首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
深圳大运会期间,利用大流量主动采样器对深圳市5个点位进行大气样品采集,检测其气相及颗粒相中总的多环芳烃(PAHs)浓度以及与2010年夏季的监测数据进行比较,研究PAHs通过各种空气质量保障措施实施后的消减情况.结果表明,大运期间5个点位∑PAHs变化范围为15.80~62.09ng/m3,平均值30.77ng/m3,与2010年夏季相比,PAHs平均消减28%;大运期间PAHs单体中均以3~4环为主,平均占总浓度的88%;通过特征分子比值法推断大运期间机动车尾气排放是PAHs的主要来源,但是柴油车尾气排放和燃煤电厂废气排放的贡献比率增加;大运期间∑BaPeq比2010年夏季降低36%,BaP浓度以及∑BaPeq浓度都低于我国环境空气中对BaP的限值标准;呼吸致癌风险评价表明,大运期间为每百万人致癌3.8例,2010年夏季为每百万人致癌7.3例,致癌风险下降48%.  相似文献   

2.
成都市PM10中多环芳烃来源识别及毒性评估   总被引:1,自引:0,他引:1  
对成都市2009年冬夏两季可吸入颗粒物(PM10)中16种多环芳烃(PAHs)含量进行了研究,并进一步分析其空间分布、组成特征及来源.结果表明,16种PAHs中15种被普遍检出(Nap未检出),冬季和夏季的ΣPAHs浓度范围分别为40.25~150.68ng/m3和44.51~71.16ng/m3,平均浓度分别为88.36ng/m3和64.21ng/m3.空间分析表明,PAHs浓度在工业区较高,背景点较低.从PAHs组分分析结果显示,低环含量较低,4~6环所占比例较大,其比例范围为86.7%~96.1%.各组分含量季节差异不明显.利用特征化合物比值法、等级聚类法、PCA解析法分析了污染源类型,结果表明成都市PM10中PAHs的主要来源是机动车尾气排放源,以及煤与木材燃烧源.通过BaP当量(BaPE)进行了毒性评估,结果显示成都市冬夏两季的BaPE均值分别为13.41ng/m3和9.54ng/m3.  相似文献   

3.
神农架大九湖大气中的多环芳烃   总被引:2,自引:1,他引:1  
为了研究神农架大九湖大气中多环芳烃(polycyclic aromatic hydrocarbons,PAHs)的质量浓度、来源及健康风险,用聚氨基甲酸酯泡沫被动采样器对大九湖大气中的PAHs进行了季节性监测.结果表明,大气中ΣPAHs的质量浓度为6.94~184.23 ng·m~(-3),平均值为30.36 ng·m~(-3),主要成分为菲(Phe)、萘(Nap)、芘(Pyr)、荧蒽(Fla)、芴(Flu)和蒽(Ant)等低环数化合物.与其他地区相比,大九湖大气中的PAHs处于较低污染水平.鹿场附近、大九湖泥炭区和大九湖管理局PAHs污染较严重.秋冬季污染较严重,春夏季污染较轻.特征化合物含量比值法和后向轨迹聚类分析法解析结果表明,大九湖大气中的PAHs污染主要来自煤和生物质的燃烧,兼有机动车尾气排放和石油源,既有当地排放又有来自湖北、河南和湖南等地的近源传输和少数西北方向的远源传输.健康风险评价结果表明,总毒性当量质量浓度(ΣBaPeq)年平均值为0.208 ng·m~(-3),低于我国环境空气质量标准(GB 3095-2012)中规定的BaP年平均质量浓度限值(1 ng·m~(-3)),说明大九湖大气中PAHs的健康风险较小.  相似文献   

