首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 218 毫秒
1.
2010年冬、夏两季,利用大流量采样器采集了福州市大气样品,并用气相色谱-电子捕获检测器(GC-mECD)分析其中六六六(HCHs)和滴滴涕(DDTs)残留水平、分布特征及来源.结果表明,大气ΣHCHs浓度范围为28.04~413.0 pg/m3,总体而言,城区高于郊区,夏季高于冬季,气相高于颗粒相;气相中HCHs浓度夏季高于冬季,颗粒相中则相反;夏季气相中HCHs浓度显著高于颗粒相,而冬季气相与颗粒相中HCHs浓度基本相当.4种HCHs异构体中,气相与颗粒相中均是δ-HCH相对含量最高.大气ΣDDTs浓度范围为146.5~897.8 pg/m3,总体而言,郊区高于城区,冬季高于夏季,颗粒相高于气相;气相中DDTs浓度夏季高于冬季,颗粒相中则相反;冬季颗粒相中DDTs浓度显著高于气相,而夏季颗粒相与气相中DDTs浓度无显著差异.4种DDTs异构体/同系物中,气相中o,p′-DDT的相对含量最高,颗粒相中o,p′-DDT和p,p′-DDT相对含量较高.来源解析表明,福州城郊大气中HCHs非历史污染,存在林丹的使用或输入;大气中可能存在DDTs输入,并可能有大量三氯杀螨醇的输入.  相似文献   

2.
珠江口及南海近海海域大气多环芳烃分布特征   总被引:3,自引:0,他引:3  
分冬、春两次航次分别采集了珠江口及南海近海海域大气气溶胶样品和气相样品,同时以广州和中山作为陆基对照点,对16种EPA优控多环芳烃进行了分析.结果表明,大气PAHs主要以气态化合物为主,总PAHs(气态+颗粒态)的含量范围为49.6~256.6 ng/m3,平均120.7 ng/m3.珠江口海域大气颗粒态多环芳烃季节变化显著,冬、春航次大气颗粒态多环芳烃的含量分别为6.7~18.0 ng/m3和0.4~5.1 ng/m3,冬季航次期间大气颗粒态PAHs含量的高值主要源于大陆气流对城市群大气PAHs污染的输送,另外干冷的季节亦有利于PAHs向颗粒态的富集.与此相反,气态多环芳烃含量的季节差异不明显.在冬季,随东北季风携带的城市粉尘可以将大气中的气态PAHs捕获,而春季航次的大气PAHs主要来源于西太平洋地区的远程输送和PAHs的海-气交换作用.认为受控于季风活动的水、热因子组合特征,是影响珠江口海域大气PAHs含量与分布的主导因素.  相似文献   

3.
西安城区大气中多环芳烃的季节变化特征及健康风险评价   总被引:11,自引:1,他引:11  
利用大流量主动采样器于2008年8月至2009年7月采集了西安城区大气样品,研究了大气中多环芳烃(PAHs)的季节变化特征.结果表明,西安大气中16种美国EPA优控的PAHs(∑PAHs)气固两相总浓度为37~620ng·m-3(年平均为195ng·m-3),具有明显的季节差异,依次为夏季(74ng·m-3)<春季(106ng·m-3)<秋季(213ng·m-3)<冬季(360ng·m-3).气态PAHs以3~4环为主,颗粒态PAHs以5~6环为主.分子组成表明西安大气PAHs主要来自于燃煤和机动车尾气及生物质燃烧的复合源.应用BaP毒性当量因子及健康风险评价模型对西安城区成人和儿童进行PAHs健康风险评价,结果显示成人和儿童的日均暴露剂量分别为24.3×10-6mg·kg-·1d-1和5.6×10-6mg·kg-·1d-1,终身致癌超额危险度分别为7.5×10-5和1.7×10-5,可能造成成人和儿童的预期寿命损失分别约为467.6min和107.5min.  相似文献   

4.
利用大流量主动采样器于2008年8月至2009年7月采集了西安城区大气样品,研究了大气中多环芳烃(PAHs)的季节变化特征.结果表明,西安大气中16种美国EPA优控的PAHs(∑PAHs)气固两相总浓度为37~620ng·m-3(年平均为195ng·m-3),具有明显的季节差异,依次为夏季(74ng·m-3)〈春季(106ng·m-3)〈秋季(213ng·m-3)〈冬季(360ng·m-3).气态PAHs以3~4环为主,颗粒态PAHs以5~6环为主.分子组成表明西安大气PAHs主要来自于燃煤和机动车尾气及生物质燃烧的复合源.应用BaP毒性当量因子及健康风险评价模型对西安城区成人和儿童进行PAHs健康风险评价,结果显示成人和儿童的日均暴露剂量分别为24.3×10-6mg·kg-·1d-1和5.6×10-6mg·kg-·1d-1,终身致癌超额危险度分别为7.5×10-5和1.7×10-5,可能造成成人和儿童的预期寿命损失分别约为467.6min和107.5min.  相似文献   

