首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Evaporative loss of particulate matter (with aerodynamic diameter < 2.5 microm, [PM2.5]) ammonium nitrate from quartz-fiber filters during aerosol sampling was evaluated from December 3, 1999, through February 3, 2001, at two urban (Fresno and Bakersfield) and three nonurban (Bethel Island, Sierra Nevada Foothills, and Angiola) sites in central California. Compared with total particulate nitrate, evaporative nitrate losses ranged from < 10% during cold months to > 80% during warm months. In agreement with theory, evaporative loss from quartz-fiber filters in nitric acid denuded samplers is controlled by the ambient nitric acid-to-particulate nitrate ratio, which is determined mainly by ambient temperature. Accurate estimation of nitrate volatilization requires a detailed thermodynamic model and comprehensive chemical measurements. For the 14-month average of PM2.5 acquired on Teflon-membrane filters, measured PM2.5 mass was 8-16% lower than actual PM2.5 mass owing to nitrate volatilization. For 24-hr samples, measured PM2.5 was as much as 32-44% lower than actual PM2.5 at three California Central Valley locations.  相似文献   

2.
Abstract

Evaporative loss of particulate matter (with aerodynamic diameter <2.5 μm, [PM2.5]) ammonium nitrate from quartz-fiber filters during aerosol sampling was evaluated from December 3, 1999, through February 3, 2001, at two urban (Fresno and Bakersfield) and three nonurban (Bethel Island, Sierra Nevada Foothills, and Angiola) sites in central California. Compared with total particulate nitrate, evaporative nitrate losses ranged from <10% during cold months to >80% during warm months. In agreement with theory, evaporative loss from quartz-fiber filters in nitric acid denuded samplers is controlled by the ambient nitric acid-to-particulate nitrate ratio, which is determined mainly by ambient temperature. Accurate estimation of nitrate volatilization requires a detailed thermodynamic model and comprehensive chemical measurements. For the 14-month average of PM2.5 acquired on Teflon-membrane filters, measured PM2.5 mass was 8–16% lower than actual PM2.5 mass owing to nitrate volatilization. For 24-hr samples, measured PM2.5 was as much as 32–44% lower than actual PM2.5 at three California Central Valley locations.  相似文献   

3.
Two semicontinuous elemental and organic carbon analyzers along with daily integrated samplers, which were used for laboratory elemental and organic carbon analysis, were operated to measure PM2.5 organic carbon (OC) and elemental carbon (EC) for the entire year of 2002 at the St. Louis Midwest Supersite. The annual-average denuded OC and EC concentrations were 3.88 and 0.7 microg/m3, respectively. A comparison of the 24-hr average denuded and undenuded OC measurements showed a positive bias for the undenuded OC measurement that was best represented by a positive intercept of 0.34 +/- 0.1 microg/m3 and a slope of 1.06 +/- 0.02, with an R2 of 0.91. The full year of daily EC and OC measurements was used to demonstrate that a one-in-six-day sampling strategy at this site accurately represents the annual average concentrations. Although fine particle OC concentrations did not correlate with day of the week, EC concentrations showed a significant weekly pattern, with the highest concentration during the middle of the workweek and the lowest concentration on Sundays. Hourly EC and OC measurements yielded average diurnal patterns for the EC to OC ratio that peaked during morning rush hour traffic on weekdays but not on weekends.  相似文献   

