首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 482 毫秒
1.
OH自由基绝对标定系统的建立和研究   总被引:1,自引:0,他引:1  
利用H2 O在 1 85nm紫外光照射下产生定量OH自由基 ,用低压扩散激光诱导荧光技术建立了OH自由基标定系统 .在实验条件下 ,体系产生OH自由基的浓度范围为 3× 1 0 7— 2× 1 0 9个·cm- 3,得到归一化荧光信号 (S)与OH自由基浓度的定量关系为S =6 0 4× 1 0 - 9[OH]- 0 0 4 0 7(R2 =0 987) ,并研究和讨论了饱和效应以及体系中可能存在的干扰 .  相似文献   

2.
The present study aimed to investigate the potential ammonia (NH3) emission from flag leaves of paddy rice (Oryza sativa L. cv. Koshihikari). The study was conducted at a paddy field in central Japan that was designed as a free-air CO2 enrichment (FACE) facility for paddy rice. A dynamic chamber method was used to measure the potential NH3 emissions. The air concentrations of NH3 at two heights (2 and 6 m from the ground surface) were measured using a filter-pack method, and the exchange fluxes of NH3 of the whole paddy field were calculated using a gradient method. The flag leaves showed potential NH3 emissions of 25-38 ng N cm−2 h−1 in the daytime from the heading to the maturity stages, and they showed potentials of approximately 22 ng N cm−2 h−1, even in the nighttime, at the heading and mid-ripening stages. The exchange fluxes of NH3 of the whole paddy field in the daytime were net emissions of 0.9-3.9 g N ha−1 h−1 whereas the exchange fluxes of NH3 in the nighttime were approximately zero.  相似文献   

3.
The rate constant for the gas-phase reaction of O_3 and Lewisite was studied in air using the smog chamber technique. The experiments were carried out under pseudo-first-order reaction conditions with [O_3] [Lewisite]. The observed rate constant of O_3 with Lewisite was(7.83 ± 0.38) × 10~(-19)cm~3/(molecule·sec) at 298 ± 2 K. Lewisite was discussed in terms of reactivity with O_3 and its relationship with the ionization potential. Our results show that the rate constant for the gas-phase reaction of O_3 with Lewisite is in line with the trend of the rate constants of O_3 with haloalkenes.  相似文献   

4.
TiO_2 nanotube(Ti NT) electrodes anodized in fluorinated organic solutions were successfully prepared on Ti sheets. Field-emission scanning electron microscopy(FE-SEM) and X-ray diffraction(XRD) were performed to characterize the TiNT electrodes. The linear voltammetry results under irradiation showed that the TiNT electrode annealed at 450°C presented the highest photoelectrochemical activity. By combining photocatalytic with electrochemical process, a significantly synergetic effect on ammonia degradation was observed with Na_2SO_4 as supporting electrolyte at pH 10.7. Furthermore, the photoelectrocatalytic efficiency on the ammonia degradation was greatly enhanced in presence of chloride ions without the limitation of pH. The degradation rate was improved by 14.8 times reaching 4.98 × 10~(-2) min~(-1) at pH 10.7 and a faster degradation rate of 6.34 × 10~(-2) min~(-1)was obtained at pH 3.01. The in situ photoelectrocatalytic generated active chlorine was proposed to be responsible for the improved efficiency. On the other hand, an enhanced degradation of ammonia using TiNT electrode fabricated in fluorinated organic solution was also confirmed compared to TiNT electrode anodized in fluorinated water solution and TiO_2 film electrode fabricated by sol–gel method. Finally, the effect of chloride concentration was also discussed.  相似文献   

