首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Abstract:  Among the major agricultural crops in the southeastern United States, cotton ( Gossypium hirsutum L.) generally provides the least suitable habitat for most early successional songbirds. Newer cropping approaches, such as use of conservation tillage and stripcover cropping, offer hope for improving the ecological value of cotton fields. We examined the effects of clover stripcover cropping with conservation tillage versus conventionally grown cotton with either conventional or conservation tillage on avian and arthropod species composition and field use in east-central Georgia. Stripcover fields had higher bird densities and biomass and higher relative abundance of arthropods than both conservation tillage and conventional fields. During migration and breeding periods, total bird densities on stripcover fields were 2–6 times and 7–20 times greater than on conservation and conventional fields, respectively. Abundance and biomass for epigeal arthropods were also greatest on stripcover fields during much of the breeding season. Although the clover treatment attracted the highest avian and arthropod densities, conservation fields still provided more wildlife and agronomic benefits than conventional management. Our findings suggest that both conservation tillage and stripcropping systems will improve conditions for birds in cotton, with stripcropped fields providing superior habitat. The reduction of inputs possible with the clover system could allow farmers to lower costs associated with conventional cotton production by $282–317/ha. This reduction of input, coupled with similar or possibly increased yield over conventional systems makes stripcover cropping not only a good choice for reducing negative impacts on wildlife and surrounding ecosystems, but also an economically desirable one.  相似文献   

2.
Bioenergy cropping systems could help offset greenhouse gas emissions, but quantifying that offset is complex. Bioenergy crops offset carbon dioxide emissions by converting atmospheric CO2 to organic C in crop biomass and soil, but they also emit nitrous oxide and vary in their effects on soil oxidation of methane. Growing the crops requires energy (e.g., to operate farm machinery, produce inputs such as fertilizer) and so does converting the harvested product to usable fuels (feedstock conversion efficiency). The objective of this study was to quantify all these factors to determine the net effect of several bioenergy cropping systems on greenhouse-gas (GHG) emissions. We used the DAYCENT biogeochemistry model to assess soil GHG fluxes and biomass yields for corn, soybean, alfalfa, hybrid poplar, reed canarygrass, and switchgrass as bioenergy crops in Pennsylvania, USA. DAYCENT results were combined with estimates of fossil fuels used to provide farm inputs and operate agricultural machinery and fossil-fuel offsets from biomass yields to calculate net GHG fluxes for each cropping system considered. Displaced fossil fuel was the largest GHG sink, followed by soil carbon sequestration. N20 emissions were the largest GHG source. All cropping systems considered provided net GHG sinks, even when soil C was assumed to reach a new steady state and C sequestration in soil was not counted. Hybrid poplar and switchgrass provided the largest net GHG sinks, >200 g CO2e-C x m(-2) x yr(-1) for biomass conversion to ethanol, and >400 g CO2e-C x m(-2) x yr(-1) for biomass gasification for electricity generation. Compared with the life cycle of gasoline and diesel, ethanol and biodiesel from corn rotations reduced GHG emissions by approximately 40%, reed canarygrass by approximately 85%, and switchgrass and hybrid poplar by approximately 115%.  相似文献   

3.
混作在黄土母质生土改良中的应用   总被引:1,自引:0,他引:1  
以黄土母质生土为供试土壤,采用盆栽试验,研究小麦与3种豆科牧草及油菜混作对根际土壤生物活性及土壤营养的影响.结果表明,黄土母质生土混作较单作可显著促进根际土壤微生物的繁衍、酶活性及土壤营养的提高,且在混作根土系统中,三大微生物种群数量、多种土壤酶活性以及土壤N、P、有机质营养之间均存在显著或极显著的正向相关关系.4种混作处理以豌/麦根际土壤综合效应较好,可作为生土改良的首选混播作物.结果还显示,在小麦生长期内,混作根际微生物数量与酶活性及根际土壤营养均随生育进程呈前低—中高—后低的抛物线变化.研究为混作复合群体应用于黄土母质生土地改良提供了理论参考.图3表1参23  相似文献   