4.
Ammonium nitrate and semivolatile organic material (SVOM) are significant components of fine particles in urban atmospheres. These components, however, are not properly determined with methods such as the fine particulate matter (PM2.5) Federal Reference Method (FRM) or other single filter samplers because of significant losses of semivolatile material (SVM) from particles collected on the filter during sampling. The R&P tapered element oscillating microbalance (TEOM) monitor also does not measure SVM, because this method heats the sample to remove particle bound water, which also results in evaporation of SVM. Recent advances in monitoring techniques have resulted in samplers for both integrated and continuous measurement of total PM2.5, including the particle concentrator-Brigham Young University organic sampling system (PC-BOSS), the real-time total ambient mass sampler (RAMS), and the R&P filter dynamics measurement system (FDMS) TEOM monitor. Results obtained using these samplers have been compared with those obtained with either a PM2.5 FRM sampler or a TEOM monitor in studies conducted during the past five years. These studies have shown the following: (1) the PC-BOSS, RAMS, and FDMS TEOM are all comparable. Each instrument measures both the nonvolatile material and the SVM. (2) The SVM is not retained on the heated filter of a regular TEOM monitor and is not measured by this sampling technique. (3) Much of the SVM is also lost during sampling from single filter samplers such as the PM2.5 FRM sampler. (4) The amount of SVM lost from single filter samplers can vary from less than one-third of that lost from heated TEOM filters during cold winter conditions to essentially all during warm summer conditions. (5) SVOM can only be reliably collected using an appropriate denuder sampler. (6) A PM2.5 speciation sampler can be easily modified to a denuder sampler with filters that can be analyzed for semivolatile organic carbon (OC), nonvolatile OC, and elemental carbon using existing OC/elemental carbon analytical techniques. The research upon which these statements are based for various urban studies are summarized in this paper.  相似文献   

5.
Particle light scattering (Bsp) from nephelometers and fine particulate matter (PM2.5) mass determined by filter samplers are compared for summer and winter at 35 locations in and around California's San Joaquin Valley from December 2, 1999 to February 3, 2001. The relationship is described using particle mass scattering efficiency (sigmasp) derived from linear regression of Bsp on PM2.5 that can be applied to estimated PM2.5 from nephelometer data within the 24-hr filter sampling periods and between the every-6th-day sampling frequency. An average of sigmaSp = 4.9 m2/g was found for all of the sites and seasons; however, sigmasp averaged by site type and season provided better PM2.5 estimates. On average, the sigmasp was lower in summer than winter, consistent with lower relative humidities, lower fractions of hygroscopic ammonium nitrate, and higher contributions from fugitive dust. Winter average sigmasp were similar at non-source-dominated sites, ranging from 4.8 m2/g to 5.9 m2/g. The sigmasp was 2.3 m2/g at the roadside, 3.7 m2/g at a dairy farm, and 4.1 m2/g in the Kern County oilfields. Comparison of Bsp from nephelometers with and without a PM2.5 inlet at the Fresno Supersite showed that coarse particles contributed minor amounts to light scattering. This was confirmed by poorer correlations between Bsp and coarse particulate matter measured during a fall sampling period.  相似文献   

6.
Carbonaceous components (organic carbon [OC] and elemental carbon [EC]) and optical properties (light absorption and scattering) of fine particulate matter (aerodynamic diameter <2.5 μm; PM2.5) were simultaneously measured at an urban site in Gwangju, Korea, during the winter of 2011. OC was further classified into OC1, OC2, OC3, and OC4, based on a temperature protocol using a Sunset OC/EC analyzer. The average OC and EC concentrations were 5.0 ± 2.5 and 1.7 ± 0.9 μg C m?3, respectively. The average single-scattering albedo (SSA) at a wavelength of 550 nm was 0.58 ± 0.11, suggesting that the aerosols observed in the winter of 2011 had a local warming effect in this area. During the whole sampling period, “stagnant PM” and “long-range transport PM” events were identified. The light absorption coefficient (babs) was higher during the stagnant PM event than during the long-range transport PM event due to the existence of abundant light-absorbing OC during the stagnant PM event. In particular, the OC2 and OC3 concentrations were higher during the stagnant PM event than those during the long-range transport event, suggesting that OC2 and OC3 might be more related to the light-absorbing OC. The light scattering coefficient (bscat) was similar between the events. On average, the mass absorption efficiency attributed to EC (σEC) was 9.6 m2 g?1, whereas the efficiency attributed to OC (σOC) was 1.8 m2 g?1 at λ = 550 nm. Furthermore, the σEC is comparable among the PM event days, but the σOC for the stagnant PM event was significantly higher than that for the long-range transport PM event (1.7 vs. 0.5).