5.
Photodegradation (PD) of methylmercury (MMHg) is a key process of mercury (Hg) cycling in water systems, maintaining MMHg at a low level in water systems. However, we possess little knowledge of this important process in the Jialing River of Chongqing, China. In situ incubation experiments were thus performed to measure temporal patterns and influencing factors of MMHg PD in this river. The results showed that MMHg underwent a net demethylation process under solar radiation in the water column, which predominantly occurred in surface waters. For surface water, the highest PD rate constants were observed in spring (12 × 10− 3 ± 1.5 × 10− 3 m2/E), followed by summer (9.0 × 10− 3 ± 1.2 × 10− 3 m2/E), autumn (1.4 × 10− 3 ± 0.12 × 10− 3 m2/E), and winter (0.78 × 10− 3 ± 0.11 × 10− 3 m2/E). UV-A radiation (320–400 nm), UV-B radiation (280–320 nm), and photosynthetically active radiation (PAR, 400–700 nm) accounted for 43%–64%, 14%–31%, and 16%–45% of MMHg PD, respectively. PD rate constants varied substantially with the treatments that filtered the river water and amended it with chemicals (i.e., Cl, NO3, dissolved organic matter (DOM), Fe(III)), which reveals that suspended particulate matter and water components are important factors in affecting the PD process. For the entire water column, the PD rate constant determined for each wavelength range decreased rapidly with water depth. UV-A, UV-B, and PAR contributed 27%–46%, 6.2%–12%, and 42%–65% to the PD process, respectively. PD flux was estimated to be 4.7 μg/(m2·year) in the study site. Our results are very important to understand the cycling characteristics of MMHg in the Jialing River of Chongqing, China.  相似文献   

6.
In this work a novel anode configuration consisting of an iron mesh double layer is proposed for the electrochemical treatment of wastewater. The removal of Reactive Black 5 dye(RB5) from synthetic contaminated water was used as a model system. At a constant anode surface area, identical process operating parameters and batch process mode, the iron mesh double layer electrode showed better performance compared to the conventional single layer iron mesh. The double layer electrode was characterized by RB5 and chemical oxygen demand(COD) removal efficiency of 98.2% and 97.7%, respectively, kinetic rate constant of 0.0385/min, diffusion coefficient of 4.9 × 10~(-5)cm~2/sec and electrical energy consumption of 20.53 kWh/kgdye removed. In the continuous flow system, the optimum conditions suggested by Response Surface Methodology(RSM) are: initial solution p H of 6.29,current density of 1.6 m A/cm~2, electrolyte dose of 0.15 g/L and flow rate of 11.47 m L/min which resulted in an RB5 removal efficiency of 81.62%.  相似文献   

7.
Knowledge of particle number size distribution(PND) and new particle formation(NPF)events in Southern China is essential for mitigation strategies related to submicron particles and their effects on regional air quality,haze,and human health.In this study,seven field measurement campaigns were conducted from December 2013 to May 2015 using a scanning mobility particle sizer(SMPS) at four sites in Southern China,including three urban sites and one background site.Particles were measured in the size range of15-515 nm,and the median particle number concentrations(PNCs) were found to vary in the range of 0.3× 10~4-2.2 × 10~4 cn~(-3) at the urban sites and were approximately 0.2 × 10~4 cm~(-3) at the background site.The peak diameters at the different sites varied largely from 22 to 102 nm.The PNCs in the Aitken mode(25-100 nm) at the urban sites were up to 10 times higher than they were at the background site,indicating large primary emissions from traffic at the urban sites.The diurnal variations of PNCs were significantly influenced by both rush hour traffic at the urban sites and NPF events.The frequencies of NPF events at the different sites were0%-30%,with the highest frequency occurring at an urban site during autumn.With higher SO_2 concentrations and higher ambient temperatures being necessary,NPF at the urban site was found to be more influenced by atmospheric oxidizing capability,while NPF at the background site was limited by the condensation sink.This study provides a unique dataset of particle number and size information in various environments in Southern China,which can help understand the sources,formation,and the climate forcing of aerosols in this quickly developing region,as well as help constrain and validate NPF modeling.  相似文献   

8.
Knowledge of the effective radiation spectrum irradiating substrates from microwave powered electrodeless discharge lamps(MEDLs), and the active species that directly oxidize substrates in the photolytic process, is fragmentary and unclear. In this work, we conducted a comparative study using MEDLs made with quartz envelopes(MEDL-quartz) and with borosilicate Pyrex envelopes(MEDL-Pyrex) targeting the degradation of Rhodamine B(Rh B)via radical-extinguishing tests. We found that UVC/UVB radiation is essential to generate·OH and H2O2 in the MEDL-quartz system. The degradation of Rh B mostly originates from·OH species, which account for a contribution of 53.8%, while the remaining contribution is attributed to oxidation by H2O2 and direct photolysis. This degradation is influenced by several parameters. Acidic and neutral p Hs, but not extreme alkaline p H, benefit the degradation. To ensure a high intensity of UVC/UVB, the optimum ratio of the MEDL volume to the aqueous solution volume(VL/VS) is 0.4. Concentrations of 0.15–0.20 mmol/L of Rh B are suitable to obtain an effective quantum absorbance in the MEDL-quartz system,showing a high decomposition rate of 5.6 × 10-3(mmol/L)min-1. Moreover, two other substrates, Reactive Brilliant Red X-3B and Safranine T, were tested and found to be efficiently degraded in the MEDL-quartz system.  相似文献   