4.
The triketone herbicide mesotrione has been applied pre‐emergence at the dose of 150 g a.i. ha?1 on corn fields grown within the same period of time at different sites on clay, loam, sandy loam or sandy soils. During the crops and one month after the corn harvest, the mobility of mesotrione has been measured in the 0–20 cm surface soil layer, soil samples being taken in the 0–2,2–4,4–6,6–8, 8–10, 10–15 and 15–20 cm surface soil layers. During the first month after the treatment, mesotrione remained in the 0–2 cm surface soil layer. Thereafter, mesotrione was at a higher concentration in a 2 cm‐thick soil layer which progressively moved down in the clay, loam and sandy loam soils. In the sand soil, mesotrione moved down as a uniform diffusion, its concentration being similar in all the 2 cm‐thick layers of the 0–10 cm soil surface layer. Low mesotrione residues (6–10 ug kg?1 dry soil) attained the 10–15 cm layer faster in the clay and sand soils than in the loam and sandy loam soils. Mesotrione was not detected in the 15–20 cm soil layer of the loam and sandy loam soils, but well in the sand and clay soils. In the soils of the corn crops mesotrione thus mainly remained in the 0–10 cm surface soil layer. This low mobility and depth of penetration conjugated to the rate of mesotrione soil degradation explain why there was no movement of mesotrione toward the deeper soil layers. The adsorption of mesotrione was greatest on the soils recently treated with organic fertilizers, and having a loam or sandy loam texture. The adsorption coefficients explained the lower mobility and the greatest persistence of mesotrione in these soils.  相似文献   

5.
This study addressed the integrated effect of slope aspect and land use on soil nutrients in a loess hilly catchment in the western Loess Plateau of China. Soil samples were collected from five land-use types: wasteland, cropland, woodland, shrubland and abandoned cropland, at two depths (0–20 and 20–40 cm) in the middle slope position of both north-facing and south-facing slopes. Soil nutrient changes and the relationships between soil nutrients and slope aspect were investigated, based on statistical analysis and expert knowledge. Soil organic matter, total N, total P, nitrate nitrogen and available K of the 0–20 cm soil layer differed significantly between land uses and slope aspects. Soil nutrients in the north-facing slope were better than in the south-facing slope. Revegetation has an enrichment effect, especially on soil organic matter, total N, total P, nitrate nitrogen and available K. Planting of trees, shrubs and grasses could improve soil fertility and favours a policy of revegetation and sustainable land use in the hilly loess area of China. Conversion of slope farmlands into more sustainable land uses, such as shrubland or grassland is a cost-efficient way to achieve soil conservation and ecological restoration. Terracing and the use of agro-techniques for soil conservation, such as furrow-ridging tillage and leaving crop residues on fields, can increase the input of C to soils. Growing crops in rotation with alfalfa and beans could be a promising choice for the sustainability of agriculture and the environment.  相似文献   

6.
A rapid, simple, and selective analytical method was developed and validated for the simultaneous determination of florasulam, fluroxypyr, and fluroxypyr-meptyl in corn grain, plant, and soil using the QuEChERS (quick, easy, cheap, effective, rugged, and safe) procedure coupled with high-performance liquid chromatography-tandem mass spectrometry. The method gave mean recoveries in the range of 80%–108%, with limits of quantification ranging from 2 to 10 µg kg?1. The half-lives of the three compounds were 1.3–1.3, 0.7–1.3, and 0.7–1.3 days in plants, and 1.1–2.1, 0.4–1.3, and 0.4–1.3 days in soil. The terminal residues in all the matrices were found to be less than the limits of quantification at the pre-harvest intervals of 53 and 78 days. These results not only gave insights about the analytes but also contributed to the safe use of the broad-spectrum herbicides and a reference for establishing the maximum residue limit of florasulam in corn in China.  相似文献   

7.
Midwest U.S. landscape change to 2020 driven by biofuel mandates   总被引:1,自引:0,他引:1  
Meeting future biofuel targets set by the 2007 Energy Independence and Security Act (EISA) will require a substantial increase in production of corn. The Midwest, which has the highest overall crop production capacity, is likely to bear the brunt of the biofuel-driven changes. In this paper, we set forth a method for developing a possible future landscape and evaluate changes in practices and production between base year (BY) 2001 and biofuel target (BT) 2020. In our BT 2020 Midwest landscape, a total of 25 million acres (1 acre = 0.40 ha) of farmland was converted from rotational cropping to continuous corn. Several states across the Midwest had watersheds where continuous corn planting increased by more than 50%. The output from the Center for Agriculture and Rural Development (CARD) econometric model predicted that corn grain production would double. In our study we were able to get within 2% of this expected corn production. The greatest increases in corn production were in the Corn Belt as a result of conversion to continuous corn planting. In addition to changes to cropping practices as a result of biofuel initiatives we also found that urban growth would result in a loss of over 7 million acres of productive farmland by 2020. We demonstrate a method which successfully combines economic model output with gridded land cover data to create a spatially explicit detailed classification of the landscape across the Midwest. Understanding where changes are likely to take place on the landscape will enable the evaluation of trade-offs between economic benefits and ecosystem services allowing proactive conservation and sustainable production for human well-being into the future.  相似文献   