Implications: Optical and thermal properties of carbonaceous aerosol were measured at Gwangju, and carbonaceous aerosol concentration and optical property varied between “stagnant PM” and “long-range transport PM” events. More abundant light absorbing OC was observed during the stagnant PM event.  相似文献   

7.
During collection on filter-based aerosol samplers, organic and inorganic aerosol compounds both contribute to positive and negative artefacts, significantly affecting chemical analyses results for single species and PM mass concentrations. Up to now, studies on organic or inorganic artefacts have been conducted in Europe but very scarce data are available for both in a single study.The field study was carried out in Milan, which is located in the Po valley (Northern Italy) one of the major pollution hot spots in Europe. As sampling artefacts depend on many factors, such as filter type, face velocity, sampling duration, and ambient conditions, in this field study two different filter types have been considered (i.e. quartz fibre filters and Teflon filters) for the assessment of both inorganic and organic artefacts during two different seasons (performing also some samplings at different flow-rates).Results showed that positive artefacts due to OC adsorption on quartz filters accounted for 39% of the OC measured concentration in summer, and 23% in winter. Negative artefact due to nitrate volatilisation by the filters was 51% on Teflon and 22% on the quartz filters in summer, and no or negligible losses were observed in winter. A significant improvement in the PM mass comparability obtained in parallel samplings on different filters was obtained taking into account the artefact estimates performed in this study.  相似文献   

8.
Organic aerosol is the least understood component of ambient fine particulate matter (PM2.5). In this study, organic and elemental carbon (OC and EC) within ambient PM2.5 over a three-year period at a forested site in the North Carolina Piedmont are presented. EC exhibited significant weekday/weekend effects and less significant seasonal effects, in contrast to OC, which showed strong seasonal differences and smaller weekend/weekday effects. Summer OC concentrations are about twice as high as winter concentrations, while EC was somewhat higher in the winter. OC was highly correlated with EC during cool periods when both were controlled by primary combustion sources. This correlation decreased with increasing temperature, reflecting higher contributions from secondary organic aerosol, likely of biogenic origin. PM2.5 radiocarbon data from the site confirms that a large fraction of the carbon in PM2.5 is indeed of biogenic origin, since modern (non-fossil fuel derived) carbon accounted for 80% of the PM2.5 carbon over the course of a year. OC and EC exhibited distinct diurnal profiles, with summertime OC peaking in late evening and declining until midday. During winter, OC peaked during the early morning hours and again declined until midday. Summertime EC peaked during late morning hours except on weekends. Wintertime EC often peaked in late PM or early AM hours due to local residential wood combustion emissions. The highest short term peaks in OC and EC were associated with wildfire events. These data corroborate recent source apportionment studies conducted within 20 km of our site, where oxidation products of isoprene, α-pinene, and β-caryophyllene were identified as important precursors to organic aerosols. A large fraction of the carbon in rural southeastern ambient PM2.5 appears to be of biogenic origin, which is probably difficult to reduce by anthropogenic controls.  相似文献   

9.
Abstract

In an effort to better quantify wintertime particulate matter (PM) and the contribution of wood smoke to air pollution events in Fresno, CA, a field campaign was conducted in winter 2003–2004. Coarse and fine daily PM samples were collected at five locations in Fresno, including residential, urban, and industrial areas. Measurements of collected samples included gravimetric mass determination, organic and elemental carbon analysis, and trace organic compound analysis by gas chromatograph mass spectrometry (GC/MS). The wood smoke tracer levoglucosan was also measured in aqueous aerosol extracts using high-performance anion exchange chromatography coupled with pulsed amperometric detection. Sample preparation and analysis by this technique is much simpler and less expensive than derivatized levoglucosan analysis by GC/MS, permitting analysis of daily PM samples from all five of the measurement locations. Analyses revealed low spatial variability and similar temporal patterns of PM2.5 mass, organic carbon (OC), and levoglucosan. Daily mass concentrations appear to have been strongly influenced by meteorological conditions, including precipitation, wind, and fog events. Fine PM (PM2.5) concentrations are uncommonly low during the study period, reflecting frequent precipitation events. During the first portion of the study, levoglucosan had a strong relationship to the concentrations of PM2.5 and OC. In the later portion of the study, there was a significant reduction in levoglucosan relative to PM2.5 and OC. This may indicate a change in particle removal processes, perhaps because of fog events, which were more common in the latter period. Combined, the emissions from wood smoke, meat cooking, and motor vehicles appear to contribute ~65–80% to measured OC, with wood smoke, on average, accounting for ~41% of OC and ~18% of PM2.5 mass. Two residential sites exhibit somewhat higher contributions of wood smoke to OC than other locations.  相似文献   

