首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We tested predictions of the relative changes in plant leaf traits in response to land uses in Australian eucalypt grassy ecosystems. Predictions were determined from responses observed in European landscapes in relation to disturbances associated with agricultural land uses. We measured specific leaf area (SLA) and leaf dry matter content (LDMC) across five land uses: reference sites (closest to pre-European state), native pastures (unfertilized), fertilized pastures, sown pastures (cultivated and fertilized) and enriched grassland (previously fertilized, no longer grazed). Leaves were expected to have higher SLA and lower LMDC at sites with increasing fertility and/or disturbance.The predictions were confirmed, with SLA increasing progressively in land uses associated with (1) grazing; (2) grazing and fertilization; (3) grazing, fertilization and cultivation. Values for LDMC were closely (but inversely) correlated with those of SLA. For both traits, there were relationships with available soil phosphorus but not with soil total nitrogen. The positive correlation of SLA with phosphorus was not evident above 30 mg kg−1, the recommended level of phosphorus for improved pastures.Results confirm patterns of leaf-trait response to disturbance that reflect fundamental constraints to plant survival in habitats with different levels of resources and disturbances. A conservative strategy for low productivity undisturbed habitats is associated with low SLA and high dry matter content in contrast to fertile disturbed habitats which select for high SLA and low dry matter content. The changes in leaf traits across land uses resulted from species substitution rather than variation within species across sites, and most notably the replacement of native by annual exotic species as land use intensifies.Recommended fertilization rates for pasture production convert the ground layer to plants with soft, digestible leaves, that are responsive to fertilizer and desirable for livestock production. However, fertilization also drastically reduces the diversity of native plants and annual plants tend to dominate. The trade-off associated with high production includes increased vulnerability to soil erosion, due to reduced plant cover and low persistence of cover. If alternative ecosystem values such as erosion control, water quality, salinity control and biodiversity persistence are required, incentives may be needed to offset the loss of production that can be gained from fertilizer application.  相似文献   

2.
Tenerife pastures in the Teno plateau are under a goat grazing management system, and the number of goats has increased by 70% in the past 10 years. This plant community was sampled during 4 years (1992, 1993, 1994 and 1999) over a 10-year period, using ten 0.25 m2 plots to reveal changes in species composition, soil nutrient content, and biomass nutrient content over time and relate these variables to changes in management and understand aspects of the dynamics of these pastures.The results revealed no changes in biomass nutrient composition over the sampling period; however, biomass protein content was related to changes in species composition. Soil phosphorus content increased in the last sampling year and was related to an average species richness decrease in the plots. Results suggest that the increase in soil phosphorus and the decrease in species richness are related to the increase in goat grazing intensity. At the end of the studied period, species with a higher protein content increased in importance in the species composition. The restoration of pastures degraded by agriculture or overgrazing is required to provide a larger area for grazing and to ensure sustainable management of these protected areas.  相似文献   

3.
Cattle activity greatly influences plant species composition and biomass production of grassland ecosystems. Dung deposition by cattle together with grazing and trampling can be considered as one of the important factors driving vegetation dynamics in pastures. The objective of this study was to investigate at 10-cm and 1-month resolution the plant community dynamics induced by dung deposition in two plant communities (a mesotrophic and an oligotrophic grassland) in a pasture of the Swiss Jura Mountains. Vegetation was sampled four or three times during the vegetation period in contiguous 10 cm × 10 cm quadrats from the centre of the dung pat to a distance of 60 cm. A lower grazing intensity near the dung pat was recorded for all observation periods. In the mesotrophic grassland the canopy was higher near the dung pat already one week after dung deposition. Vegetation around dung pats was submitted to two opposite fertilizing and grazing gradients, which induced changes in vegetation texture and structure at fine scale and short term. We observed a positive rank correlation between species turnover and distance to the dung for both communities, suggesting a seasonal stabilizing effect of dung on the plant composition of their direct surroundings (0–10 cm) likely due to cattle avoidance. Since dung pats are dropped every year in different locations, they create in the pasture a shifting mosaic of nutrient availability and grazing intensity inducing at seasonal scale micro-successions in plant communities.  相似文献   