5.
深圳市大气中多环芳烃的污染特征与来源识别   总被引:7,自引:1,他引:6       下载免费PDF全文
利用大流量主动采样器于2009年12月~2010年1月及2010年6月,分冬季与夏季两批次对深圳市13个点位进行大气样品采集,检测其气相及颗粒相中总的多环芳烃(PAHs)浓度.结果表明,冬季深圳市大气中总PAHs的浓度为17.9~92.3ng/m3,平均值为45.3ng/m3;夏季总PAHs浓度范围为8.64~96.3ng/m3,平均值为32.2ng/m3.两个季节PAHs单体中均以3~4环为主,占总浓度的75%以上;单个组分与总量的相关性分析表明,夏季明显优于冬季.来源分析表明,冬季大气中PAHs来源比夏季更为复杂,通过特征分子比值法推断冬季PAHs主要来源于石油源、燃煤、机动车尾气排放;夏季主要来源于机动车尾气排放.利用毒性当量因子法和致癌风险评价其污染水平和毒性风险,结果表明深圳市大气中PAHs污染与国内部分城市相比,处于较低水平.  相似文献   

6.
兰州大气细颗粒物中多环芳烃污染特征及来源分析   总被引:7,自引:7,他引:0  
多环芳烃(polycyclic aromatic hydrocarbons,PAHs)是环境空气中一类重要的有毒化合物,为探究兰州市大气细颗粒物(fine particulate matter,PM_(2.5))中PAHs的污染特征,于2012年冬季和2013年夏季采集兰州市PM_(2.5)样品共60个,并进行了GC/MS分析.结果表明,16种PAHs的冬、夏季平均总质量浓度分别为(191.79±88.29)ng·m~(-3)和(8.94±4.34)ng·m~(-3),冬季污染程度明显严重;降雪是导致兰州冬季大气PM_(2.5)中PAHs质量浓度降低最主要的气象因素;冬、夏季PAHs的环数分布均以4环比例最大,分别为51.40%和49.94%,5~6环比例夏季41.04%,高于冬季24.94%,2~3环比例冬季23.67%,高于夏季9.03%;通过PAHs的特征比值分析,兰州大气PM_(2.5)中PAHs的来源冬季以燃煤源和机动车尾气为主,其中柴油车比例较大;夏季汽油车对PAHs的相对贡献较大.  相似文献   

7.
广州市大气中多环芳烃分布特征、季节变化及其影响因素   总被引:37,自引:16,他引:21  
李军  张干  祁士华 《环境科学》2004,25(3):7-13
对广州市大气中气态和颗粒态多环芳烃(PAHs)进行了连续一年的采样观测.结果表明,气态和颗粒态样品中PAHs的平均浓度值分别为312.9 ng/m3 和 23.7 ng/m3,即多环芳烃主要存在于气相中,占大气总PAHs年平均的92.5%,且在夏季的比重要高于冬季.所检出的的气态多环芳烃以芴、菲、蒽等低环数化合物为主,其中菲占了总含量的60%以上;颗粒态多环芳烃则以高环数的化合物为主,各化合物所占的比重相当,其相对浓度无显著差别.气态多环芳烃在夏季达到高值,冬季降为低值;而颗粒态与其相反,夏季低值,冬季达到高值.在所测定的气象条件中,温度在影响气态多环芳烃浓度变化的因素中占了绝对优势,其次为风速,其它气象因素未观测到有较明显的影响作用;对颗粒态多环芳烃来说,则无绝对的影响因素,温度、风速和湿度同为重要影响因素,但随着分子量的增加,各因素的影响大小顺序略有不同.  相似文献   