10.
An intensive sampling of aerosol particles from ground level and 100 m was conducted during a strong pollution episode during the winter in Xi'an, China. Concentrations of water-soluble inorganic ions, carbonaceous compounds, and trace elements were determined to compare the composition of particulate matter (PM) at the two heights. PM mass concentrations were high at both stations: PM10 (PM with aerodynamic diameter < or =10 microm) exceeded the China National Air Quality Standard Class II value on three occasions, and PM2.5 (PM with aerodynamic diameter < or =2.5 microm) exceeded the daily U.S. National Ambient Air Quality Standard more than 10 times. The PM10 organic carbon (OC) and elemental carbon (EC) were slightly lower at the ground than at 100 m, both in terms of concentration and percentage of total mass, but OC and EC in PM2.5 exhibited the opposite pattern. Major ionic species, such as sulfate and nitrate, showed vertical variations similar to the carbonaceous aerosols. High sulfate concentrations indicated that coal combustion dominated the PM mass both at the ground and 100 m. Correlations between K+ and OC and EC at 100 m imply a strong influence from suburban biomass burning, whereas coal combustion and motor vehicle exhaust had a greater influence on the ground PM. Stable atmospheric conditions apparently led to the accumulation of PM, especially at 100 m, and these conditions contributed to the similarities in PM at the two elevations. Low coefficient of divergence (CD) values reflect the similarities in the composition of the aerosol between sites, but higher CDs for fine particles compared with coarse ones were consistent with the differences in emission sources between the ground and 100 m.  相似文献   

11.
In an effort to better quantify wintertime particulate matter (PM) and the contribution of wood smoke to air pollution events in Fresno, CA, a field campaign was conducted in winter 2003-2004. Coarse and fine daily PM samples were collected at five locations in Fresno, including residential, urban, and industrial areas. Measurements of collected samples included gravimetric mass determination, organic and elemental carbon analysis, and trace organic compound analysis by gas chromatograph mass spectrometry (GC/MS). The wood smoke tracer levoglucosan was also measured in aqueous aerosol extracts using high-performance anion exchange chromatography coupled with pulsed amperometric detection. Sample preparation and analysis by this technique is much simpler and less expensive than derivatized levoglucosan analysis by GC/MS, permitting analysis of daily PM samples from all five of the measurement locations. Analyses revealed low spatial variability and similar temporal patterns of PM2.5 mass, organic carbon (OC), and levoglucosan. Daily mass concentrations appear to have been strongly influenced by meteorological conditions, including precipitation, wind, and fog events. Fine PM (PM2.5) concentrations are uncommonly low during the study period, reflecting frequent precipitation events. During the first portion of the study, levoglucosan had a strong relationship to the concentrations of PM2.5 and OC. In the later portion of the study, there was a significant reduction in levoglucosan relative to PM2.5 and OC. This may indicate a change in particle removal processes, perhaps because of fog events, which were more common in the latter period. Combined, the emissions from wood smoke, meat cooking, and motor vehicles appear to contribute approximately 65-80% to measured OC, with wood smoke, on average, accounting for approximately 41% of OC and approximately 18% of PM2.5 mass. Two residential sites exhibit somewhat higher contributions of wood smoke to OC than other locations.  相似文献   