4.
In order to increase the water and fertilizer use efficiency and decrease the losses of water and fertilizer solutes (N and P), it is necessary to assess the influence of level of fertilization and irrigation schedule on movement and balance of water and fertilizers in the root zone. With this goal, the reported study was undertaken to determine the effect of fertilization and irrigation schedule on water movement and fertilizer solute transport in wheat crop field in a sub-tropical sub-humid region. Field experiments were conducted on wheat crop of cultivar Sonalika (Triticum aestivum L.) during the years 2002–2003, 2003–2004 and 2004–2005. Each experiment consisted of four fertilizer treatments and three irrigation treatments during the wheat growth period. During the experiment, the irrigation treatments were: I1 = 10% maximum allowable depletion (MAD) of available soil water (ASW); I2 = 40% MAD of ASW; I3 = 60% MAD of ASW. The fertilizer treatments during the experiment were: F1 = control treatment with N:P2O5:K2O as 0:0:0 kg ha−1; F2 = fertilizer application of N:P2O5:K2O as 80:40:40 kg ha−1; F3 = fertilizer application of N:P2O5:K2O as 120:60:60 kg ha−1 and F4 = fertilizer application of N:P2O5:K2O as 160:80:80 kg ha−1. The results of the investigation revealed that low volume high frequency irrigation results in higher deep percolation losses than the low frequency high volume irrigation with different levels of fertilization for wheat crop in coarse lateritic soil, whereas different levels of fertilization did not significantly affect soil water balance of the wheat crop root zone during all the irrigation schedules. Level of fertilization and irrigation schedule had significant effect on nitrogen leaching loss whereas irrigation schedules had no significant effect on nitrogen uptake under different levels of fertilization. On the other hand, the leaching loss of phosphorus was not significantly influenced by the irrigation schedule and level of fertilization of wheat crop. This indicated that PO4–P leaching loss was very low in the soil solution as compared to nitrogen due to fixation of phosphorus in soils. From the observed data of nitrogen and phosphorus use efficiency, it was revealed that irrigation schedule with 40% maximum allowable depletion of available soil water with F2 fertilizer treatment (N:P2O5:K2O as 80:40:40 kg ha−1) was the threshold limit for wheat crop with respect to nitrogen and phosphorus use, crop yield and environmental pollution.  相似文献   

5.
Productivity of maize–pigeonpea cropping systems is dependent on facilitative and competitive interactive effects on resource availability. Controlling these interactions may benefit farmers through increased productivity associated with optimized crop yields. Previous research on maize–pigeonpea culture in Sub-Saharan Africa has focused on yield and soil fertility, but provided inadequate information on the mechanisms of possible interspecific competition. We employed a factorial field experiment to examine yield and nutritional responses of maize and pigeonpea to cropping systems (sole maize, intercropping, and improved fallow), N and P fertilizer additions, and cattle manure additions in Dodoma, Tanzania. The study objectives were to assess competition between crops and to determine how manure or fertilizer inputs may mitigate such interactions to improve yields. Intercropping enhanced maize yield over sole maize only when fertilized, reflecting probable nutrient competition. Improved fallows alone or with fertilizers (1.2–1.6 Mg ha−1) increased maize yields over sole maize (0.6 Mg ha−1). These increases were attributed to pigeonpea facilitation through soil nutrient replenishment, reduced competition associated with sequential cropping arrangements, and added nutrients from fertilization. Combined fertilizer and manure applications also improved maize and pigeonpea yields. Plant nutrient diagnosis indicated primary and secondary P and Ca deficiencies, respectively associated with P-fixation and leaching of cations due to high soil acidity and exchangeable Al. Maize competed strongly in mixture suppressing biomass and grain yields of the unfertilized pigeonpea by 60% and 33%, respectively due to limited soil nutrients and/or moisture. These yield reductions suggest that the intercropped pigeonpea did not recover from competition after maize harvesting that reduced competition. Optimizing yields of both maize and pigeonpea would require the addition of prescribed fertilizer when intercropped, but applications can be reduced by half under the improved fallow system due to alleviating interspecific competition.  相似文献   