9.
In this study,the cytotoxicity of two different crystal phases of TiO2 nanoparticles,with surface modification by humic acid(HA),to Escherichia coli,was assessed.The physicochemical properties of TiO2 nanoparticles were thoroughly characterized.Three different initial concentrations,namely 50,100,and 200 ppm,of HA were used for synthesis of HA coated TiO2 nanoparticles(denoted as A/RHA50,A/RHA100,and A/RHA200,respectively).Results indicate that rutile(LC50(concentration that causes 50%mortality compared the control group)=6.5)was more toxic than anatase(LC50=278.8)under simulated sunlight(SSL)irradiation,possibly due to an extremely narrow band gap.It is noted that HA coating increased the toxicity of anatase,but decreased that of rutile.Additionally,AHA50 and RHA50had the biggest differences compared to uncoated anatase and rutile with LC50of 201.9 and21.6,respectively.We then investigated the formation of reactive oxygen species(ROS)by TiO2 nanoparticles in terms of hydroxyl radicals(OH)and superoxide anions(O2-).Data suggested that O2- was the main ROS that accounted for the higher toxicity of rutile upon SSL irradiation.We also observed that HA coating decreased the generation of OH and O2- on rutile,but increased O2- formation on anatase.Results from TEM analysis also indicated that HA coated rutile tended to be attached to the surface of E.coli more than anatase.  相似文献   

10.
Dolomite lime(DL)(CaMg(OH)_4) was used as an economical source of Mg~(2+)for the removal and recovery of phosphate from an anaerobic digester effluent of a municipal wastewater treatment plant(MWWTP) wastewater. Batch precipitation results determined that phosphate was effectively reduced from 87 to less than 4 mg-P/L when the effluent water was mixed with 0.3 g/L of DL. The competitive precipitation mechanisms of different solids in the treatment system consisting of Ca~(2+)–Mg~(2+)–NH_4~+–PO_4~(3-)CO_3~(2-)were determined by comparing model predictions with experimental results. Thermodynamic model calculations indicated that hydroxyapatite(Ca_(10)(PO_4)_6(OH)_2), Ca_4H(PO_4)_3?3H_2O, Ca_3(PO_4)_2(beta), and Ca_3(PO_4)_2(am2)were more stable than struvite(MgNH_4PO_3?6H_2O) and calcite(CaCO_3). However, X-ray diffraction(XRD) analysis determined the formation of struvite and calcite minerals in the treated effluent. Kinetic experimental results showed that most of the phosphate was removed from synthetic effluent containing NH_4~+within 2 hr, while only 20% of the PO_4~(3-)was removed in the absence of NH_4~+after 24 hr of treatment. The formation of struvite in the DL-treated effluent was due to the rapid precipitation rate of the mineral. The final pH of the DL-treated effluent significantly influenced the mass ratio of struvite to calcite in the precipitates. Because more calcite was formed when the p H increased from 8.4 to 9.6, a p H range of 8.0–8.5 should be used to produce solid with high PO_4~(3-)content. This study demonstrated that DL could be used for effective removal of phosphate from the effluent and that resultant precipitates contained high content of phosphate and ammonium.  相似文献   

11.
Knowing underlying practices for current greenhouse gas (GHG) emissions is a necessary precursor for developing best management practices aimed at reducing N2O emissions. The effect of no-till management on nitrous oxide (N2O), a potent greenhouse gas, remains largely unclear, especially in perennial agroecosystems. The objective of this study was to compare direct N2O emissions associated with management events in a cover-cropped Mediterranean vineyard under conventional tillage (CT) versus no-till (NT) practices. This study took place in a wine grape vineyard over one full growing season, with a focus on the seven to ten days following vineyard floor management and precipitation events. Cumulative N2O emissions in the NT system were greater under both the vine and the tractor row compared to CT, with 0.15 ± 0.026 kg N2O-N ha−1 growing season−1 emitted from the CT vine compared to 0.22 ± 0.032 kg N2O-N ha−1 growing season−1 emitted from the NT vine and 0.13 ± 0.048 kg N2O-N ha−1growing season−1 emitted from the CT row compared to 0.19 ± 0.019 kg N2O-N ha−1 growing season−1 from the NT row. Yet these variations were not significant, indicating no differences in seasonal N2O emissions following conversion from CT to NT compared to long-term CT management. Individual management events such as fertilization and cover cropping, however, had a major impact on seasonal emissions, indicating that management events play a critical role in N2O emission patterns.  相似文献   