4.
北京部分地区大气PM10中多环芳烃的季节性变化   总被引:10,自引:0,他引:10       下载免费PDF全文
采集了北京城乡结合部和郊区 2003 年 4 个季节大气 PM10样品,用超声萃取-GC/MS 技术分析了其多环芳烃的组成.结果表明,17 种母核多环芳烃总量在8.46~296.57ng/m3之间,城乡结合部的浓度是郊区的1.02~1.58倍.PAHs总量的季节性变化与采样时环境温度显示出较好的负相关性,即冬季>秋季>春季>夏季.郊区和城乡结合部冬季 PAHs 总量分别是夏季的 22.25 倍和 34.41 倍,显示了燃煤取暖对北京冬季大气 PAHs 污染的贡献极为显著.运用多种多环芳烃比值综合判断,北京大气 PM10中 PAHs 主要以燃煤和机动车尾气混合来源为主,石油源和木材燃烧源的贡献较小.  相似文献   

5.
兰州大气细颗粒物中多环芳烃污染特征及来源分析   总被引:7,自引:7,他引:0  
多环芳烃(polycyclic aromatic hydrocarbons,PAHs)是环境空气中一类重要的有毒化合物,为探究兰州市大气细颗粒物(fine particulate matter,PM_(2.5))中PAHs的污染特征,于2012年冬季和2013年夏季采集兰州市PM_(2.5)样品共60个,并进行了GC/MS分析.结果表明,16种PAHs的冬、夏季平均总质量浓度分别为(191.79±88.29)ng·m~(-3)和(8.94±4.34)ng·m~(-3),冬季污染程度明显严重;降雪是导致兰州冬季大气PM_(2.5)中PAHs质量浓度降低最主要的气象因素;冬、夏季PAHs的环数分布均以4环比例最大,分别为51.40%和49.94%,5~6环比例夏季41.04%,高于冬季24.94%,2~3环比例冬季23.67%,高于夏季9.03%;通过PAHs的特征比值分析,兰州大气PM_(2.5)中PAHs的来源冬季以燃煤源和机动车尾气为主,其中柴油车比例较大;夏季汽油车对PAHs的相对贡献较大.  相似文献   

6.
鞍山市大气PM10中多环芳烃(PAHs)的污染特征及其来源   总被引:5,自引:3,他引:2  
2005年3月和8月在辽宁省鞍山市8个采样点采集PM10样品,用液相色谱-质谱法分析了PM10上负载的11种多环芳烃(PAHs),并探讨了其分布特征和来源.结果表明:鞍山市PM10中ρ(PAHs)时空变化特征显著,冬季高于夏季,且工业区PAHs污染最严重;在PAHs中4环以上的组分占主导,冬季ρ(4环PAHs)较高,而在夏季ρ(5~6环PAHs)较高.运用比值法和主成分分析法对PAHs来源进行分析,发现冬季的主要污染源为燃煤排放、机动车尾气排放和炼钢工业排放;夏季主要污染源为燃煤排放、机动车尾气排放、生物质燃烧排放和炼钢工业排放等,来源较冬季复杂.机动车尾气排放对PAHs的贡献在2个季节都较为明显,冬季燃煤排放的贡献比重明显增加.   相似文献   

7.
2014年在新疆和田市城区分冬、春、夏、秋4个季节采集大气PM2.5样品,分析了其中16种多环芳烃(PAHs)的含量、组成和来源,并评估了其致癌风险。结果表明:PAHs浓度年均值为99.02 ng/m~3,且具有明显的季节性分布,即冬季(241.52 ng/m~3)秋季(87.50ng/m~3)春季(30.81 ng/m~3)夏季(10.39 ng/m~3),冬季苯并[a]芘(Ba P)的浓度高达16.57 ng/m~3;全年PAHs以4~6环为主,冬季4环PAHs比例(46.03%)明显高于夏季的比例(15.97%),表明气粒两相分配对PAHs分布有显著影响。PAHs浓度与气温和风速显著负相关,与相对湿度显著正相关,表明相对低的气温和风速、相对高的湿度是冬季PAHs污染较高的重要原因。特征比值法源解析结果显示,PAHs主要来源于燃烧源,其中冬季PAHs来源以燃煤及薪柴燃烧为主,春、秋季以燃煤源和交通源的混合污染来源为主,夏季以交通源为主。后向轨迹分析表明,除和田市东北部的局地输送外,来自中亚、西亚其他国家外部输入的气团也对和田市城区PAHs有重要影响。苯并[a]芘毒性当量浓度(Ba P_(eq))年均值为10.51 ng/m~3,终身呼吸性肺癌风险(CR)为9.14×10~(-4),是美国环保署(USEPA)可接受致癌风险指数的9.14倍,表明和田市城区居民具有一定的潜在健康风险。  相似文献   