6.
Ecological Footprint Analysis (EFA) is an environmental accounting system, in physical unit, able to quantify the total amount of ecosystem resources required by a region or by a production process. This methodology is both scientifically robust and widely diffused for territorial and productive analysis. The application of EFA to agricultural systems are still uncommon and examples in the fruit sector rare.In this work a detailed application of EFA to an experimental trial in a commercial nectarine orchard in Piedmont (Italy) is presented. The field trial is focused on the evaluation of agronomical benefit of various kinds of swine manure for fertilizing orchards. Four productive systems were established from 2008: liquid slurry (LS), covered slurry (CS), solid fraction (SF), mineral nutrition (MN). All the environmental impacts of the four systems were quantified both directly on field and with extrapolations from farmer knowledge. As previous studies suggested, we considered not only the one-year field operations, but also the whole lifetime of the orchard. The environmental costs of each system are presented and related to each other on the basis of their relative footprint value.Results highlight almost the same ecological footprint for the three manure fertilized systems (LS, CS and SF) with average of 0.96 gha t−1) and the highest ecological footprint can be found in the MN system (1.14 gha t−1). Interesting remarks can be done comparing the contributions to the ecological footprint of the field operations related to fertilization in the four systems. In the manure fertilized systems the fertilizer contribution goes from 0.9% to 1.2% of the total ecological footprint; but in the MN system the fertilizer contribution is 6.6% of the total ecological footprint. Results support the hypothesis that internal recycle and connections among different systems increasingly resulted in high system benefit and sustainability.  相似文献   

7.
As natural woodlands decline in both extent and quality worldwide, there is an increasing recognition of the biodiversity conservation value of production landscapes. In low-input, low-productivity grazing systems in Australia, the modification of natural woodlands through overstorey tree and woody regrowth removal are vegetation management options used by landholders to increase native grass production for livestock grazing; however, there is little empirical evidence to indicate at what tree densities biodiversity attributes are compromised. We examined the effects of overstorey tree density and understorey regowth on the floristic composition, stand structure and species richness of eucalypt woodlands in a grazing landscape in the Traprock region of southern Queensland, Australia. We sampled 47 sites stratified according to vegetation type (Eucalyptus crebra/Eucalyptus dealbata woodland; Eucalyptus melliodora/Eucalyptus microcarpa grassy woodland), density of mature trees (<6 trees/ha; 6–20 trees/ha; >20 trees/ha), and presence/absence of regrowth. Distinct patterns in composition were detected using indicator species analysis and non-metric multidimensional scaling, with low density areas compositionally indistinguishable, although distinct from other land management units. Within vegetation type, medium tree density woodlands were compositionally similar to high density and reference woodlands. Species richness ranged from 18 to 67 species per 500 m2 across all sites. No differences in total or native species richness were detected across management units; however, some differences in exotic species richness were detected. Differences in grass cover existed between low and high density management units, yet no difference in grass cover was evident between low and medium density management units. Our results suggest that medium tree densities may provide biodiversity benefits concordant with more natural areas, yet not adversely impact on pasture production. Retaining trees in grazing landscapes provides significant landscape heterogeneity and important refuges for species that may be largely excluded from open grassland habitats. Maintaining a medium density of overstorey trees in grazed paddocks can provide both production and biodiversity benefits.  相似文献   

8.
减磷配施有机肥对紫色土旱坡地磷素流失的消减效应   总被引:7,自引:1,他引:6  
韩晓飞  高明  谢德体  王子芳  陈晨 《环境科学》2016,37(7):2770-2778
采用野外径流小区对紫色土旱坡地2014年雨季(5~8月)3次典型降雨产流进行定点监测,研究了优化施肥(P)、优化施肥+猪粪有机肥(MP)、优化施肥+秸秆还田(SP)、优化施肥量氮磷钾均减20%+猪粪有机肥(MDP)、优化施肥量氮磷钾均减20%+秸秆还田(SDP)、不施磷肥(P0)等不同方案对紫色土旱坡地地表径流和壤中流磷素流失的影响.结果表明,壤中流是雨季径流主要输出途径,而次降雨地表径流总磷(TP)平均含量和流失负荷都远高于壤中流;地表径流磷素流失是紫色土旱坡地雨季磷素流失主要方式.发现减磷配施有机肥对紫色土旱坡地坡面径流中磷素流失有显著消减效应,SDP、MDP分别比优化施肥P的总磷含量降低57%和48%,配施秸秆效果好于配施猪粪有机肥.次降雨磷素平均流失负荷为0.01~0.26kg·hm~(-2),磷素平均流失负荷表现为PMPSPMDPSDPP0.减磷配施猪粪和秸秆有机肥对土壤磷素地表径流损失具有显著消减效应,但增加壤中流磷素淋失风险.  相似文献   

