首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Land cover of the Earth is changing dramatically because of human activities. Information about changes is useful for management of natural resources. Rapid land cover changes have taken place in many coastal areas of Turkey over the last two decades due to urbanization and land degradation. In this paper, land cover change dynamics were investigated by the combined use of satellite remote sensing and geographical information systems. The main objective of the study was to determine land-cover transition rates among land cover types in coastal areas of Turkey. A time series of Landsat TM and ASTER images were used to gather land cover change data of the coastal line of Candarli Bay, Izmir, Turkey. The images were classified using supervised classification and a post-classification comparison approach was used in change detection. The results show significant increase in urban areas but decrease in semi natural and agricultural areas.  相似文献   

2.
Land cover change can be caused by human-induced activities and natural forces. Land cover change in watershed level has been a main concern for a long time in the world since watersheds play an important role in our life and environment. This paper is focused on how to apply Landsat Multi-Spectral Scanner (MSS) satellite image of 1973 and Landsat Thematic Mapper (TM) satellite image of 2001 to determine the land cover changes of coastal watersheds from 1973 to 2001. GIS and remote sensing are integrated to derive land cover information from Landsat satellite images of 1973 and 2001. The land cover classification is based on supervised classification method in remote sensing software ERDAS IMAGINE. Historical GIS data is used to replace the areas covered by clouds or shadows in the image of 1973 to improve classification accuracy. Then, temporal land cover is utilized to determine land cover change of coastal watersheds in southern Guam. The overall classification accuracies for Landsat MSS image of 1973 and Landsat TM image of 2001 are 82.74% and 90.42%, respectively. The overall classification of Landsat MSS image is particularly satisfactory considering its coarse spatial resolution and relatively bad data quality because of lots of clouds and shadows in the image. Watershed land cover change in southern Guam is affected greatly by anthropogenic activities. However, natural forces also affect land cover in space and time. Land cover information and change in watersheds can be applied for watershed management and planning, and environmental modeling and assessment. Based on spatio-temporal land cover information, the interaction behavior between human and environment may be evaluated. The findings in this research will be useful to similar research in other tropical islands.  相似文献   

3.
In this study we quantified land cover changes in the arid region of Yulin City, Northwest China between 1985 and 2000 using remote sensing and GIS in conjunction with landscape modeling. Land covers were mapped into 20 categories from multitemporal Landsat TM images. Five landscape indices were calculated from these maps at the land cover patches level. It was found that fallow land decreased by 125,148 ha while grassland and woodland increased by 107,975 and 17,157 ha, respectively. Landscape heterogeneity, dominance and fractal dimension changed little during the 15-year period while landscape became more fragmented, with an index rising from 0.56 to 0.58. The major factors responsible for these changes are identified as the change in the government policy on preserving the environment, continued growth in mining, and urbanization.  相似文献   

4.
Rapid and unplanned urbanization and industrialization are the main reasons of environmental problems. If urban growth is not based on resource sustainability criteria and urban plans are not applied, natural and human resources are damaged dramatically. In this study, land use change and urban expansion in Edremit region of Turkey is determined by means of remote sensing techniques between 1971 and 2002. To improve the accuracy of land use/cover maps, the contribution of SAR images to optic images in defining land cover types was investigated. To determine the situation of land use/cover types in 2002 accurately, Landsat-5 images and Radarsat-1 images were fused, and the land use/cover types were defined from the fused images. Comparisons with the ground truth reveal that land use maps generated using the fuse technique are improved about 6% with an accuracy of 81.20%. To define land use types and urban expansion, screen digitizing and classification methods were used. The results of the study indicate that the urban areas have been increased 1,826 ha across the agricultural fields which are in land use capability classes of I and II, and significant environmental changes such as land degradation and degeneration of ground water quality occurred.  相似文献   