12.
The organic carbon (OC)/elemental carbon (EC) tracer method is applied to the Pittsburgh, PA, area to estimate the contribution of secondary organic aerosol (SOA) to the monthly average concentration of organic particulate matter (PM) during 1995. An emissions inventory is constructed for the primary emissions of OC and EC in the area of interest. The ratio of primary emissions of OC to those of EC ranges between 2.4 in the winter months and 1.0 in the summer months. A mass balance model and ambient measurements were used to assess the accuracy of the emissions inventory. It is estimated to be accurate to within 50%. The results from this analysis show a strong monthly dependence of the SOA contribution to the total organic PM concentration, varying from near zero during winter months to as much as 50% of the total OC concentration in the summer.  相似文献   

13.
The San Joaquin Valley (SJV) in California has one of the most severe particulate air quality problems in the United States during the winter season. In the current study, measurements of particulate matter (PM) smaller than 10 microm in aerodynamic diameter (PM10), fine particles (PM18), and ultrafine particles (PM0.1) made during the period December 16, 2000-February 3, 2001, at six locations near or within the SJV are discussed: Bodega Bay, Davis, Sacramento, Modesto, Bakersfield, and Sequoia National Park. Airborne PM1.8 concentrations at the most heavily polluted site (Bakersfield) increased from 20 to 172 microg/m3 during the period December 16, 2000-January 7, 2001. The majority of the fine particle mass was ammonium nitrate driven by an excess of gas-phase ammonia. Peak PM0.1 concentrations (8-12 hr average) were approximately 2.4 microg/m3 measured at night in Sacramento and Bakersfield. Ultrafine particle concentrations were distinctly diurnal, with daytime concentrations approximately 50% lower than nighttime concentrations. PMO.1 concentrations did not accumulate during the multiweek stagnation period; rather, PMO.1 mass decreased at Bakersfield as PM1.8 mass was increasing. The majority of the ultrafine particle mass was associated with carbonaceous material. The high concentrations of ultrafine particles in the SJV pose a potential serious public health threat that should be addressed.  相似文献   

14.
Abstract

The organic carbon (OC)/elemental carbon (EC) tracer method is applied to the Pittsburgh, PA, area to estimate the contribution of secondary organic aerosol (SOA) to the monthly average concentration of organic particu-late matter (PM) during 1995. An emissions inventory is constructed for the primary emissions of OC and EC in the area of interest. The ratio of primary emissions of OC to those of EC ranges between 2.4 in the winter months and 1.0 in the summer months. A mass balance model and ambient measurements were used to assess the accuracy of the emissions inventory. It is estimated to be accurate to within 50%. The results from this analysis show a strong monthly dependence on SOA contribution to the total organic PM concentration, varying from near zero during winter months to 50% or more of the total OC concentration in the summer.  相似文献   

15.
Air quality data collected in the California Regional PM10/ PM(2.5) Air Quality Study (CRPAQS) are analyzed to qualitatively assess the processes affecting secondary aerosol formation in the San Joaquin Valley (SJV). This region experiences some of the highest fine particulate matter (PM(2.5)) mass concentrations in California (< or = 188 microg/m3 24-hr average), and secondary aerosol components (as a group) frequently constitute over half of the fine aerosol mass in winter. The analyses are based on 15 days of high-frequency filter and canister measurements and several months of wintertime continuous gas and aerosol measurements. The phase-partitioning of nitrogen oxide (NO(x))-related nitrogen species and carbonaceous species shows that concentrations of gaseous precursor species are far more abundant than measured secondary aerosol nitrate or estimated secondary organic aerosols. Comparisons of ammonia and nitric acid concentrations indicate that ammonium nitrate formation is limited by the availability of nitric acid rather than ammonia. Time-resolved aerosol nitrate data collected at the surface and on a 90-m tower suggest that both the daytime and nighttime nitric acid formation pathways are active, and entrainment of aerosol nitrate formed aloft at night may explain the spatial homogeneity of nitrate in the SJV. NO(x) and volatile organic compound (VOC) emissions plus background O3 levels are expected to determine NO(x) oxidation and nitric acid production rates, which currently control the ammonium nitrate levels in the SJV. Secondary organic aerosol formation is significant in winter, especially in the Fresno urban area. Formation of secondary organic aerosol is more likely limited by the rate of VOC oxidation than the availability of VOC precursors in winter.  相似文献   