9.
Soil organic C (SOC) and total soil N (TSN) sequestration estimates are needed to improve our understanding of management influences on soil fertility and terrestrial C cycling related to greenhouse gas emission. We evaluated the factorial combination of nutrient source (inorganic, mixed inorganic and organic, and organic as broiler litter) and forage utilization (unharvested, low and high cattle grazing pressure, and hayed monthly) on soil-profile distribution (0–150 cm) of SOC and TSN during 12 years of pasture management on a Typic Kanhapludult (Acrisol) in Georgia, USA. Nutrient source rarely affected SOC and TSN in the soil profile, despite addition of 73.6 Mg ha?1 (dry weight) of broiler litter during 12 years of treatment. At the end of 12 years, contents of SOC and TSN at a depth of 0–90 cm under haying were only 82 ± 5% (mean ± S.D. among treatments) of those under grazed management. Within grazed pastures, contents of SOC and TSN at a depth of 0–90 cm were greatest within 5 m of shade and water sources and only 83 ± 7% of maximum at a distance of 30 m and 92 ± 14% of maximum at a distance of 80 m, suggesting a zone of enrichment within pastures due to animal behavior. During 12 years, the annual rate of change in SOC (0–90 cm) followed the order: low grazing pressure (1.17 Mg C ha?1 year?1) > unharvested (0.64 Mg C ha?1 year?1) = high grazing pressure (0.51 Mg C ha?1 year?1) > hayed (?0.22 Mg C ha?1 year?1). This study demonstrated that surface accumulation of SOC and TSN occurred, but that increased variability and loss of SOC with depth reduced the significance of surface effects.  相似文献   

10.
不同施肥处理对红壤丘陵区水稻土养分状况的影响   总被引:4,自引:0,他引:4  
研究依托千烟洲生态站,利用1998年建立的红壤稻田长期定位施肥试验,研究不同施肥处理对水稻土土壤碳及养分的影响。结果表明:①施用有机肥有利于提高土壤碳、 氮、 磷含量,土壤总有机碳(SOC)含量达到16.8 g·kg-1,全氮(TN)含量达到1.5 g·kg-1,速效氮(AN)含量达到153.8 mg·kg-1,速效磷(AP)含量达到43.3 mg·kg-1,而土壤速效钾(AK)含量仅达到23.0 mg·kg-1,低于施用化肥的各个处理;②施用氮、 磷、 钾肥减缓了红壤水稻土酸化趋势,显著增加土壤AP(12.3~47.1 mg·kg-1)、 AK(22.3~54.5 mg·kg-1)含量;③秸秆还田可以提高稻田红壤SOC(10.8 g·kg-1)、 TN(1.1 g·kg-1)含量。因此,建议在红壤稻田施入适量有机肥,提倡秸秆还田,提高土壤碳含量,同时配合施用钾肥,满足作物对养分的需求;化肥、 有机肥施用量需要考虑其对水体氮、 磷污染的潜在风险。  相似文献   

