首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Yellow River is the second longest river in China and the cradle of the Chinese civilization. The source region of the Yellow River is the most important water holding area for the Yellow River, about 49.2% of the whole runoff comes from this region. However, for the special location, it is a region with most fragile eco-environment in China as well. Eco-environmental degradation in the source region of the Yellow River has been a very serious ecological and socially economic problem. According to census data, historical documents and climatic information, during the last half century, especially the last 30 years, great changes have taken place in the eco-environment of this region. Such changes are mainly manifested in the temporal-spatial changes of water environment, deglaciation, permafrost reduction, vegetation degeneracy and desertification extent, which led to land capacity decreasing and river disconnecting. At present, desertification of the region is showing an accelerating tendency. This paper analyzes the present status of eco-environment degradation in this region supported by GIS and RS, as well as field investigation and indoor analysis, based on knowledge, multi-source data is gathered and the classification is worked out, deals with their natural and anthropogenic causes, and points out that in the last half century the desertification and environmental degradation of this region are mainly attributed to human activities under the background of regional climate changes. To halt further degradation of the environment of this region, great efforts should be made to use land resources rationally, develop advantages animal agriculture and protect the natural grassland.  相似文献   

2.
Aeolian desertification is one of the most serious environmental and socioeconomic problems in arid, semi-arid, and dry subhumid zones. Understanding desertification processes and causes is important to provide reasonable and effective control measures for preventing desertification. With satellite remote sensing images as data source to assess the temporal and spatial dynamics of desertification from 1975 to 2010 in the Horqin Sandy Land, dynamic changes of aeolian desertification were detected using the human–machine interactive interpretation method. The driving factors of local desertification were analyzed based on natural and socioeconomic data. The results show that aeolian desertified land in the study area covered 30,199 km2 in 2010, accounting for 24.1 % of the study area. The total area of aeolian desertified land obviously expanded from 30,884 km2 in 1975 to 32,071 km2 in 1990, and gradually decreased to 30,199 km2 in 2010; aeolian desertified land represented an increasing trend firstly and then decreased. During the past 35 years, the gravity centers of desertified lands that are classified as extremely severe and severe generally migrated to the northeast, whereas those that are moderate and slight migrated to the northwest. The migration distance of severely desertified land was the largest, which indicated the southern desertified lands were improved during the last few decades. In addition, the climatic variation in the past 35 years has been favorable to desertification in the Horqin Sandy Land. Aeolian desertified land rapidly expanded from 1975 to 1990 under the combined effects of climate changes and unreasonable human activities. After the 1990s, the main driving factors responsible for the decrease in desertification were positive human activities, such as the series of antidesertification and ecological restoration projects.  相似文献   

3.
The effect of land cover change, from natural to anthropogenic, on physical geography conditions has been studied in Kayisdagi Mountain. Land degradation is the most important environmental issue involved in this study. Most forms of land degradation are natural processes accelerated by human activity. Land degradation is a human induced or natural process that negatively affects the ability of land to function effectively within an ecosystem. Environmental degradation from human pressure and land use has become a major problem in the study area because of high population growth, urbanization rate, and the associated rapid depletion of natural resources. When studying the cost of land degradation, it is not possible to ignore the role of urbanization. In particular, a major cause of deforestation is conversion to urban land. The paper reviews the principles of current remote sensing techniques considered particularly suitable for monitoring Kayisdagi Mountain and its surrounding land cover changes and their effects on physical geography conditions. In addition, this paper addresses the problem of how spatially explicit information about degradation processes in the study area rangelands can be derived from different time series of satellite data. The monitoring approach comprises the time period between 1990 and 2005. Satellite remote sensing techniques have proven to be cost effective in widespread land cover changes. Physical geography and particularly natural geomorphologic processes like erosion, mass movement, physical weathering, and chemical weathering features etc. have faced significant unnatural variation.  相似文献   

4.
以1989—2016年玛纳斯河流域TM/OLI遥感影像为数据源,利用混合像元分解技术,计算玛纳斯河流域草地总覆盖度和裸沙面积。在此基础上通过监测年与基期年的比较,计算草地覆盖度相对基期年的减少率和裸沙面积相对基期年的增加率两个监测指标,依据《天然草地退化、沙化、盐渍化的分级指标》(GB 19377—2003),对计算出的两个指标分别进行沙化等级评定和赋值,将两种评定结果相综合来监测草地沙化。结果表明,玛纳斯河流域近30年来荒漠草地沙漠化总体呈现先增加后降低的趋势。分析表明,玛纳斯河流域草地沙化是人为和自然因素双重作用的结果。  相似文献   