5.
Due to human impact under climatic variations, western part of Northeast China has suffered substantial land degradation during past decades. This paper presents an integrated study of expansion process of salinized wasteland in Da’an County, a typical salt-affected area in Northeast China, by using Geographic Information Systems (GIS) and remote sensing. The study explores the temporal and spatial characteristics of salinized wasteland expansion from 1954 to 2004, and land use/cover changes during this period. During the past 50 years, the salinized wasteland in study area have increased by 135,995 ha, and in 2004 covers 32.31% of the total area, in the meantime grassland has decreased by 104,697 ha and in 2004 covers only 13.15% of the study area. Grasslands, croplands and swamplands were found the three main land use types converted into salinized wasteland. Land use/cover changes shows that between 1954 and 2004, 48.6% of grasslands, 42.5% of swamplands, and 14.1% of croplands were transformed into salinized wasteland, respectively. Lastly, the major factors influencing salinized wasteland expansion and land use/cover changes were also explored. In general, climatic factors supplied a potential environment for soil salinization. Human-related factors, such as policy, population, overgrazing, and intensified and unreasonable utilization of land and water resources are the main causes of salinized wasteland expansion.  相似文献   

6.
Land use change resulted in land degradation is a focus of research on global environmental changes and plays a significant role in the stability and economic development of oases in arid regions of China. Jinta Oasis, a typical oasis of temperate arid zone in northwestern China, was investigated to assess land-use change dynamics during 1988–2003 with the aid of satellite remote sensing and GIS, and to explore the interaction between these changes and oasis environment. Six land-use types were identified, namely: cropland, forestland, grassland, water, urban or built-up land, and barren land. The results indicate that cropland, urban/built-up land, and barren land increase greatly by 30.03, 13.35, and 15.52 km2, respectively; but grassland and forestland areas decrease rapidly by 58.06, and 1.76 km2, respectively. These results also show that obvious widespread changes in land-use occur within the whole oasis over the study period and result in severe problems of environmental degradation (i.e. land desertification, decline of groundwater, and vegetation degeneracy).  相似文献   

7.
The farming and grazing interlocked transitional zone along theGreat Wall in northern Shaanxi Province is particularly vulnerable to desertification due to its fragile ecosystem and intensive human activity. Studies reveal that desertification isboth a natural and anthropogenic process. Four desertificationindicators (vegetative cover, proportion of drifting sand area, desertification rate, and population pressure) were used to assess the severity of desertification in a GIS. The first threefactors were derived from multitemporal remote sensing and landinventory data. The last factor was calculated from census data.It was found that the overall severity of land degradation in thestudy area has worsened during the last two decades with severely, highly and moderately degraded land accounting for 84.2% of the total area in 1998. While the area affected by desertification has increased, the rate of desertification has also accelerated from 0.74 to 0.87%. Risk of land degradation in the study area has increased, on an average, by 155% since 1985. Incorporation of both natural and anthropogenic factors inthe analysis provides realistic assessment of risk of desertification.  相似文献   

8.
Coastline mapping and coastline change detection are critical issues for safe navigation, coastal resource management, coastal environmental protection, and sustainable coastal development and planning. Changes in the shape of coastline may fundamentally affect the environment of the coastal zone. This may be caused by natural processes and/or human activities. Over the past 30 years, the coastal sites in Turkey have been under an intensive restraint associated with a population press due to the internal and external touristic demand. In addition, urbanization on the filled up areas, settlements, and the highways constructed to overcome the traffic problems and the other applications in the coastal region clearly confirm an intensive restraint. Aerial photos with medium spatial resolution and high resolution satellite imagery are ideal data sources for mapping coastal land use and monitoring their changes for a large area. This study introduces an efficient method to monitor coastline and coastal land use changes using time series aerial photos (1973 and 2002) and satellite imagery (2005) covering the same geographical area. Results show the effectiveness of the use of digital photogrammetry and remote sensing data on monitoring large area of coastal land use status. This study also showed that over 161 ha areas were filled up in the research area and along the coastal land 12.2 ha of coastal erosion is determined for the period of 1973 to 2005. Consequently, monitoring of coastal land use is thus necessary for coastal area planning in order to protecting the coastal areas from climate changes and other coastal processes.  相似文献   

9.
从水环境质量监测、水体信息提取、植被资源监测、城市土地覆盖识别、大气环境监测5个方面综述了高分一号(GF-1)、高分二号(GF-2)卫星遥感数据在区域生态环境监测领域的应用,分析了相关研究的应用方向和重点,表明GF-1、GF-2卫星遥感数据在该领域具有良好的适用性和较大的应用潜力。  相似文献   