11.
种植绿肥对作物产量和细菌群落稳定性的影响   总被引:1,自引:0,他引:1  
为深入研究青海高原地区长期种植绿肥,减施化肥条件下小麦/油菜产量及土壤理化性状及微生物群落的变化,通过2011年建立的定位试验,设GF0(毛苕子作为绿肥,不施用化肥)、GF60(毛叶苕子配施60%化肥)、GF70(毛叶苕子配施70%化肥)、GF80(毛叶苕子配施80%化肥)、GF90(毛叶苕子配施90%化肥)、GF100(毛叶苕子配施100%化肥)、F0(休耕并且不施化肥)、F100(休耕并且施用100%化肥)共8个处理,利用高通量测序等技术,研究了种植利用绿肥减施化肥条件下小麦和油菜的产量、土壤性质和微生物群落结构的变化特征.结果表明,在保证小麦、油菜不减产的基础上,种植绿肥后茬作物减施化肥达到30%左右.绿肥配施减量化肥对土壤肥力有显著的提升作用,特别是土壤有机碳和全氮含量有明显的提高,分别提高1.34%~7.46%、2.16%~7.48%.化肥与绿肥配施增强了土壤微生物群落多样性,其中酸杆菌门和变形菌门是本研究土壤中的优势菌群.共生网络分析表明,绿肥处理提高了细菌群落的稳定性和抗干扰能力,同时绿肥应用增加了细菌群落中的关键物种.本研究表明,不同土壤微生物丰度受种植模式、施肥量影响很大,长期种植绿肥、减施化肥提高了土壤微生物丰度和多样性,增强微生物群落的稳定性.种植绿肥条件下化肥减肥量30%左右保证作物稳产可为当地的施肥管理提供参考.  相似文献   

12.
Effects of grassland management type and intensity on carabid species richness, number of individuals and species composition were studied in the Swiss Prealps. Carabids were censused in 2001 and 2002 in 21 mown and 20 grazed meadows by means of pitfall traps.Mean species richness was significantly higher in mown plots than in grazed plots and species composition was significantly different between these two management types. Additionally, different species characteristic for mown and grazed plots were found. These results suggest that mown meadows and grazed meadows represent two habitat types for carabid beetles.Within both habitats, management intensity was quantified by fertilizing intensity, the number of cuts, cattle density and/or grazing intensity. The relationship between management intensity and the number of individuals and species was positive. Higher fertilizing intensity was the most important factor for higher species richness and had a significant influence on species composition in both habitats. Other variables positively related to the number of individuals, were the number of cuts in mown meadows and grazing intensity and altitude in grazed meadows. Additionally to fertilizing intensity, cattle density was positively related to the number of species in grazed meadows. These results illustrate that in the extensive management systems found in the Swiss Alps and Prealps, even intensively managed meadows can sustain high carabid diversity and abundance.  相似文献   

13.
Nitrous oxide (N2O) emissions from a maize field in the North China Plain (Wangdu County, Hebei Province, China) were investigated using static chambers during two consecutive maize growing seasons in the 2008 and 2009. The N2O pulse emissions occurred with duration of about 10 days after basal and additional fertilizer applications in the both years. The average N2O fluxes from the CK (control plot, without crop, fertilization and irrigation), NP (chemical N fertilizer), SN (wheat straw returning plus chemical N fertilizer), OM- 1/2N (chicken manure plus half chemical N fertilizer) and OMN (chicken manure plus chemical N fertilizer) plots in 2008 were 8.51, 72.1, 76.6, 101, 107 ng N/(m2·sec), respectively, and in 2009 were 33.7, 30.0 and 35.0 ng N/(m2·sec) from CK, NP and SN plots, respectively. The emission factors of the applied fertilizer as N2O-N (EFs) were 3.8% (2008) and 1.1% (2009) for the NP plot, 3.2% (2008) and 1.2% (2009) for the SN plot, and 2.8% and 2.2% in 2008 for the OM-1/2N and OMN plots, respectively. Hydromorphic properties of the investigated soil (with gley) are in favor of denitrification. The large differences of the soil temperature and water-filled pore space (WFPS) between the two maize seasons were suspected to be responsible for the significant yearly variations. Compared with the treatments of NP and SN, chicken manure coupled with compound fertilizer application significantly reduced fertilizer loss rate as N2O-N.  相似文献   