8.
Chemical mixtures are an important area of research as individuals are exposed to low doses of persistent chemical agents known as environmental pollutants throughout their life time. Polychlorinated biphenyls (PCBs) and diethyl phthalate (DEP) are ubiquitous environmental pollutants that could be present in the same environmental compartment; hence organisms may get simultaneously exposed to both. Therefore, a study was undertaken to see whether PCB and DEP together show interactive chronic mixture toxicity in male Wistar rats. Healthy male Wistar rats weighing 70–100?g were randomly assigned to four groups of six each. Control rats were fed on normal diet and water ad libitum. Oil control rats were maintained on a normal diet mixed with corn oil. Rats were given Clophen A60 (PCB) and DEP dissolved individually in corn oil mixed with the diet at 50?mg?kg?1 of the diet/day, as well as a mixture in corn oil mixed with the diet both at 50?mg?kg?1 of the diet/day. After 150 days of treatment animals were sacrificed and enzymes and other biochemical parameters in the serum and liver were assessed. Liver weight to body weight ratio showed a significant increase in Clophen A60 and in Clophen A60?+?DEP treated rats. In the DEP, Clophen A60 and Clophen A60?+?DEP treated groups there was significant increase in liver and serum alanine aminotransferase (ALT) and acid phosphatase (ACP) activity. Aspartate aminotransferase (AST) was significantly increased in the liver and serum of DEP treated rats only. Cholesterol levels were significantly increased only in the serum and the liver of DEP treated rats. Triglyceride levels were significantly increased in the serum of treated rats and only in the liver of Clophen A60 and Clophen A60?+?DEP treated rats. Liver glycogen levels were significantly increased in DEP and Clophen A60?+?DEP treated rats. In all treated animals, there was a significant decrease in liver glutathione reductase (GR). Histology of liver showed severe vacuolations, fatty degeneration and loss of hepatic architecture in Clophen A60 and Clophen A60?+?DEP treated rats, whereas in DEP treated rats only loss of hepatic architecture and granular deposits in the hepatocytes was predominant with mild vacuolations of centrilobular and periportal area. It is evident from this study of mixture toxicity of Clophen A60 and DEP that there is no significantly enhanced toxicity due to the interaction of these two compounds. On the other hand, to some extent there is alleviation in toxicity as evidenced by enzyme ACP and AST levels in the liver. The hepatocellular damage and biliary congestion caused by these two compounds, which can be confirmed by significantly increased liver weights and elevated serum and liver enzyme levels as well as histology, was almost the same between individual and mixture treated group.  相似文献   

9.
This report shows a higher soil quality under medicinal plants versus food-crop plants. Long-term continuous cultivation of food crops induces changes of soil properties that can lead to fertility loss and, in turn, decline of food productivity. Effect of cropping on soil changes has been studied mainly for food crops and vegetables worldwide, whereas soil changes in herbal fields are scarcely known. Therefore, we compared here soil nutrients and soil chemical properties of herbal fields, cultivated with Chinese medicinal plants, and food-crop fields. Fields are located at the famous traditional planting base of Chinese medicinal plants in Anguo, China. The results showed that in herbal fields, soil nitrate, available P, soil organic matter (SOM), and electrical conductivity decreased with soil depth, whereas soil pH and soil water content increased with depth. In herbal fields, soil nitrate, available P contents, and soil electrical conductivity were higher than those of food-crop fields at various soil layers. SOM and soil water content were similar in herbal and food-crop fields. Soil pH of herbal fields at 0–20 cm was lower than those of food-crop fields. Findings show overall that soil nutrient accumulation and changes under medicinal plants are higher than food-crop fields.  相似文献   

10.
川中丘陵区稻田甲烷排放及其影响因素   总被引:1,自引:0,他引:1  
利用静态箱/气相色谱法对川中丘陵区冬水田和水旱轮作稻田进行全生长季CH4排放观测。结果表明,水旱轮作稻田和冬水田CH4排放的季节变化峰值都出现在水稻生长中期,且都有1个典型的排放峰。分析讨论了温度、水稻生物量、耕作制度以及水稻栽培方式等因素对稻田CH4排放的影响。发现川中丘陵水稻生长季节5cm深处地温与稻田CH4排放通量呈显著正相关;水稻植株生长对CH4排放有重要作用;水旱轮作稻田CH4排放通量比冬水田低54.1%~65.1%;冬水田水稻采用强化栽培方式既可提高产量又可减少CH4排放。  相似文献   