10.
The objective of this study is to develop techniques for assessing and analysing land desertification in Yulin of Northwest China, as a typical monitoring region through the use of remotely sensed data and geographic information systems (GIS). The methodology included the use of Landsat TM data from 1987, 1996 and 2006, supplemented by aerial photos in 1960, topographic maps, field work and use of other existing data. From this, land cover, the Normalised Difference Vegetation Index (NDVI), farmland, woodland and grassland maps at 1:100,000 were prepared for land desertification monitoring in the area. In the study, all data was entered into a GIS using ILWIS software to perform land desertification monitoring. The results indicate that land desertification in the area has been developing rapidly during the past 40 years. Although land desertification has to some extent been controlled in the area by planting grasses and trees, the issue of land desertification is still serious. The study also demonstrates an example of why the integration of remote sensing with GIS is critical for the monitoring of environmental changes in arid and semi-arid regions, e.g. in land desertification monitoring in the Yulin pilot area. However, land desertification monitoring using remote sensing and GIS still needs to be continued and also refined for the purpose of long-term monitoring and the management of fragile ecosystems in the area.  相似文献   

11.
This paper intended to examine the seasonal variations in the relationship between landscape pattern and land surface temperature based on a case study of Indianapolis, United States. The integration of remote sensing, GIS, and landscape ecology methods was used in this study. Four Terra's ASTER images were used to derive the landscape patterns and land surface temperatures (LST) in four seasons in the study area. The spatial and ecological characteristics of landscape patterns and LSTs were examined by the use of landscape metrics. The impact of each land use and land cover type on LST was analyzed based on the measurements of landscape metrics. The results show that the landscape and LST patterns in the winter were unique. The rest of three seasons apparently had more agreeable landscape and LST patterns. The spatial configuration of each LST zone conformed to that of each land use and land cover type with more than 50% of overlap in area for all seasons. This paper may provide useful information for urban planers and environmental managers for assessing and monitoring urban thermal environments as result of urbanization.  相似文献   

12.
Transboundary air pollution from industries in Nikel and Zapolyarnij has caused severe damage to the environment in Southern-Varanger in Norway and in Pechenga municipality in Russia. The work presented in this paper focuses on the integration of in-situ air pollution data with remote sensing based land cover maps. Land cover maps have been utilised to detect changes in the major land cover types within the area. The major change in the environment was the decrease of the sensitive lichen-dominated land cover types, and the increase of bilberry-dominated land cover types and finally the increase of the land cover types with the greatest air pollution stress (industrial barren, barren, and partly damaged vegetation, defoliated forests, lichen removal). A GIS based method for assessing the relationship of the remotely sensed land cover maps with the environmental condition parameters was developed and applied. By comparing the results from this analysis we observed that the land cover types with the greatest stress had the largest concentrations of SO2 in the ground air layer, while the land cover types with minor damage (the remaining lichen-dominated vegetation) had rather low concentrations of sulphur dioxide in the ground air layer. The area of the land cover types with the greatest stress (industrial barren, barren and partly damaged vegetation) has increased in the period 1973–1988, and the degradation is carried out in a such manner that sensitive mountain and lichen vegetation formations have been transformed into a more barren-like environment. The increase in the emissions has also transferred the natural barrens which also consisted of some sparse vegetation into a complete barren with little vegetation left. Also the epilitic lichens and mosses on bare rocks and stones were also removed by the high concentrations of SO2. The land cover types with minor damage (with the remaining lichen-dominated vegetation) had rather low concentrations of the contaminants (SO2, Ni and S), while the partly damaged and damaged land cover types had the highest concentrations of the contaminants. An exception was the Ni and S concentrations found in class 11 Industrial barrens which were lower than expected. Associations between the degradation and the SO2 concentration in the air were also documented. The conclusion from this analysis is that the in-situ data support the observations of damaged vegetation and industrial barrens imaged by the Landsat satellites, especially in the surroundings of Nikel and Zapolyarnij.  相似文献   