14.
为了解在反季节催花期间不同催花肥处理下莲雾根际土壤细菌群落结构的影响,采用Illumina MiSeq高通量测序技术对细菌16S rRNA V3-V4区进行检测,并结合土壤理化性质,比较分析不施肥(CK)与两种不同浓度施肥处理组(IF组,即无机肥处理组;GM组,即羊粪有机肥处理组)下的根际土壤细菌群落结构多样性.结果表明:①所有样品中共检测到10 925个OTU(operational taxonomic unit,操作分类单元),包括239 639条有效序列,可分为28个门411个属.②多样性指数分析显示,细菌群落多样性顺序为IFM(中浓度无机肥处理)> GML(低浓度羊粪有机肥处理)> IFL(低浓度无机肥处理)> GMM(中浓度羊粪有机肥处理)> CK(对照)> IFH(高浓度无机肥处理)> GMH(高浓度羊粪有机肥处理).其中,酸杆菌门(Acidobacteria)、绿弯菌门(Chloroflexi)、变形菌门(Proteobacteria)、放线菌门(Actinobacteria)为主要菌群,所占比例超过总数的67.33%.③不同施肥条件下莲雾根际土壤细菌群落结构特征分析显示,CK、IF组和GM组所特有的OTU数量分别占总数的0.51%、7.08%和2.60%,表明不同肥料的添加对土壤细菌群落多样性产生一定的影响,在IFH和GMH处理下,酸杆菌门的Subgroup_2_norank属与绿弯菌门的JG37-AG-4_norank属的相对丰度最高,分别为13.13%和15.89%.④环境因子的相关性热图分析表明,装甲菌门(Armatimonadetes)、硝化螺旋菌门(Nitrospirae)、酸杆菌门、放线菌门、厚壁菌门(Firmicutes)这五类菌群与不同环境因子的显著性关系如下:装甲菌门群落结构与pH呈现出极显著正相关,硝化螺旋菌门群落结构分别与w(TN)和w(有机质)呈现出显著负相关,酸杆菌门群落结构与w(速效磷)呈现出显著负相关,放线菌门群落结构与w(速效磷)呈现出显著正相关,厚壁菌门群落结构分别与w(速效磷)和w(速效钾)呈现出极显著正相关.研究显示,适量施加无机肥或羊粪有机肥,可以显著提高土壤细菌的丰度和多样性,有利于土壤生态环境的改良与维系.   相似文献   

15.
In West Africa policies for prescribed early fire and livestock grazing in the savanna woodlands are rarely based on long-term experimental studies. The inherently different management characteristics and their effects on the vegetation dynamics make landscape degradation a contentious issue. The effects of grazing intensity were investigated by a comparison of non-grazed areas, lightly grazed areas, moderately grazed areas, heavily grazed areas and very heavily grazed areas that received one of two fire treatments: early burning and fire protection in a long-term 12-year study. The parameters assessed reflected changes in herbaceous plant cover, biomass as well as soil physical and hydrological properties. The main findings were by and large specific for the grazing level. This supports the argument for devolution of management responsibility to the local level where there is indigenous site-specific knowledge but at the same time insufficient management capacity.A comparison of composite soil samples taken at a depth of 0–10 cm did not differentiate significantly between treatments. This is probably because the composite soil sampling procedure hid the properties of the top first few centimeters. Grazing pressure had a tendency to reduce total above ground biomass (p = 0.081). This was related to increased biomass removal and the trampling pressure (static load) exerted by the animals. The infiltration measurements indicated that the deleterious impact of cattle trampling increased as stocking rate increased. Livestock grazing significantly (p = 0.038) lowered the infiltrability. Prescribed early fire had a tendency (p = 0.073) to reduce the soil water infiltration rate. The subplots subjected to prescribed burning had a lower steady state infiltration rate compared to unburnt areas (means of 49.2 ± 27.5 mm h−1 versus 78 ± 70.5 mm h−1 for burnt and unburnt subplots, respectively). A partial least squares projection to latent structures showed that 34% of the steady state infiltrability was explained by the stocking rate and soil organic matter. Also all soil characteristics were significantly connected to steady state infiltrability suggesting that they are related to the soil hydrological response to trampling.From a management perspective, adoption of a short duration grazing system should avoid high stocking rates because they may adversely affect soil infiltrability, increase susceptibility to erosion in the savannas and decrease biomass productivity.  相似文献   