8.
孙少艾  李洋  周轶  王海蛟  孙英 《环境科学》2012,33(11):4018-4024
垃圾焚烧是大气PAHs污染的重要来源,为监测垃圾焚烧过程产生的PAHs,利用被动采样技术对垃圾焚烧厂及周边大气中的多环芳烃(PAHs)进行了定量分析.结果表明,PAHs总量为146.29~396.30 ng·d-1,其中气相中PAHs为128.03~377.05 ng·d-1,颗粒相中PAHs为10.698~19.251 ng·d-1.气相中PAHs组成以菲、荧蒽、芴等低环化合物为主,菲的含量高达55.1%.选定松针作为被动植物样品,测得松针中PAHs的浓度为651.88~1 044.43 ng·g-1;考察土壤中PAHs的分布特征,测得土壤中PAHs浓度为35.04~998.89 ng·g-1.被动采样和松针、土壤中所含的PAHs分布特征相似,说明被动采样能反映PAHs在环境中的真实积累情况.此外,通过比较主动采样与被动采样结果,表明两者对大气中PAHs的富集能达到基本一致的效果.  相似文献   

9.
2014年在新疆和田市城区分冬、春、夏、秋4个季节采集大气PM2.5样品,分析了其中16种多环芳烃(PAHs)的含量、组成和来源,并评估了其致癌风险。结果表明:PAHs浓度年均值为99.02 ng/m~3,且具有明显的季节性分布,即冬季(241.52 ng/m~3)秋季(87.50ng/m~3)春季(30.81 ng/m~3)夏季(10.39 ng/m~3),冬季苯并[a]芘(Ba P)的浓度高达16.57 ng/m~3;全年PAHs以4~6环为主,冬季4环PAHs比例(46.03%)明显高于夏季的比例(15.97%),表明气粒两相分配对PAHs分布有显著影响。PAHs浓度与气温和风速显著负相关,与相对湿度显著正相关,表明相对低的气温和风速、相对高的湿度是冬季PAHs污染较高的重要原因。特征比值法源解析结果显示,PAHs主要来源于燃烧源,其中冬季PAHs来源以燃煤及薪柴燃烧为主,春、秋季以燃煤源和交通源的混合污染来源为主,夏季以交通源为主。后向轨迹分析表明,除和田市东北部的局地输送外,来自中亚、西亚其他国家外部输入的气团也对和田市城区PAHs有重要影响。苯并[a]芘毒性当量浓度(Ba P_(eq))年均值为10.51 ng/m~3,终身呼吸性肺癌风险(CR)为9.14×10~(-4),是美国环保署(USEPA)可接受致癌风险指数的9.14倍,表明和田市城区居民具有一定的潜在健康风险。  相似文献   

10.
广西乐业大石围天坑群多环芳烃的干湿沉降   总被引:10,自引:7,他引:3  
为研究大气多环芳烃(PAHs)的沉降对广西乐业大石围天坑群喀斯特生态环境的影响,选择典型的大石围天坑,采用大气干湿采样器分季节进行了为期1 a(2007-03~2008-03)的大气干湿沉降样品采集,利用气相色谱-质谱联用仪(GC-MS)测定了16种PAHs优先控制污染物.结果表明,大气干湿沉降中PAHs的干湿沉降通量为132.36~1 655.27 ng.(m2.d)-1,平均值为855.00 ng.(m2.d)-1,大石围天坑的PAHs沉降量为51.98 g.a-1;PAHs的组成以苯并[b]荧蒽、、苯并[a]芘、苯并[k]荧蒽、蒽、菲、萘7种为主,占总量PAHs的78.5%;大气PAHs沉降通量的空间分布为东垭口>南垭口>西峰>北垭口;不同季节的沉降通量为春季>夏季>秋季>冬季,春、夏季PAHs沉降通量高于秋、冬季4.6倍,春、夏季以4~6环PAHs为主,而秋、冬季以2~3环PAHs为主;研究区大气PAHs沉降通量与降雨量、风向、风速、温度气象因子及污染源的方位密切相关;大石围天坑群大气PAHs沉降通量在春季、夏季呈季节性增高可能来源于高气温、低海拔的广西工业发达地区.  相似文献   