11.
The removal of corn stover or production of herbaceous crops such as switchgrass (Panicum virgatum) or big bluestem (Andropogon gerardii) as feedstocks for bioenergy purposes has been shown to have significant benefits from an energy and climate change perspective. There is potential, however, to adversely impact water and soil quality, especially in the United States Corn Belt where stover removal predominantly occurs and possibly in other areas with herbaceous energy crops depending upon a number of geo-climatic and economic factors. The overall goal of this research was to provide a thorough and mechanistic understanding of the relationship between stover and herbaceous crop production management practices and resulting range of impacts on soil and water quality, with a focus on eastern Iowa, USA. Comparisons of the production of herbaceous bioenergy crops to continuous corn (Zea mays L.) and corn-soybean (Glycine max L.) rotations on five different soils representative of the region were performed. Indices for total nutrient (nitrogen and phosphorus) loss to surface water and groundwater, total soil loss due to water and wind erosion, and cumulative soil carbon loss were derived to assess long-term sustainability. The Agricultural Policy/Environmental eXtender (APEX) agroecosystem model was used to quantify the sustainability indices and to generate sufficient data to provide a greater understanding of variables that affect water and soil quality than previously possible. The results clearly show the superiority of herbaceous crop production from a soil and water quality perspective. They also show, however, that compared to traditional cropping systems (e.g., corn-soybean rotations with conventional tillage), soil and water quality degradation can be reduced under certain conditions at the same time stover is removed.  相似文献   

12.
Constructed wetlands (CWs) have been used effectively to remove nitrogen (N) and phosphorus (P) from non-point sources. Effluents of some CWs were, however, still with high N and P concentrations and remained to be pollution sources. Widely distributed paddy fields can be exploited to alleviate this concern. We were the first to investigate a combination system of three-level CWs with wetland paddy fields in a full scale to remove N and P from rural unregulated non-point sources. The removal efficiencies (REs) of CWs reached 57.3 % (37.4–75.1 %) for N and 76.3 % (62.0–98.4 %) for P. The CWs retained about 1,278 kg N ha?1 year?1 and 121 kg P ha?1 year?1. There was a notable seasonal change in REs of N and P, and the REs were different in different processing components of CWs. The removal rates of wetland paddy fields adopt “zero-drainage” water management according to local rainfall forecast and physiological water demand of crop growth reached 93.2 kg N ha?1 year?1 and 5.4 kg P ha?1 year?1. The rice season had higher potential in removing N and P than that in the wheat season. The whole combined system (0.56 ha CWs and 5.5 ha wetland paddy fields) removed 1,790 kg N year?1 and 151 kg P year?1, which were higher than those from CWs functioned alone. However, another 4.7-ha paddy fields were needed to fully remove the N and P in the effluents of CWs. The combination of CWs and paddy fields proved to be a more efficient nutrient removal system.  相似文献   

13.
Nitrogen Export from an Agriculture Watershed in the Taihu Lake Area, China   总被引:6,自引:0,他引:6  
Temporal changes in nitrogen concentrations and stream discharge, as well as sediment and nitrogen losses from erosion plots with different land uses, were studied in an agricultural watershed in the Taihu Lake area in eastern China. The highest overland runoff loads and nitrogen losses were measured under the upland at a convergent footslope. Much higher runoff, sediment and nitrogen losses were observed under upland cropping and vegetable fields than that under chestnut orchard and bamboo forest. Sediment associated nitrogen losses accounted for 8–43.5% of total nitrogen export via overland runoff. N lost in dissolved inorganic nitrogen forms (NO 3 -N + NH 4 + -N) accounted for less than 50% of total water associated nitrogen export. Agricultural practices and weather-driven fluctuation in discharge were main reasons for the temporal variations in nutrient losses via stream discharge. Significant correlation between the total nitrogen concentration and stream discharge load was observed. Simple regression models could give satisfactory results for prediction of the total nitrogen concentrations in stream water and can be used for better quantifying nitrogen losses from arable land. Nitrogen losses from the studied watershed via stream discharge during rice season in the year 2002 were estimated to be 10.5 kg N/ha using these simple models.  相似文献   