5.
The objective of this study is to develop techniques for assessing and analysing land desertification in Yulin of Northwest China, as a typical monitoring region through the use of remotely sensed data and geographic information systems (GIS). The methodology included the use of Landsat TM data from 1987, 1996 and 2006, supplemented by aerial photos in 1960, topographic maps, field work and use of other existing data. From this, land cover, the Normalised Difference Vegetation Index (NDVI), farmland, woodland and grassland maps at 1:100,000 were prepared for land desertification monitoring in the area. In the study, all data was entered into a GIS using ILWIS software to perform land desertification monitoring. The results indicate that land desertification in the area has been developing rapidly during the past 40 years. Although land desertification has to some extent been controlled in the area by planting grasses and trees, the issue of land desertification is still serious. The study also demonstrates an example of why the integration of remote sensing with GIS is critical for the monitoring of environmental changes in arid and semi-arid regions, e.g. in land desertification monitoring in the Yulin pilot area. However, land desertification monitoring using remote sensing and GIS still needs to be continued and also refined for the purpose of long-term monitoring and the management of fragile ecosystems in the area.  相似文献   

6.
This paper investigates the sandy desertification change between 1986 and 2000 in the western Jilin province, North China. Land use and land cover data were obtained from Landsat TM data by using a supervised classification approach. We summarized the total area of desertified land by each county, as well as the area for each of the four categories of desertified land. The changes of different types of land use and land cover between 1986 and 2000 were calculated and analyzed. Taking Tongyu and Qianan as examples, both human and natural driving forces of the sandy desertification were analyzed. Our analyses indicate that the material sources and windy, warm and dry climate are the immanent causes of potential land desertification, while the irrational human activities, such as deforestation, reclaiming and grazing in the grassland, are the external causes of potential land desertification. However, rational human activities, such as planting trees and restoring grassland can reverse the land desertification process. Furthermore, the countermeasures and suggestions for the sustainable development in ecotone between agriculture and animal husbandry in North China are put forward.  相似文献   

7.
Overuse of land resources has increasingly contributed to environmental crises in China. To mitigate widespread land degradation, actions have been taken to maintain and restore the ecological environment through efforts such as ecological engineering. By analyzing trends in land use, the impact and effectiveness of ecological engineering can be determined. In this study, such changes in Huanjiang County in China were considered. In the early 1990s, an eco-immigration policy and “returning farmland to forest program” were implemented in the county, drastically impacting land use. Land use/land cover changes were detected and analyzed using remote sensing data recorded over 4 years (1995, 2000, 2005, and 2010). Land transfer flow and the rate of land use change elucidated the extent of changes, while nuclear density analysis indicated spatial agglomeration. The results indicate that, over a period of 15 years, farmland area increased, while forest area decreased initially before subsequently increasing. From 1995 to 2000, the highest transfer flow was observed in the grassland to farmland conversion (79.34%). From 2000 to 2005, the transfer flow of conversions was the highest for forest to farmland (56.79%). Land use changes were not prominent from 2005 to 2010. Direct drivers of land use change exert obvious impacts on land use, and indirect drivers impact direct drivers that are then channeled through direct anthropogenic drivers (e.g., land use policies). We found that ecological engineering has a very significant impact on land use change, and that impact varies from region to region.  相似文献   

8.
Based on land ecological classification of the source regions of the Yangtze and Yellow Rivers and field investigation, two phases of TM remote sensing data obtained in 1986 and 2000 were compared. From spatial variations and type transformation trends, the spatial changes and evolutional patterns of land ecosystem in the source regions of the two rivers were analyzed using the analytical method of landscape ecological spatial patterns. Results show that middle and high-cover high-cold steppe areas degraded considerably by 15.82%, high-cover high-cold meadow areas by 5.15%, while high-cold swamp meadow areas decreased by 24.36%. Lake water area was reduced by 7.5%, especially the lakes in the source region of the Yangtze River. Land desertification is developing rapidly and the average of desertified land area has increased by 17.11%. Desertified land in the source region of Yellow River is expanding at an annual rate of 1.83%. Analysis of the evolutional pattern of land ecotypes shows that the general tendencies of spatial evolution in the regions are coverage reduction and desertification of high-cold steppe, cover reduction and steppification of high-cold meadows, and desiccation of swamp meadows. As a result, land ecological spatial distribution pattern in the region is changing and the state of eco-environment declining.  相似文献   