11.
广西大石围巨型漏斗土壤中多环芳烃与环境因素   总被引:5,自引:4,他引:1  
孔祥胜  祁士华  蒋忠诚  黄保健 《环境科学》2012,33(11):3905-3915
选择典型的广西乐业大石围巨型岩溶漏斗(天坑)为研究对象,采集大石围漏斗不同部位的表层土壤,采用气象仪器观测大石围漏斗的环境因子,利用气相色谱-质谱仪(GC-MS)测定16种多环芳烃(PAHs)优先控制污染物.结果表明,大石围天坑群地表(正地形)土壤中ΣPAHs浓度范围为75.20~373.79 ng·g-1,平均值120.70 ng·g-1;地下(负地形)土壤,绝壁中ΣPAHs浓度范围为19.88~330.79 ng·g-1,平均值131.86 ng·g-1;底部中ΣPAHs浓度范围为127.48~661.62 ng·g-1,平均值395.22 ng·g-1;地下河(洞穴)中ΣPAHs浓度范围为1 132.11~1 749.95 ng·g-1,平均值为1 412.39 ng·g-1;土壤中PAHs以4~6环为主.比值法推断大石围漏斗土壤PAHs的来源主要为化石燃料燃烧源,主要污染途径为大气传输沉降.总体上,大石围漏斗土壤中PAHs浓度的空间分布随温差和相对湿度的升高呈现地面-绝壁-底部-地下河(洞穴)逐渐增加,PAHs显示"冷陷阱效应"的垂向富集与分异作用.影响PAHs分布的主要环境因素是温度,其次是湿度、风向和风速,在漏斗局部显示多环境因子共同作用.环境因子夏季影响大于冬季.监测发现,2007年比2006年大石围漏斗底部土壤中PAHs的浓度增加了3.5倍.因此,本研究提出巨型岩溶漏斗PAHs的富集和分异作用与环境因素密切相关.  相似文献   

12.
闽江福州段沉积物中多环芳烃的分布、来源及其生态风险   总被引:3,自引:1,他引:2  
对闽江福州段37个沉积物样品中的15种多环芳烃(PAHs)进行了研究.结果表明,15种PAHs的总量在241.5~1310.8ng·g-1之间,均值为630.9ng·g-1,且从上游到下游整体上呈下降的趋势,但在福州市区附近有突增的现象.沉积物中有机质含量(SOM)与PAHs总量呈显著正相关(r=0.58,p<0.01).同时,应用因子分析和多元线性回归方法对PAHs进行了源解析.结果表明,煤燃烧来源占31.7%,汽油燃烧占25.2%,柴油燃烧占28.7%,石油泄漏源占14.5%,石油燃烧是闽江福州段沉积物中PAHs的主要来源.用效应区间中值ERM(the effects range median)和效应区间低值ERL(the effects range low)及其商值平均方法对闽江福州段沉积物中PAHs的生态风险进行了评价.结果表明,有4个样品芴的含量超过ERL指导值(19ng·g-1),具有一定的生态风险,其余PAH单体和PAHs总量都不超标.  相似文献   

13.
北京PM2.5中多环芳烃的污染特征及来源研究   总被引:12,自引:2,他引:10  
采用GC/MS定量分析了2003年9月至2004年7月期间北京市PM2.5中16种优控PAHs的含量.研究表明.PAHs总浓度年均值139.59ng·m-3,变化范围1.02-776.4 ng·m-3.冬季浓度最高271.05 ng·m-3,夏季最低26.10 ng·m-3,反映了主要源排放(燃煤)变化与气象条件的共同影响.全年平均不同环数PAHs所占总浓度的比例由大到小:4环>5环>6环>3环>2环;冬季4环PAHs所占比例最大(48.7%),其次为5环(32.5%)和6环PAHs(14.9%);夏季5环、6环PAHs所占比例最高(36.5%),其次为4环PAHs(24.1%).源排放特征化合物比值法和主成分分析法结果都表明,燃煤、机动车和油类挥发是多环芳烃的3类主要污染源,能够解释主成分分析法总方差的88%.  相似文献   

14.
马可婧  孙丽娟 《环境科学》2023,44(11):5997-6006
为了明确兰州市PM2.5中16种多环芳烃(PAHs)的污染特征和来源,采集了兰州市4个季节的PM2.5样品,运用气相色谱-质谱联用仪(GC-MS)对PAHs的浓度进行了分析,利用正定矩因子分解法(PMF)、聚类分析和潜在源因子分析法(PSCF)对PAHs的来源进行解析.结果表明,兰州市PM2.5ρ(PAHs)均值为:冬季[(118±16.2) ng·m-3]>秋季[(50.8±21.6) ng·m-3]>春季[(22.2±8.87) ng·m-3]>夏季[(4.65±1.32) ng·m-3].相关性分析表明,兰州市PM2.5和TPAHs均与温度呈现极显著的负相关性,与气压呈现极显著的正相关性,与风向、风速和相对湿度的相关性较差.各环PAHs在4个季节的占比相似,其中4环和5环的PAHs占比为最大,其次为6环和2~3环.兰州市PM2.5中PAHs的主要来源在春夏季为工业排放和生物质及天然气燃烧,秋季工业排放占主导地位,冬季主要为燃煤排放,交通排放在4个季节的贡献比较稳定.聚类分析和PSCF计算结果表明,来自蒙古国、新疆东北部和青海等地的气流对兰州市环境空气质量有重要的影响.  相似文献   