16.
Impacts of nutrient management on C mineralization and greenhouse gas (GHGs) emission from soils have been of much concern in global change. Using laboratory incubation, the production of CH4 and CO2 were studied from both bulk samples and the particle size fractions (PSF) of topsoil from a paddy under a long-term different fertilization trial (including non (NF), chemical without (CF) and with manure (CFM) fertilization, respectively) in the Tai Lake Region, China. Four PSFs (2000–200, 200–20, 20–2, <2 μm) were separated from undisturbed samples collected after rice harvest by a low-energy ultrasonic dispersion procedure. Both the bulk samples and PSFs were incubated under submerged condition for 72 days. The concentration of CH4 and CO2 evolved during incubation were determined by gas chromatography. C mineralization rates ranged from 0.13 to 0.52 mg C g−1 C day−1, with different fertilizations and size of the PSFs, and were not correlated with C/N ratio. While CO2 production predominated over CH4 from C mineralization from both bulk samples and the size fractions, CH4 production played a predominant role in the total global warming potential (GWP) under all treatments. C mineralization of bulk soil was significantly higher under CF than under CFM and NF. CH4 production, however, was 3 times as under CFM and 27 times as under NF, indicating a tremendous effect of chemical fertilization alone on the total GWP. CO2 production from the PSFs differed from CH4 under a single treatment, which was notably from the coarse PSFs larger than 200 μm. Higher C mineralization and CH4 production with a higher metabolic quotient under CF implicated a vulnerability of soil functioning of GHGs mitigation in the paddy receiving chemical fertilizers only. Thus, rational organic amendments should be undertaken for mitigating the climate change.  相似文献   

17.
Stored solid manure heaps can be a significant source of nitrous oxide (N2O) and methane (CH4) emissions. The manure characteristics influence emissions and solid manure heaps can be managed to promote aerobic decomposition during storage. Increasing the carbon (C) content of the manure heap with high-C additives, such as straw, may provide the opportunity for N2O and CH4 emission reduction. Greenhouse gas (GHG) emissions from conventionally produced farmyard manure (FYM) have been quantified, but there is little data on emissions from organically produced FYM. N2O and CH4 emissions were measured using a small-scale storage method from FYM collected from organic and conventional dairy units under a range of storage conditions with and without extra straw addition.The organic and the conventional FYM were similar in composition except for the higher C and dry matter content in the organic FYM and in the FYM with added straw. This resulted in mean total emissions of N2O and CH4 being lower from the organic (27 g N t−1) than the conventional FYM (52 g N t−1) and from the treatments with straw added (32 g N t−1) than those without (47 g N t−1). The initial C:N ratio and dry matter content of the stored FYM were the most important factors affecting N2O and CH4 emissions although the FYM temperature also affected CH4 emissions. Adding high-C additives, such as straw could be a promising strategy for reducing GHG emissions because it influences the dry matter content, C:N ratio and aeration of the manure. The small-scale FYM storage method were shown to be a reliable and an easy method to quantify emissions under a range of environmental conditions and manure manipulations and so develop effective manure management practices to reduce GHG emissions.  相似文献   

18.
不同施肥模式对热区晚稻水田CH4和N2O排放的影响   总被引:10,自引:8,他引:2  
由于农田温室气体排放的原位观测主要集中于温带和亚热带地区,热带地区农田土壤温室气体的排放往往被忽视.研究不同施肥模式下海南稻田温室气体排放特征对于准确评估我国农田土壤CH_4和N_2O排放及制定相应的减排措施有重要意义.本研究设置5个处理:空白对照(CK)、常规施肥(CON)、优化施肥(YH)、优化施肥与缓控释肥配施(ZYH1)、优化施肥、缓控释肥和有机肥三者配施(ZYH2),采用静态箱-气相色谱法,通过田间小区试验研究晚稻生长季CH_4和N_2O排放动态特征,并估算全球增温潜势(GWP)以及温室气体排放强度(GHGI).结果表明,CK、CON、YH、ZYH1和ZYH2处理的CH_4晚稻生长季累计排放量分别为175. 70、60. 30、63. 00、62. 80和56. 60 kg·hm~(-2),相应处理的N2O晚稻生长季累积排放量分别为0. 78、3. 40、1. 03、1. 44和0. 44 kg·hm~(-2). ZYH2的产量较CK、CON、YH和ZYH1分别提高了29. 69%、11. 81%、6. 74%和10. 36%,GWP较CK、CON、YH和ZYH1分别降低了64. 80%、43. 23%、12. 93%和15. 15%,同时,GHGI分别降低了76. 49%、52. 52%、20. 54%和23. 87%.相关分析结果表明:土壤温度和Eh是驱动CH_4排放变化的主要因素.综合产量及温室气体减排效果而言,优化施肥+羊粪有机肥+缓控释肥处理(ZYH2)是当地值得推广的减肥模式.  相似文献   