8.
北京市西三环地区大气颗粒物中多环芳烃的分布特性   总被引:2,自引:1,他引:1  
李峣  钱枫  何翔 《环境科学研究》2013,26(9):948-955
于2012年3—12月在北京市西三环地区按粒径分6级采集大气颗粒物样品,采用气相色谱-质谱(GC-MS)对颗粒物样品中16种优控PAHs(多环芳烃)进行分析. 结果表明:颗粒物中ρ(∑16PAHs)(PAHs的总质量浓度)季节变化显著,表现为冬季>春季>秋季>夏季,并且与ρ(PM)(PM为颗粒物)呈良好线性相关;不同粒径颗粒物中ρ(PAHs)呈向小粒子富集的趋势,PM2.1中ρ(PAHs)约占ρsum(∑16PAHs)〔6级颗粒物中ρ(∑16PAHs)总和〕的64%~87%;除夏季3环PAHs占优势外,其他季节均以4~ 5环PAHs占优势;同时,随着粒径的减小,PAHs有向高环数富集的趋势. 运用主成分分析和多元线性回归法进行源解析发现,机动车尾气排放和燃煤是本地区大气颗粒物中PAHs的主要来源;不同粒径颗粒物中的PAHs来源有差异,2.1~10.2μm粒径段颗粒物中PAHs主要来源于机动车尾气排放,贡献率为63.0%;而1.3~2.1μm和<1.3μm的颗粒物中PAHs均主要来源于燃煤,贡献率分别为56.8%和58.7%.   相似文献   

9.
利用主动观测技术对宁东能源化工基地大气PM2.5、PM1.0和气相中的PAHs浓度水平、族谱特征、时空分布及来源进行研究,并基于该观测数据对居民呼吸暴露健康风险进行评估.结果表明,宁东基地大气PM2.5、PM1.0及气相中∑16PAHs浓度范围分别为:17.95~325.12ng/m3、12.66~311.96ng/m3和26.33~97.88ng/m3,年均浓度分别为(99.42±117.48)ng/m3、(78.88±100.58)ng/m3和(57.89±47.39)ng/m3.宝丰基地冬夏季大气PM2.5、PM1.0和气相中∑16PAHs浓度水平均明显高于英力特;宝丰和英力特基地冬季大气PM2.5、PM1.0中∑16PAHs浓度水平均明显高于夏季浓度.宁东基地大气中∑16PAHs的浓度水平要高于国内外其他城市,大气PAHs污染较为严重.源解析表明夏季宁东基地PAHs的主要排放源是工业煤燃烧和机动车尾气,冬季则主要来自工业煤燃烧和木材、薪柴等生物质燃烧排放.宁东基地人群暴露于大气PAHs可能会造成平均冬季每百万人中约有33~2628人罹患癌症,夏季每百万人中约有11~834人罹患癌症的风险.  相似文献   

10.
广州市大气中颗粒态多环芳烃(PAHs)的主要污染源   总被引:26,自引:1,他引:26  
采用特征化合物与因子分析对广州市大气中颗粒态PAHs的来源及其贡献率进行研究.结果表明,广州大气中颗粒态多环芳烃主要来源是机动车尾气排放和燃煤,其中机动车为主要污染源,占了69%,其次为燃煤,占了31%.冬季大气中颗粒态多环芳烃污染加重的主要原因为低温、无风的气象条件下形成的逆温效应,主要污染源为机动车的尾气排放;夏季颗粒态多环芳烃污染的增大同样是无风时不利于污染物扩散的结果,但此时燃煤对大气中颗粒态多环芳烃污染的贡献要略大于机动车尾气排放.  相似文献   