14.
The aim of this study is to evaluate the metal removal ability of three different plants from metal processing sludge containing Pb, Cd, and Zn. Therefore, phytoremediation and pyrolysis were sequentially applied. In the phytoremediation applications, sunflower (Helianthus annuus), corn (Zea mays), and rape (Brassica napus) seeds were sown in sludge/soil mixtures at four different levels (25/75, 50/50, 75/25, 100/0). The chelating agent, ethylenediaminetetraacetic acid, was added to the mixtures for plant uptake during phytoremediation. At the phytoremediation stage, it was noted that rape was the most effective plant for the mixture of 75/25 sludge/soil, with metal removal efficiencies ranging between 80%–90%. At the pyrolysis stage, after harvesting, contaminated plants grown in a 75/25 sludge/soil mixture were pyrolyzed at 500 °C, with a heating rate of 35 °C/min. The results show that 60%–90% of the initial metal content was held by the solid product. In addition to this, it can be concluded that pyrolysis stabilizes metals into a solid product and that this solid product can be safely landfilled as inert waste since its toxicity leaching value is lower than the limit values.  相似文献   

15.
《毒物与环境化学》2012,94(3-6):190-203
Abstract

Carbon-coated magnetic nanoparticles were modified with cationic surfactant and used for the dispersive solid phase extraction of chlorophenols from aqueous samples. Surfactant adsorbed on the surface of the nanoparticles resulted in mixed hemimicelles for high extraction efficiency of chlorophenols. Under optimized conditions, calibration curves were linear from 0.5–20?mg L?1 for analytes with limit of detection between 0.2 and 0.4?mg L?1. The method was applied to extraction of chlorophenols from tap water, well water and industrial effluent. Recoveries were in the range of 94.0–99.4%, suggesting that sample matrix had little effect on the yields of extraction.  相似文献   

16.
The response of green roselle (Hibiscus sabdariffa) to Cu/Pb contamination and manure application in soil was investigated using pot experiments. Subsamples of a mineral soil were treated with increasing doses (0–500 mg kg?1) of Cu/Pb only and/or amended (at 10% w/w) with poultry or swine manure. Roselle plants were grown, monitored for changes in growth rate and post-harvest aboveground dry biomass and tissue Cu/Pb concentrations were determined. The plants were typically greenish with linear growth profiles at all metal doses, indicating some level of tolerance. Dry biomass yields decreased as metal dose increased. Poultry manure enhanced roselle biomass yields better than swine manure. Tissue Cu/Pb concentrations increased linearly as metal doses increased in unamended soils; whereas nonlinear responses were observed in manure-amended soils. Soil-to-plant transfer factors, T f (%) indicated that Cu (13≤T f (% )≤60) was more phytoavailable to roselle than Pb (11≤T f (% )≤20). Tissue metal concentrations were modelled from soil pH, organic matter, plant available and pseudototal metal; but the models appeared more reliable with plant available metal as a covariate than with pseudototal metal content. These observations may become useful whenever phytoextraction is the remedial option for soils moderately contaminated by toxic metals.  相似文献   

17.
SUMMARY

A rich diversity of traditional crops occurs generally in the Himalaya and more particularly in Central Himalaya. Over forty species of food grains are grown in traditional agroecosystems of Central Himalaya, which have been managed by the local farming communities since time immemorial. These traditional crop varieties have evolved over centuries and are well adapted to the particular area. A number of edaphic, topographic and climatic factors associated with different selection pressures over centuries of cultivation resulted in immense variations in the crop species.

The grain and by-product yield of the majority of the traditional crops cultivated across an altitudinal gradient were worked out and compared with common food crops (paddy, wheat, mustard) at two points in time (1970-74, 1990–94) and it was found that almost all the traditional crops had slightly higher yields during 1970–74 than between 1990–94. However, common food crops grown during the Kharif season had higher yields during 1990–94 whereas, Rabi season crops exhibited higher yield during 1970–74. The yield of rainfed paddy remained static over the years across the altitudinal gradient. Among the traditional crops cultivated during the Kharif and Rabi seasons in mixed and pure forms at different altitudes were Macrotyloma uniforum (at higher altitude), Parilla frutescens and Vigna mungo (at middle altitude) and Panicum miliaceum (at lower altitude) which were found to be eco-energetically efficient. Avena sativa (oat) and mixed cropping of Fagopyrum esculentum and potato had higher energy efficiency ratios whereas the latter also exhibited a higher monetary output/input ratio. Crops like paddy and wheat with mustard, grown in irrigated land were found to be more eco-energetically efficient than the same crops grown in the rainfed land. In general, traditional crops possess higher nutritive value than the common food crops. The contribution of traditional crops to the local diet (kg/capita/year) and their energy and protein equivalents were higher during both time periods. It was observed that while exporting these traditional crops, the locals of the region are highly exploited by middlemen. Despite having huge potential, traditional crop diversity of this region has been reduced to a great extent during the last two decades. Besides, the area under cultivation with these crops has been declining rapidly. However, many of these crops possess immense potential to meet the growing food demand and ensure food security of an increasing population. Therefore, a comprehensive programme of conservation through various means and improvement of agronomic yield in their natural habitats is urgently needed.  相似文献   