16.
The present study was carried out with the aim of evaluating the performance of six different aerosol samplers in terms of mass concentration, particle size distribution, and mass fraction for the international size-sampling conventions. The international size-sampling criteria were defined as inhalable, thoracic, and respirable mass fractions with 50% cutoff at an aerodynamic equivalent diameter of 100 μm, 10 μm, and 4 μm, respectively. Two Andersen, four total suspended particulate (TSP), two RespiCon, four PM10, two DustTrak, and two SidePak samplers were selected and tested to quantitatively estimate human exposure in a carefully controlled particulate matter (PM) test chamber. The overall results indicate that (1) Andersen samplers underestimate total suspended PM and overestimate thoracic and respirable PM due to particle bounce and carryover between stages, (2) TSP samplers provide total suspended PM as reference samplers, (3) TSP samplers quantified by a coulter counter multisizer provide no information below an equivalent spherical diameter of 2 μm and therefore underestimate respirable PM, (4) RespiCon samplers are free from particle bounce as inhalable samplers but underestimate total suspended PM, (5) PM10 samplers overestimate thoracic PM, and (6) DustTrak and SidePak samplers provide relative PM concentrations instead of absolute PM concentrations.  相似文献   

17.
Chemical composition data for fine and coarse particles collected in Phoenix, AZ, were analyzed using positive matrix factorization (PMF). The objective was to identify the possible aerosol sources at the sampling site. PMF uses estimates of the error in the data to provide optimum data point scaling and permits a better treatment of missing and below-detection-limit values. It also applies nonnegativity constraints to the factors. Two sets of fine particle samples were collected by different samplers. Each of the resulting fine particle data sets was analyzed separately. For each fine particle data set, eight factors were obtained, identified as (1) biomass burning characterized by high concentrations of organic carbon (OC), elemental carbon (EC), and K; (2) wood burning with high concentrations of Na, K, OC, and EC; (3) motor vehicles with high concentrations of OC and EC; (4) nonferrous smelting process characterized by Cu, Zn, As, and Pb; (5) heavy-duty diesel characterized by high EC, OC, and Mn; (6) sea-salt factor dominated by Na and Cl; (7) soil with high values for Al, Si, Ca, Ti, and Fe; and (8) secondary aerosol with SO4(-2) and OC that may represent coal-fired power plant emissions. For the coarse particle samples, a five-factor model gave source profiles that are attributed to be (1) sea salt, (2) soil, (3) Fe source/motor vehicle, (4) construction (high Ca), and (5) coal-fired power plant. Regression of the PM mass against the factor scores was performed to estimate the mass contributions of the resolved sources. The major sources for the fine particles were motor vehicles, vegetation burning factors (biomass and wood burning), and coal-fired power plants. These sources contributed most of the fine aerosol mass by emitting carbonaceous particles, and they have higher contributions in winter. For the coarse particles, the major source contributions were soil and construction (high Ca). These sources also peaked in winter.  相似文献   