15.
采集了厦门市冬春季(2008-12-04~2009-03-20)湖里工业区和大嶝岛旅游区大气PM10样品,用GC-MS定量了PM10负载的19种多环芳烃(PAHs),并结合采样期间气象资料对灰霾期和非灰霾期多环芳烃的差异特征进行对比分析.结果表明,冬春季采样期内,厦门市大气PM10中PAHs的浓度变化范围为12.93~79.27 ng.m-3,平均42.28 ng.m-3,比2004年冬季增长近3倍.灰霾期间PM10中PAHs总的质量浓度明显高于非灰霾期,并且灰霾期间低分子量组分菲、荧蒽和芘的质量分数显著下降,高分子量组分苯并[b]荧蒽、苯并[k]荧、苯并[a]芘、苝、茚并[1,2,3-cd]芘、苯并[ghi]苝和晕苯的质量分数相对升高.采用特征化合物比值、主成分分析与多元线性回归对来源与贡献率进行了分析和估算.灰霾期间识别出3类污染源:机动车尾气排放+天然气燃烧、煤燃烧和焦炉排放,其贡献率分别为62.7%、28.1%和9.2%;非灰霾期间同样识别出这3类污染源,其贡献率分别为48.6%、36.9%和14.5%.表明厦门市冬春季灰霾期间PM10中PAHs受本地源排放影响相对较多,非灰霾期间受北方燃煤长距离传输影响更显著.  相似文献   

16.
广西大石围天坑中多环芳烃的大气传输与分异   总被引:6,自引:4,他引:2  
孔祥胜  祁士华  孙骞  黄保健 《环境科学》2012,33(12):4212-4219
选择典型的岩溶地区广西乐业大石围天坑群为研究对象,利用聚氨酯泡沫被动采样器(PUF-PAS)采集大石围天坑口部至地下河剖面空气样品,并进行了气象参数的观测.利用气相色谱-质谱仪(GC-MS)测定16种多环芳烃(PAHs)优先控制污染物.结果表明,大石围天坑至地下河空气中ΣPAHs浓度范围为33.76~150.86 ng·d-1,平均值80.36 ng·d-1,其中绝壁、底部和地下河浓度分别为67.17、85.36和101.67 ng·d-1;空气中PAHs以2~3环的菲、蒽、萘、芴4种为主,占87.97%.PHAs的源来自于大气传输的化石燃料的燃烧.大石围天坑空气中PAHs的富集与传输过程为:地表-绝壁-底部-地下河,且浓度随深度/长度的增加有明显的增加趋势,在西峰脚、天坑底部和地下河处,低分子量的PAHs菲、蒽、芴和荧蒽发生了分异作用.温度是影响天坑中PAHs大气传输、富集的主要因子,其次为风向、风速和相对湿度;相对湿度和温度都是PAHs分异作用的主要因子,风速和风向为次要因子.总体上,天坑明显地展现了持久性有机污染物(POPs)的"冷陷阱效应"。  相似文献   

17.
辽河水系沉积物中PAHs的分布特征及风险评估   总被引:4,自引:2,他引:2  
武江越  刘征涛  周俊丽  高富 《环境科学》2012,33(12):4244-4250
采用GC-MS方法测定了辽河流域19个采样点位枯水期以及丰水期表层沉积物中多环芳烃(PAHs)的含量,共检出15种PAHs.枯水期ΣPAHs为123.5~21 233.4 ng·g-1,平均含量为3 208.1 ng·g-1;丰水期ΣPAHs为37.9~9 014.0ng·g-1,平均含量为1 612.0 ng·g-1.利用特征化合物指数法对PAHs进行源分析,主要来源是燃料燃烧.运用平均沉积物质量基准商(mSQG-Q)对辽河流域PAHs进行风险评价,芴和芘存在中低度生态效应;丰水期抚顺段L3-1有较强的负面效应,枯水期沈阳段L1-1点位、抚顺段L3-1和L3-2有较强的负面效应.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号