12.
Dispersion and aggregation of nanoparticles in aqueous solutions are important factors for safe application of nanoparticles. In this study, dispersion and aggregation of nano-TiO2 in aqueous solutions containing various anions were investigated. The influences of anion concentration and valence on the aggregation size, zeta potential and aggregation kinetics were individually investigated. Results showed that the zeta potential decreased from 19.8 to − 41.4 mV when PO43 − concentration was increased from 0 to 50 mg/L, while the corresponding average size of nano-TiO2 particles decreased from 613.2 to 540.3 nm. Both SO42 − and NO3 enhanced aggregation of nano-TiO2 in solution. As SO42 − concentration was increased from 0 to 500 mg/L, the zeta potential decreased from 19.8 to 1.4 mV, and aggregate sizes increased from 613.2 to 961.3 nm. The trend for NO3 fluctuation was similar to that for SO42 − although the range of variation for NO3 was relatively narrow. SO42 − and NO3 accelerated the aggregation rapidly, while PO43 − did so slowly. These findings facilitate the understanding of aggregation and dispersion mechanisms of nano-TiO2 in aqueous solutions in the presence of anions of interest.  相似文献   

13.
Evaluation of denitrification capacities is necessary to develop a sustainable manure management system in order to reduce NO3 leaching and N2O emissions from agricultural soils. Denitrification rates were measured using the acetylene inhibition technique on intact soil cores from eight Andosols under three different cropping systems in an intensive livestock catchment of central Japan. The N application rates ranged from 200 to 800 kg N ha−1 yr−1. The denitrification rates were highly variable across fields, and were influenced significantly by land uses and manure forms. Compared with upland fields, paddy rice fields had a greater denitrification rate up to 1380 and 85 mg N m−2 day−1 in the top 30-cm soil layer during flooding and non-flooding periods, respectively. In upland fields, the maximum value for the top 30-cm soils was 44 mg N m−2 day−1 and most of the rates were less than 10 mg N m−2 day−1. The greater denitrification rates were often associated with slurry application rather than composted dry manure. Overall, denitrification from Andosols in this study displayed a lower capacity than that of non-Andosols.  相似文献   

14.
A field experiment from 18 August to 8 September 2006 in Beijing, China, was carried out. A hazy day was defined as visibility < l0 km and RH (relative humidity) < 90%. Four haze episodes, which accounted for ~ 60% of the time during the whole campaign, were characterized by increases of SNA (sulfate, nitrate, and ammonium) and SOA (secondary organic aerosol) concentrations. The average values with standard deviation of SO42 −, NO3, NH4+ and SOA were 49.8 (± 31.6), 31.4 (± 22.3), 25.8 (± 16.6) and 8.9 (± 4.1) μg/m3, respectively, during the haze episodes, which were 4.3, 3.4, 4.1, and 1.7 times those in the non-haze days. The SO42 −, NO3, NH4+, and SOA accounted for 15.8%, 8.8%, 7.3%, and 6.0% of the total mass concentration of PM10 during the non-haze days. The respective contributions of SNA species to PM10 rose to about 27.2%, 15.9%, and 13.9% during the haze days, while the contributions of SOA maintained the same level with a slight decrease to about 4.9%. The observed mass concentrations of SNA and SOA increased with the increase of PM10 mass concentration, however, the rate of increase of SNA was much faster than that of the SOA. The SOR (sulfur oxidation ratio) and NOR (nitrogen oxidation ratio) increased from non-haze days to hazy days, and increased with the increase of RH. High concentrations of aerosols and water vapor favored the conversion of SO2 to SO42 − and NO2 to NO3, which accelerated the accumulation of the aerosols and resulted in the formation of haze in Beijing.  相似文献   