13.
应用遥感技术监测分析扬州市2009—2012年土地利用与覆盖状况。结果表明,扬州市土地利用及覆盖以耕地、城乡工矿居民用地及水域为主,主要生态红线区土地覆盖类型未发生人为改变,生态环境状况总体良好,呈略有改善的态势。提出,应坚持开展污染治理和生态建设,优化发展空间,统筹城乡建设用地管理。  相似文献   

14.
Repetitive armed conflicts may be directly and indirectly responsible for severe biophysical modification to the environment. This, in turn, makes land more susceptible to degradation. Mapping and monitoring land degradation are essential for designing and implementing post-conflict recovery plans and informed policy decisions. The aim of this work was to evaluate the effect of repetitive armed conflicts on land degradation along the coastal zone of North Lebanon using multi-temporal satellite data. The specific objectives were to (1) identify a list of indicators for use in conjunction with satellite remote sensing, (2) monitor land cover change throughout repetitive events of armed conflicts and (3) model the effect of repetitive armed conflicts on land degradation. The methodology of work comprised the use of multi-temporal Landsat images and literature review data in GEographic Object-Based Image Analysis (GEOBIA) approach. The work resulted in the development of (1) a list of indicators to be employed, (2) land cover change detection maps with the use of multi-temporal Landsat images and, consequently, a fire risk associated with changes in vegetation cover throughout repetitive armed conflict events, and (3) an integrated approach for modelling the effect of repetitive armed conflicts on land degradation with the use of a composite land degradation index (CLDI). The final synthetic map showed four classes of exposure to land degradation associated with repetitive armed conflicts. Data collected from field visits showed that the final classification results highly reflected (average of 90 %) the effect of repetitive armed conflicts on the different classes of exposure to land degradation.  相似文献   

15.
Satellite-based remote sensing offers great potential for frequent assessment of forest cover over broad spatial scales, however, calibration and validation using ground-based surveys are needed. In this study, forest cover estimates for the United States from a recently developed land surface cover map generated from satellite remote sensing data were compared to state-level inventory data from the U.S. National Resources Planning Act Timber Database. The land cover map was produced at the U.S. Geological Survey EROS Data Center and is based on imagery from the AVHRR sensor (spatial resolution 1.1 km). Vegetation type was classified using the temporal signal in the Normalized Difference Vegetation Index derived from AVHRR data. Comparisons revealed close agreement in the estimate of forest cover for extensively forested states with large polygons of relatively similar vegetation such as Oregon. Larger forest cover differences were observed in other states with some regional patterns in the level of agreement apparent.Comparisons in inventory- and remote sensing-based estimates of current forested area with potential vegetation maps indicated the magnitude of past land use change and the potential for future changes. The remote sensing approach appears to hold promise for conducting surveys of forest cover where inventory data are limited or where rates of vegetation change, due to human or climatic factors, are rapid.  相似文献   

16.
Overuse of land resources has increasingly contributed to environmental crises in China. To mitigate widespread land degradation, actions have been taken to maintain and restore the ecological environment through efforts such as ecological engineering. By analyzing trends in land use, the impact and effectiveness of ecological engineering can be determined. In this study, such changes in Huanjiang County in China were considered. In the early 1990s, an eco-immigration policy and “returning farmland to forest program” were implemented in the county, drastically impacting land use. Land use/land cover changes were detected and analyzed using remote sensing data recorded over 4 years (1995, 2000, 2005, and 2010). Land transfer flow and the rate of land use change elucidated the extent of changes, while nuclear density analysis indicated spatial agglomeration. The results indicate that, over a period of 15 years, farmland area increased, while forest area decreased initially before subsequently increasing. From 1995 to 2000, the highest transfer flow was observed in the grassland to farmland conversion (79.34%). From 2000 to 2005, the transfer flow of conversions was the highest for forest to farmland (56.79%). Land use changes were not prominent from 2005 to 2010. Direct drivers of land use change exert obvious impacts on land use, and indirect drivers impact direct drivers that are then channeled through direct anthropogenic drivers (e.g., land use policies). We found that ecological engineering has a very significant impact on land use change, and that impact varies from region to region.  相似文献   

