acceptance criteria. To the best of the authors’ knowledge, quantitative societal risk acceptance criteria, especially for gas distribution pipelines, do not exit. The aim of this paper is to establish the societal risk acceptance criteria for gas distribution pipelines. Hence, FN curves were established using historical incident data from 2002 to 2017 provided by the U.S. Department of Transportation (DOT). Linear regression and the ALARP principle are used in evaluating the limits of the negligible line and intolerable line to obtain a graphical societal risk acceptance criterion for gas distribution pipelines. A line having a slope of −1.224, and an anchor point of (1, 8.413 × 10−7) is proposed as the negligible line. Further, the intolerable line has a slope of −1.224, and an anchor point of (1, 2.524 × 10−6). Both the negligible risk and the intolerable risk for the gas distribution pipeline are lower than the current societal risk acceptance criteria for hazardous installations. The reasons for these relatively lower risk acceptance criteria are discussed.  相似文献   

15.
The accidental release of high-pressure carbon dioxide (CO2) can cause serious damages to both humans and pipeline equipment. Therefore, it is of great significance to have a deeper understanding about the release characteristics of high-pressure CO2 for improving the safety level of Carbon Capture and Storage (CCS) technologies. Both industrial-scale and laboratory-scale studies have been carried out to predict the release behaviors. In recent years, computational fluid dynamics (CFD) simulation has become a crucial method to study the instantaneous changes and microscopic details of the fluid behaviors. In this paper, the simulation method was employed to study the near-field structure and flow characteristics of high-pressure CO2 released from pipelines. The Peng-Robinson Equation of State (EOS) was used to compute the thermodynamic properties of high-pressure CO2, and SST k-ω model was applied to simulate the structure and physical parameters of the under-expanded jet. In addition, the multi-phase mixture model was introduced to study the phase transition. The non-equilibrium liquid/vapor transition is modeled by introducing ‘source terms’ for mass transfer and latent heat. Compared to the experimental results, the simulation results showed good agreement. Furthermore, the influences of operating conditions, including different stagnation pressure, stagnation temperature, and nozzle size, were analyzed.  相似文献   

16.
This paper describes the development and experimental validation of a three-phase flow model for predicting the transient outflow following the failure of pressurised CO2 pipelines and vessels. The choked flow parameters at the rupture plane, spanning the dense-phase and saturated conditions to below the triple point, are modelled by maximisation of the mass flowrate with respect to pressure and solids mass fraction at the triple point. The pertinent solid/vapour/liquid phase equilibrium data are predicted using an extended Peng–Robinson equation of state.The proposed outflow model is successfully validated against experimental data obtained from high-pressure CO2 releases performed as part of the FP7 CO2PipeHaz project (www.co2pipehaz.eu).The formation of solid phase CO2 at the triple point is marked by a stabilisation in pressure as confirmed by both theory and experimental observation. For a fixed diameter hypothetical pipeline at 100 bar and 20 °C, the flow model is used to determine the impact of the pipeline length on the time taken to commence solid CO2 discharge following its rupture.  相似文献   

17.
In Great Britain, advice on land-use planning decisions in the vicinity of major hazard sites and pipelines is provided to Local Planning Authorities by the Health and Safety Executive (HSE), based on quantified risk assessments of the risks to the public in the event of an accidental release. For potential exposures to toxic substances, the hazard and risk is estimated by HSE on the basis of a “toxic load”. For carbon dioxide (CO2), this is calculated from the time-integral of the gas concentration to the power eight. As a consequence of this highly non-linear dependence of the toxic load on the concentration, turbulent concentration fluctuations that occur naturally in jets or plumes of CO2 may have a significant effect on the calculated hazard ranges. Most dispersion models used for QRA only provide estimates of the time- or ensemble-averaged concentrations. If only mean concentrations are used to calculate the toxic load, and the effects of concentration fluctuations are ignored, there is a danger that toxic loads and hence hazard ranges will be significantly under-estimated.This paper explores a simple and pragmatic modification to the calculation procedure for CO2 toxic load calculations. It involves the assumption that the concentration fluctuates by a factor of two with a prescribed square-wave variation over time. To assess the validity of this methodology, two simple characteristic flows are analysed: the free jet and the dense plume (or gravity current). In the former case, an empirical model is used to show that the factor-of-two approach provides conservative estimates of the hazard range. In the latter case, a survey of the literature indicates that there is at present insufficient information to come to any definite conclusions.Recommendations are provided for future work to investigate the concentration fluctuation behaviour in dense CO2 plumes. This includes further analysis of existing dense gas dispersion data, measurements of concentration fluctuations in ongoing large-scale CO2 release experiments, and numerical simulations.  相似文献   