15.
Reductive soil disinfestation (RSD), namely amending organic materials and mulching or flooding to create strong reductive status, has been widely applied to improve degraded soils. However, there is little information available about sulfate (SO42 −) transformation and sulfur (S) gas emissions during RSD treatment to degraded vegetable soils, in which S is generally accumulated. To investigate the effects of liming on SO42 − transformation and S gas emissions, two SO42 −-accumulated vegetable soils (denoted as S1 and S2) were treated by RSD, and RSD plus lime, denoted as RSD0 and RSD1, respectively. The results showed that RSD0 treatment reduced soil SO42 − by 51% and 61% in S1 and S2, respectively. The disappeared SO42 − was mainly transformed into the undissolved form. During RSD treatment, hydrogen sulfide (H2S), carbonyl sulfide (COS), and dimethyl sulfide (DMS) were detected, but the total S gas emission accounted for < 0.006% of total S in both soils. Compared to RSD0, lime addition stimulated the conversion of SO42 − into undissolved form, reduced soil SO42 − by 81% in S1 and 84% in S2 and reduced total S gas emissions by 32% in S1 and 57% in S2, respectively. In addition to H2S, COS and DMS, the emissions of carbon disulfide, methyl mercaptan, and dimethyl disulfide were also detected in RSD1 treatment. The results indicated that RSD was an effective method to remove SO42 −, liming stimulates the conversion of dissolved SO42 − into undissolved form, probably due to the precipitation with calcium.  相似文献   

16.
We predicted changes in yields and direct net soil greenhouse gas (GHG) fluxes from converting conventional to alternative management practices across one of the world's most productive agricultural regions, the Central Valley of California, using the DAYCENT model. Alternative practices included conservation tillage, winter cover cropping, manure application, a 25% reduction in N fertilizer input and combinations of these. Alternative practices were evaluated for all unique combinations of crop rotation, climate, and soil types for the period 1997-2006. The crops included were alfalfa, corn, cotton, melon, safflower, sunflower, tomato, and wheat. Our predictions indicate that, adopting alternative management practices would decrease yields up to 5%. Changes in modeled SOC and net soil GHG fluxes corresponded to values reported in the literature. Average potential reductions of net soil GHG fluxes with alternative practices ranged from −0.7 to −3.3 Mg CO2-eq ha−1 yr−1 in the Sacramento Valley and −0.5 to −2.5 Mg CO2-eq ha−1 yr−1 for the San Joaquin Valley. While adopting a single alternative practice led to modest net soil GHG flux reductions (on average −1 Mg CO2-eq ha−1 yr−1), combining two or more of these practices led to greater decreases in net soil GHG fluxes of up to −3 Mg CO2-eq ha−1 yr−1. At the regional scale, the combination of winter cover cropping with manure application was particularly efficient in reducing GHG emissions. However, GHG mitigation potentials were mostly non-permanent because 60-80% of the decreases in net soil GHG fluxes were attributed to increases in SOC, except for the reduced fertilizer input practice, where reductions were mainly attributed to decreased N2O emissions. In conclusion, there are long-term GHG mitigation potentials within agriculture, but spatial and temporal aggregation will be necessary to reduce uncertainties around GHG emission reductions and the delivery risk of the associated C credits.  相似文献   

17.
Results from the UK were reviewed to quantify the impact on climate change mitigation of soil organic carbon (SOC) stocks as a result of (1) a change from conventional to less intensive tillage and (2) addition of organic materials including farm manures, digested biosolids, cereal straw, green manure and paper crumble. The average annual increase in SOC deriving from reduced tillage was 310 kg C ± 180 kg C ha−1 yr−1. Even this accumulation of C is unlikely to be achieved in the UK and northwest Europe because farmers practice rotational tillage. N2O emissions may increase under reduced tillage, counteracting increases in SOC. Addition of biosolids increased SOC (in kg C ha−1 yr−1 t−1 dry solids added) by on average 60 ± 20 (farm manures), 180 ± 24 (digested biosolids), 50 ± 15 (cereal straw), 60 ± 10 (green compost) and an estimated 60 (paper crumble). SOC accumulation declines in long-term experiments (>50 yr) with farm manure applications as a new equilibrium is approached. Biosolids are typically already applied to soil, so increases in SOC cannot be regarded as mitigation. Large increases in SOC were deduced for paper crumble (>6 t C ha−1 yr−1) but outweighed by N2O emissions deriving from additional fertiliser. Compost offers genuine potential for mitigation because application replaces disposal to landfill; it also decreases N2O emission.  相似文献   