19.
Sub-Saharan Africa is large and diverse with regions of food insecurity and high vulnerability to climate change. This project quantifies carbon stocks and fluxes in the humid forest zone of Ghana, as a part of an assessment in West Africa. The General Ensemble biogeochemical Modeling System (GEMS) was used to simulate the responses of natural and managed systems to projected scenarios of changes in climate, land use and cover, and nitrogen fertilization in the Assin district of Ghana. Model inputs included historical land use and cover data, historical climate records and projected climate changes, and national management inventories. Our results show that deforestation for crop production led to a loss of soil organic carbon (SOC) by 33% from 1900 to 2000. The results also show that the trend of carbon emissions from cropland in the 20th century will continue through the 21st century and will be increased under the projected warming and drying scenarios. Nitrogen (N) fertilization in agricultural systems could offset SOC loss by 6% with 30 kg N ha−1 year−1 and by 11% with 60 kg N ha−1 year−1. To increase N fertilizer input would be one of the vital adaptive measures to ensure food security and maintain agricultural sustainability through the 21st century.  相似文献   

20.
Organic farming systems often comprise crops and livestock, recycle farmyard manure for fertilization, and preventive or biocontrol measures are used for plant protection. We determined indicators for soil quality changes in the DOK long-term comparison trial that was initiated in 1978. This replicated field trial comprises organic and integrated (conventional) farming systems that are typical for Swiss agriculture. Livestock based bio-organic (BIOORG), bio-dynamic (BIODYN) and integrated farming systems (CONFYM) were compared at reduced and normal fertilization intensity (0.7 and 1.4 livestock units, LU) in a 7 year crop rotation. A stockless integrated system is fertilized with mineral fertilizers exclusively (CONMIN) and one control treatment remained unfertilized (NOFERT). The CONFYM system is amended with stacked manure, supplemental mineral fertilizers, as well as chemical pesticides. Manure of the BIOORG system is slightly rotted and in BIODYN it is composted aerobically with some herbal additives. In the third crop rotation period at normal fertiliser intensity soil organic carbon (Corg, w/w) in the plough layer (0–20 cm) of the BIODYN system remained constant and decreased by 7% in CONFYM and 9% in BIOORG as compared to the starting values. With no manure application Corg-loss was severest in NOFERT (22%), followed by CONMIN together with the systems at reduced fertiliser intensity (14–16%). Soil pH tended to increase in the organic systems, whereas the integrated systems had the lowest pH values. At the end of the third crop rotation period in 1998 biological soil quality indicators were determined. Compared to soil microbial biomass in the BIODYN systems the CONFYM soils showed 25% lower values and the systems without manure application were lower by 34%. Relative to the BIODYN soils at the same fertilization intensity dehydrogenase activity was 39–42% lower in CONFYM soils and even 62% lower in soils of CONMIN. Soil basal respiration did not differ between farming systems at the same intensity, but when related to microbial biomass (qCO2) it was 20% higher in CONFYM soils and 52% higher in CONMIN as compared to BIODYN, suggesting a higher maintenance requirement of microbial biomass in soils of the integrated systems. The manure based farming systems of the DOK trial are likely to favour an active and fertile soil. Both, Corg and biological soil quality indicators were clearly depending on the quantity and quality of the applied manure types, but soil microbial biomass and activities were much more affected than Corg.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号