11.
南京大气气溶胶中多环芳烃源识别及污染评价   总被引:15,自引:0,他引:15       下载免费PDF全文
采用GC、GC-MS等方法,研究了南京市不同功能区夏、冬季大气气溶胶中多环芳烃(PAHs)的污染状况和污染来源,并对不同功能区的PAHs进行了污染评价.结果表明,南京市各功能区气溶胶中PAHs总量在19.73~497.40ng/m3之间,且冬季高于夏季,细颗粒中含量高于粗颗粒.通过一些特征标志PAHs的比值,可判断夏季各功能区的PAHs污染主要来自于汽车尾气(主要是柴油型)的排放,冬季则为汽车尾气和燃煤污染.采用苯并(a)芘(BaP)及苯并(a)芘等效致癌浓度(BaPE)来评价5个功能区气溶胶中PAHs的污染状况,夏季除交通干道超过国家标准(BaP,10ng/m3),居民区细颗粒中略超过居民区标准(BaP,5ng/m3)外,空气质量良好.而冬季各功能区PAHs基本上均严重超标.  相似文献   

12.
我国大气背景点颗粒物PAHs分布特征及毒性评估   总被引:2,自引:0,他引:2  
选择我国自北向南4个国家大气背景监测站(吉林长白山、山西庞泉沟、湖北神农架和广东南岭),于2013年4个季度采集了环境空气PM2.5和PM10样品,采用超声波乙腈萃取-超高压液相色谱分析16种多环芳烃.结果表明,4个大气背景点的PM2.5和PM10中∑PAHs浓度分别为0.09~25.42ng/m3和0.13~30.16ng/m3,与国内外大气背景点基本处于同一浓度水平,空间分布特点为庞泉沟>长白山>神农架>南岭,季节分布特点为庞泉沟和神农架春季、冬季,长白山的春季,以及南岭冬季明显高于所在背景点的其他季节.PM2.5和PM10中BaP和∑PAHs在低浓度范围内均呈现显著的线性相关性.除了长白山冬季和南岭夏季的3环PAHs比例较高外,其余季节的背景点以4环和5环PAHs为主,主要为荧蒽、芘、苯并(a)荧蒽.通过BaP当量进行了致癌性和致突变性评价,结果显示庞泉沟春季和冬季颗粒物的∑BaPTEF和∑BaPMEF相对较高,分别为1.81~2.74ng/m3和2.92~4.36ng/m3, 对所在区域的PAH污染状况需要关注.  相似文献   

13.
哈尔滨大气中PAHs污染特征   总被引:2,自引:0,他引:2  
多环芳烃(PAHs)是大气中广泛存在的一种有毒污染物,因其具有"三致"毒性,已成为关注的焦点。本文通过在哈尔滨市区设置大气采样点,利用大流量主动采样器进行为期一年的大气样品采集,对大气中PAHs的浓度、污染特征进行了研究,并深入探讨了PAHs的污染源和贡献率,结果表明,哈尔滨大气中∑16PAHs浓度范围为6.3~340 ng/m3,平均浓度为100±94 ng/m3,主要以低分子量的PAHs为主。与国内外的研究相比,哈尔滨大气中PAHs的污染处于中等污染水平。PAHs具有明显的季节差异,低温气象条件和排放源的增强是导致冬季PAHs污染加重的主要原因。  相似文献   