18.
Seasonal elemental carbon (EC) and organic carbon (OC) concentration levels in PM2.5 samples collected in Milan (Italy) are presented and discussed, enriching the world-wide database of carbonaceous species in fine particulate matter (PM). High-volume PM2.5 sampling campaigns were performed from August 2002 through December 2003 in downtown Milan at an urban background site. Compared to worldwide average concentrations, in Milan warm-season OC and both warm- and cold-season EC are relatively low; conversely, cold-season OC concentrations are rather high. Consequently, high values for the OC/EC ratio are observed, especially in the winter period. The relation between OC/EC ratio values and wind direction is investigated, pointing out that the highest ratios are associated to winds blowing from those nearby areas where wood consumption for domestic heating is larger. Information on the OC partitioning between its primary and secondary fraction are derived by means of the EC-tracer method and principal component analysis. In the warm-season, OC is mainly of secondary origin, secondary organic aerosol (SOA) accounting for about 84% of the particulate organic matter and 25–28% of the PM2.5 mass. For the cold season the full application of the EC-tracer method was not possible and the primary organic aerosol deriving from traffic could only be estimated. However, principal component analysis (PCA) suggest a prevailing primary origin for OC, thus raising the attention on space heating emissions, and on wood combustion in particular, for air quality control. The role of traffic emissions on PM2.5 concentration levels, as a primary source, are also assessed: EC and primary organic matter from traffic account for a warm-season 30% and a cold-season 7% of the total carbon in PM2.5, that is for about 10% and 6% of PM2.5 mass, respectively. This latter small primary contribution estimated for the cold-season points out that stationary sources, which were not thought to play a significant role on PM concentration levels, may conversely be as much responsible for ambient particulate pollution.  相似文献   

19.
Ambient particulates of PM2.5 were sampled at three sites in Kaohsiung, Taiwan, during February and March 1999. In addition, resuspended PM2.5 collected from traffic tunnels, paved roads, fly ash of a municipal solid waste (MSW) incinerator, and seawater was obtained. All the samples were analyzed for twenty constituents, including water-soluble ions, organic carbon (OC), elemental carbon (EC), and metallic elements. In conjunction with local source profiles and the source profiles in the model library SPECIATE EPA, the receptor model based on chemical mass balance (CMB) was then applied to determine the source contributions to ambient PM2.5. The mean concentration of ambient PM2.5 was 42.69-53.68 micrograms/m3 for the sampling period. The abundant species in ambient PM2.5 in the mass fraction for three sites were OC (12.7-14.2%), SO4(2-) (12.8-15.1%), NO3- (8.1-10.3%), NH4+ (6.7-7.5%), and EC (5.3-8.5%). Results of CMB modeling show that major pollution sources for ambient PM2.5 are traffic exhaust (18-54%), secondary aerosols (30-41% from SO4(2-) and NO3-), and outdoor burning of agriculture wastes (13-17%).  相似文献   

20.
The Aerosol Research and Inhalation Epidemiology Study (ARIES) was designed to provide high-quality measurements of PM2.5, its components, and co-varying pollutants for an air pollution epidemiology study in Atlanta, GA. Air pollution epidemiology studies have typically relied on available data on particle mass often collected using filter-based methods. Filter-based PM2.5 sampling is susceptible to both positive and negative errors in the measurement of aerosol mass and particle-phase component concentrations in the undisturbed atmosphere. These biases are introduced by collection of gas-phase aerosol components on the filter media or by volatilization of particle phase components from collected particles. As part of the ARIES, we collected daily 24-hr PM2.5 mass and speciation samples and continuous PM2.5 data at a mixed residential-light industrial site in Atlanta. These data facilitate analysis of the effects of a wide variety of factors on sampler performance. We assess the relative importance of PM2.5 components and consider associations and potential mechanistic linkages of PM2.5 mass concentrations with several PM2.5 components. For the 12 months of validated data collected to date (August 1, 1998-July 31, 1999), the monthly average Federal Reference Method (FRM) PM2.5 mass always exceeded the proposed annual average standard (12-month average = 20.3 +/- 9.5 micrograms/m3). The particulate SO4(2-) fraction (as (NH4)2SO4) was largest in the summer and exceeded 50% of the FRM mass. The contribution of (NH4)2SO4 to FRM PM2.5 mass dropped to less than 30% in winter. Particulate NO3- collected on a denuded nylon filter averaged 1.1 +/- 0.9 micrograms/m3. Particle-phase organic compounds (as organic carbon x 1.4) measured on a denuded quartz filter sampler averaged 6.4 +/- 3.1 micrograms/m3 (32% of FRM PM2.5 mass) with less seasonal variability than SO4(2-).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号