17.
为研究2000—2015年丹江湿地国家级自然保护区及其内外生态状况变化和保护成效,基于高分1号数据生产的2m高分辨率遥感影像数据对丹江湿地国家级自然保护区2015年人类活动状况进行分析,基于30 m分辨率的4期TM遥感影像生产的土地覆被数据和基于Modis遥感影像生产的植被覆盖度数据,对淅川县、丹江湿地国家级自然保护区及其核心区的土地覆被状况、土地覆被转类指数及其土地覆被转类途径的主导程度和3个相关区域范围内的生态系统质量以及不同区域土地覆被变化的主要变化原因进行分析。结果表明,保护区核心区的格局和质量在该区域处于最优,且土地覆被变化状况也以核心区转类指数最高;丹江湿地国家级自然保护区内的主要人类活动影响为耕地,其次包括居民点、采石场、养殖场; 15年间,保护区内外土地覆被均呈现转好趋势,但是保护区内变化优于保护区外,保护区核心区优于整个保护区,且转好的主导因素均是耕地变为湿地; 15年间植被覆盖度变化较小。  相似文献   

18.
Remote sensing of aquatic vegetation: theory and applications   总被引:2,自引:0,他引:2  
Aquatic vegetation is an important component of wetland and coastal ecosystems, playing a key role in the ecological functions of these environments. Surveys of macrophyte communities are commonly hindered by logistic problems, and remote sensing represents a powerful alternative, allowing comprehensive assessment and monitoring. Also, many vegetation characteristics can be estimated from reflectance measurements, such as species composition, vegetation structure, biomass, and plant physiological parameters. However, proper use of these methods requires an understanding of the physical processes behind the interaction between electromagnetic radiation and vegetation, and remote sensing of aquatic plants have some particular difficulties that have to be properly addressed in order to obtain successful results. The present paper reviews the theoretical background and possible applications of remote sensing techniques to the study of aquatic vegetation.  相似文献   

19.
松嫩平原土地荒漠化动态监测与分析   总被引:2,自引:1,他引:1  
土地荒漠化是土地退化的一种主要形式,也是生态环境恶化的一种主要表现,严重制约着农业生产的发展.以1975年MSS卫星遥感影像、1990年TM卫星遥感影像以及2001年ETM卫星遥感影像等数据为信息源,采用地理信息系统的分析方法,引入荒漠化动态度等表征参量,建立了科学的荒漠化土地类型和土地动态转化分级系统,对我国松嫩平原近30年来的荒漠化土地进行了动态变化分析.结果表明,在1975~1990年期间,松嫩平原荒漠化土地呈明显发展趋势,其面积增加了1368931hm2,荒漠化边缘地区恶化现象明显强于腹地;在1990~2001年期闻,松嫩平原荒漠化土地总面积缓慢减少.减少面积为297867hm2,荒漠化呈逆转趋势,逆转现象边缘地区强于腹地,土地荒漠化趋势基本得到遏制.  相似文献   

20.
In this paper, various spatial modelling techniques were applied to analyse changes in soil cover and their impact on soil erosion in the Oplenac wine-producing area in Serbia in the past (1985 and 2013) and in the future (with predictions for 2041). The Integrated Valuation of Ecosystem Services and Trade-offs Sediment Delivery Ratio (InVEST SDR) model and the Modules for Land Use Change Evaluation (MOLUSCE) model, integrated with methods of remote sensing, were successfully applied and were shown to be valid tools for predicting the impact of Land Use Land Cover (LULC) changes when estimating soil loss. The results revealed that the greatest impact of land use changes between 1985 and 2013 was on a reduction in areas under vineyards and an extension of meadow and pasturelands as an individual and social response to economic conditions during the research period. The forecast for 2041 reflected the trends observed in the previous period, with the greatest changes witnessing an increase in urban areas and a decrease in areas of arable land. It was also found that the effect of LULC changes on spatio-temporal patterns in the Oplenac wine-producing area did not have a major impact on soil loss, meaning this area, with its good agro-climatic characteristics, is suitable for the intensification of agricultural production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号