14.
通过将比值法、主成分分析和正定矩阵分析法相结合对大气中PAHs的污染源进行了解析,结果表明,煤的燃烧和汽车尾气的排放是PAHs的主要污染源,冬季,煤的燃烧是主要污染源,其贡献率为60.6%,其次为汽车尾气排放(34.4%),其他季节,汽车尾气的排放和燃煤污染是主要的污染源,其贡献率分别为59.3%和17.1%。通过等效毒性当量因子计算得到,哈尔滨大气中BaP当量浓度冬季为7.751 9 ng/m3,其他季节为0.688 6 ng/m3,均符合中国规定的10 ng/m3。  相似文献   

15.
对于五大连池大气中PAHs的污染研究,通过在该地区的农村设置大气采样点,进行了为期一个季度的大气样品采集,对PAHs的污染特征和来源进行了初探,结果表明,大气中∑16PAHs浓度范围为40.2-247.1 ng/m3,平均值为116.8 ng/m3。通过等效毒性当量因子计算得到五大连池大气中BaP当量浓度为6.086ng/m3,符合我国规定的10ng/m3。  相似文献   

16.
大气是环境污染研究领域重要的介质之一,大气被动采样技术在近10年来已发展成为主动大流量采样的重要补充手段.利用聚氨酯泡沫(polyurethane foam,PUF)被动采样技术在区域尺度上对长三角城市群大气中的多环芳烃(PAHs)进行监测.通过对31组采样点的研究发现,长三角城市群大气中PAHs的浓度在10.1~367 ng.m-3之间,苯并[a]芘(BaP)年平均浓度高达2.25 ng.m-3,超出GB 3095-2012规定限值两倍多.PAHs季节变化趋势为秋季>冬季>春季>夏季,秋冬季节长三角城市群大气中BaP的超标范围较大,其中冬季有明显的BaP排放.交通石油源、煤和生物质燃烧和焦炉排放源是该区域大气中PAHs的主要来源,贡献率依次为38.1%、42.4%和19.5%.  相似文献   

17.
采用恒能量同步荧光法研究了龙岩市区不同功能区冬、春季大气飘尘中多环芳烃(PAHs)的污染状况和污染来源,并对不同功能区的PAHs进行了污染评价。结果表明,龙岩市区各功能区大气飘尘中PAHs总量在278.95~718.13ng/m3,且冬季高于春季。根据荧蒽与芘质量浓度比值,可判断冬春季市区内PAHs主要来源于汽车尾气和燃煤污染。采用苯并[a]芘(BaP)及苯并[a]芘等效致癌浓度(BaPE)来评价3个功能区大气飘尘中PAHs的污染状况,冬季3个功能区苯并[a]芘浓度均超过国家标准(BaP,10ng/m3),且PAHs基本上均严重超标。  相似文献   

18.
珠江三角洲大气细颗粒物的致癌风险及源解析   总被引:11,自引:6,他引:5       下载免费PDF全文
胡珊  张远航  魏永杰 《中国环境科学》2009,29(11):1202-1208
于2004年4、7、10月和2005年1月对广州、深圳大气细颗粒物(PM2.5)中17种多环芳烃(PAHs)的浓度进行了分析,以苯并[a]芘(BaP)为毒性参照物的致癌毒性当量浓度(BaPeq),通过线性剂量-反应模型计算了呼吸致癌风险水平,结合源排放谱和化学质量平衡受体模型(CMB),研究了对致癌风险的各排放源贡献.结果表明,PAHs的浓度为5.87~63.36ng/m3,平均浓度深圳为32.68 ng/m3,广州为28.15ng/m3,且呈冬高夏低的分布规律.BaP和BaPeq日均超标率达到2.78%和5.56%,相对于WHO的日均标准的超标率达到50.0%和61.1%.该地区呼吸致癌风险平均水平为1×10-6~1×10-5,高于日常活动所致风险,低于引起关注的最低风险值.共解析出3种OC及致癌风险的排放源,分别为燃煤排放、机动车排放、生物质燃烧,其中燃煤排放和生物质燃烧贡献最大,对OC及BaPeq的贡献呈现相似规律.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号