18.
The present investigation was conducted to determine the contamination status of arsenic (As), cadmium (Cd), and lead (Pb) in the wetland waters of Bhaluka in Bangladesh. Water samples were collected from 15 selected wetlands of Bhaluka region and analyzed using an atomic absorption spectrophotometer. Estimated results of three metals detected were As (7–80?µg?L?1), Pb (0–86?µg?L?1) and Cd (0–70?µg?L?1) in water samples in all wetlands. The level of As in all investigated wetlands (93%) was higher than that of WHO recommended permissible limit of drinking water except Alanga wetland. However, As levels were higher than that recommended for livestock water quality levels. Eighty-seven percent of the investigated wetlands showed lower content of Pb than WHO recommended permissible limit of drinking water, but two wetland waters (Dohuria-1 and Chowdhuri) were polluted with higher Pb levels. Sixty-seven percent of the investigated wetlands displayed higher levels of Cd than WHO recommended permissible limit in drinking water. Dissolved organic material showed no significant difference among the 15 investigated wetlands water, but total dissolved solids was significantly greater. The condition of the water of all wetlands was basic pH. All water samples were applied to linear regression equation and correlation coefficients where values showed no significant differences. Data demonstrate that the estimated high metal concentrations of these ponds may contribute to bioaccumulation within plants, food grains and shrimp.  相似文献   

19.
Elemental composition of particulate matters around Urmia Lake,Iran   总被引:1,自引:0,他引:1  
Atmospheric particulate matters and their elements were concurrently measured at two sites located in the north and southeast parts of Urmia Lake from January to September 2013. At both sampling sites, average concentrations of total suspended particulate, particles with the aerodynamic diameter of smaller than 10 µm, smaller than 2.5 µm, and smaller than 1 µm were 260 ± 106, 180 ± 73, 30 ± 8, and 25 ± 7 µg m?3, respectively. The analyzed water soluble ions accounted for approximately 11%–13% mass concentrations of total suspended particulate and 8%–9% of particles smaller than 10 µm, and the sum of the concentrations of the analyzed elements associated with both ranged from 9 to 41 µg m?3 (6.5%–9.6% in mass) and 7 to 26 µg m?3 (5.5%–11.3% in mass), respectively. Thus, particulate matter was composed of a complex mixture of minerals such as halite, quartz, gypsum, hexahydrite, and Bassanite.  相似文献   

20.
A sustainable means of preventing polluted particulates carried in urban storm water entering rivers, groundwater and lakes is by employing vegetated sustainable drainage system (SUDS) devices, or best management practices to trap or biodegrade them. In the UK, a mixture of grass species is recommended for use in devices such as swales or filter strips. However, there is little evidence in support of the efficiency of the individual grasses or mixtures to deal with such contaminated material. A pot-based pollutant retention study was conducted using processed street dust from central Coventry, UK, as a simulated pollutant to be applied in different quantities to a variety of recommended grasses for vegetated SUDS devices. Analysis was conducted on compost cores, roots and shoots for heavy metals (Cd, Cu, Ni, Pb and Zn). Street dust mainly concentrated in the top compost layer for all grasses with only the finer material migrating down the profile. Analysis of roots indicated little accumulation, with ANOVA statistical tests indicating significant differences in heavy metal concentrations, with less in the compost and more in the shoots. Development of root systems on or near the surface possibly explains increased uptake of heavy metals by some species. Overall Agrostis canina and Poa pratensis showed the greatest accumulations compared to their controls although Agrostis capillaris syn.tenuis and Agrostis stolonifera also demonstrated accumulation potential. On ranking, Agrostis canina and Poa pratensis were highest overall. These rankings will assist in selecting the best grasses to address pollution of the urban environment by contaminated particulates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号