18.
Salinization and sodicity are obstacles for vegetation reconstruction of coastal tidal flat soils. A study was conducted with flue gas desulfurization(FGD)-gypsum applied at rates of 0, 15, 30, 45 and 60 Mg/ha to remediate tidal flat soils of the Yangtze River estuary.Exchangeable sodium percentage(ESP), exchangeable sodium(ExNa), p H, soluble salt concentration, and composition of soluble salts were measured in 10 cm increments from the surface to 30 cm depth after 6 and 18 months. The results indicated that the effect of FGD-gypsum is greatest in the 0–10 cm mixing soil layer and 60 Mg/ha was the optimal rate that can reduce the ESP to below 6% and decrease soil p H to neutral(7.0). The improvement effect was reached after 6 months, and remained after 18 months. The composition of soluble salts was transformed from sodic salt ions mainly containing Na~+, HCO_3~-+ CO_3~(2-)and Cl-to neutral salt ions mainly containing Ca~(2+)and SO_4~(2-). Non-halophyte plants were survived at 90%. The study demonstrates that the use of FGD-gypsum for remediating tidal flat soils is promising.  相似文献   

19.
Sulfamethoxypyridazine(SMP) is one of the commonly used sulfonamide antibiotics(SAs).SAs are mainly studied to undergo triplet-sensitized photodegradation in water under natural sunlight with other coexisting aquatic environmental organic pollutants.In this work,SMP was selected as a representative of SAs.We studied the mechanisms of triplet-sensitized photodegradation of SMP and the influence of selected dissolved inorganic matter,i.e.,anions(Br~-,Cl~-,and NO~-_3) and cations ions(Ca~(2+),Mg~(2+),and Zn~(2+)) on SMP photodegradation mechanism by quantum chemical methods.In addition,the degradation mechanisms of SMP by hydroxyl radical(OH·) were also investigated.The creation of SO_2 extrusion product was accessed with two different energy pathways(pathway-1 and pathway-2) by following two steps(step-I and step-II) in the tripletsensitized photodegradation of SMP.Due to low activation energy,the pathway-1 was considered as the main pathway to obtain SO_2 extrusion product.Step-II of pathway-1 was measured to be the rate-limiting step(RLS) of SMP photodegradation mechanism and the effect of the selected anions and cations was estimated for this step.All selected anions and cations promoted photodegradation of SMP by dropping the activation energy of pathway-1.The estimated low activation energies of different degradation pathways of SMP with OH·radical indicate that OH·radical is a very powerful oxidizing agent for SMP degradation via attack through benzene derivative and pyridazine derivative ring.  相似文献   

20.
Grazed grasslands occupy 26% of the earth's ice free land surface and are therefore an important component of the global C balance. In New Zealand, pastoral agriculture is the dominant land use and recent research has shown that soils under intensive dairy pastures have lost large amounts of carbon (∼1000 kg C ha−1 y−1) during the past few decades. The objective of this research was to determine the net ecosystem carbon balance (NECB) of an intensively grazed dairy pasture in New Zealand. Net ecosystem CO2 exchange (NEE) was measured using an eddy covariance (EC) system from 1 January 2008 to 31 December 2009. Other C imports (feed) and exports (milk, methane, leaching, and harvested biomass) were calculated from farm production data and literature values. During 2008 there was a one in 100 year drought during summer/autumn, which was followed by a very wet winter. There were no prolonged periods of above or below average rainfall or soil moisture in 2009, but temperatures were consistently lower than 2008. The severe summer/autumn drought during 2008 caused a loss of CO2 to the atmosphere, but annual NEE remained negative (a CO2 sink, −1610 ± 500 kg C ha−1), because CO2 lost during the drought was regained during the winter and spring. The site was also a net CO2 sink during 2009 despite the colder than usual conditions (−2290 ± 500 kg C ha−1). Including C imports and exports in addition to CO2 exchange revealed that the site was a C sink in both years, with a NECB of 590 ± 560 kg C ha−1 in 2008, and 900 ± 560 kg C ha−1 in 2009. The C sequestration found in this study is in agreement with most other Northern Hemisphere EC studies of grazed pastures on mineral soils, but is not consistent with the large C losses reported for soils under dairy pastures throughout New Zealand. In the current study (like many other EC studies) the influence of climatic conditions and management practices on the annual C balance was only semi-quantitatively assessed. An extended period of EC measurements combined with modelling is required to more accurately quantify the effect of different climatic conditions on the annual C balance, and the influence of different management practices needs to be quantified using specifically designed studies (such as paired EC towers), so that practices which minimise C losses and maximise C sequestration can be identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号