18.
Many commonly used atmospheric dispersion models are limited to continuous or instantaneous releases only, and cannot accurately simulate time-varying releases. The current paper discusses a new enhanced dispersion formulation accounting for time-varying effects resulting from a pressure drop in a vessel or pipe, and presuming no rainout. This new formulation is implemented in the Unified Dispersion Model (UDM), and is planned to be included in a future version of Phast.First existing methods are summarised for modelling finite-duration and time-varying releases, and limitations of these methods are identified.Secondly the new mathematical model is summarised. The new formulation presumes a number of ‘observers’ to be released at successive times from the point of discharge. The UDM carries out pseudo steady-state calculations for each observer, where the release data correspond to the time at which the observer is released. Subsequently the model applies a correction to the observer concentrations to ensure mass conservation when observers move with different velocities. Finally effects of along-wind diffusion (due to ambient turbulence) are included by means of Gaussian integration over the downwind distance. This results in reduced concentrations while the cloud travels in the downwind direction.The benefits of the new UDM methodology are illustrated for the case of a H2S toxic release from a long pipeline representative of some extremely sour fields in the Middle East that are now being developed. Using corrected observer concentrations and along-wind diffusion significantly reduces toxic effect distances when compared to the current Phast 7.1 approach.  相似文献   

19.
The increase in GHG concentration has a direct effect on global climate conditions. Among the possible technologies to mitigate GHG emissions, CCS is being accepted to gain emission reduction. Such technology also involves cryogenic CO2 capture processes based on CO2 freeze-out or where the formation of solid CO2 must be avoided. Captured CO2 is usually transported in pipelines for the reinjection.The risk associated to the release of CO2 is due to the changing temperatures and pressures the system may experience, which can lead to the deposition of solid CO2 where it must be avoided. Prolonged exposure to dry ice can cause severe skin damage and its resublimation could pose a danger of hypercapnia. It is, thus, necessary to build up a tool able to predict the conditions in which CO2 can freeze-out.A thermodynamic methodology based on cubic EoSs has been developed which is able to predict solid–liquid–vapor equilibrium of CO2 mixtures with n-alkanes or H2S which are usually found in equipment for acidic gas, mainly natural gas, treatment.The focus is a detailed analysis of the method performances when more than two components are present since, for such a case, literature does not provide significant modeling results.  相似文献   

20.
Pipelines represent a linear risk source that can create unique challenges when assessing risks. In the past, risk has been managed by identifying construction requirements and setbacks based on population densities and types of land use. In the current risk assessment a matrix-based approach has been developed so as to determine the risks associated with high-vapor pressure liquids pipelines. The approach involved the development of a matrix representing each 100 m section of the reviewed pipeline along with approximately 30 risk factors that describe that section of the pipeline. Further, a receptor matrix was constructed to account for each hectare of land within 1 km of the reviewed pipeline system. This approach has allowed for the determination of risk as a function of location and separation from the pipeline and in turn has allowed for the determination of those areas where peak risks exist. In addition, this approach has ensured that the linear geometry related to pipeline risks has been accurately modeled. The resulting estimated risks have been evaluated against MIACC risk thresholds (geographic risk-based measures) and against proprietary internal corporate standards (societal risk-based measures). In this way the acceptability of the risk from the perspective of both the potentially impacted community and that of the pipeline operator can be measured. The net result is that the company has a clear picture of the risks associated with its pipeline and is better able to optimize its risk management and pipeline integrity programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号