9.
The desertification risk affects around 40% of the agricultural land in various regions of Romania. The purpose of this study is to analyse the risk of desertification in the south-west of Romania in the period 19842011 using the change vector analysis (CVA) technique and Landsat thematic mapper (TM) satellite images. CVA was applied to combinations of normalised difference vegetation index (NDVI)-albedo, NDVI-bare soil index (BI) and tasselled cap greenness (TCG)-tasselled cap brightness (TCB). The combination NDVI-albedo proved to be the best in assessing the desertification risk, with an overall accuracy of 87.67%, identifying a desertification risk on 25.16% of the studied period. The classification of the maps was performed for the following classes: desertification risk, re-growing and persistence. Four degrees of desertification risk and re-growing were used: low, medium, high and extreme. Using the combination NDVI-albedo, 0.53% of the analysed surface was assessed as having an extreme degree of desertification risk, 3.93% a high degree, 8.72% a medium degree and 11.98% a low degree. The driving forces behind the risk of desertification are both anthropogenic and climatic causes. The anthropogenic causes include the destruction of the irrigation system, deforestation, the destruction of the forest shelterbelts, the fragmentation of agricultural land and its inefficient management. Climatic causes refer to increase of temperatures, frequent and prolonged droughts and decline of the amount of precipitation.  相似文献   

10.
为建立土壤侵蚀动态变化数据库,本文以土地利用数据、植被覆盖指数、最大风速等值线图和DEM数据为信息源,对干旱荒漠区新疆克拉玛依市2000年和2007年的土壤侵蚀状况进行了动态监测与评价。结果表明,受自然条件和人类活动影响,8年间克拉玛依市土壤侵蚀强度有所增加,变化区域主要集中在克拉玛依市中部平原区。该方法的应用实现了土壤侵蚀的定时定量评价。  相似文献   

11.
Combating desertification in natural rangelands has recently become a priority in large parts of southern Africa. Rangeland managers, farmers, scientists, conservationists and land users have been applying a variety of restoration technologies to address this problem. Bush encroachment, as part of the desertification process, involves the natural replacement of the herbaceous plant cover by undesirable problem woody species. The active and passive restoration technologies that are applied, are mainly based on indigenous knowledge and include the chemical, mechanical or manual reclamation of unproductive rangelands, as well as the combating of woody and alien species encroachment. Indigenous practices and knowledge play a major role in the effectiveness and success rate of these technologies. This project faces the challenge of bringing together both local and scientific knowledge in a single user-friendly, computerised Decision Support System (DSS) which is directly accessible by land users to support them in the process of decision making, concerning the combating of desertification. Case studies from central and northern Namibia were used to combine qualitative and quantitative data to develop this Decision Support System. The DSS currently consists of two databases and an expert system, which evaluates the results of land users’ management practices, and provides easily accessible information and advice for participants in the system, based on the incorporated data. The DSS is also linked to national and international web sites and databases to offer a wider range of information on technologies concerning agricultural and conservation practices.  相似文献   

12.
Urban and industrial development has caused a major impact on environmental soil quality. This work assesses the extent and severity of contamination in a small urban area subjected to an industrial impact and identifies the major anthropogenic inputs. Twenty-six soil samples were collected from agricultural and urban sites, and concentrations of potentially toxic elements (As, Cd, Cu, Cr, Fe, Mn, Ni, Pb and Zn), PAHs and PCBs, were determined. In spite of the low median concentrations observed, some sites represent a potential hazard for human health and ecosystems. Concentrations of contaminants were higher than those found in a nearby city, indicating that the study area is affected by the surrounding industry. The use of multivariate statistical analyses allowed for the identification of the main factors controlling the variability of potentially toxic elements and organic pollutants in the soils. The presence of Cr, Fe, Mn and Ni was associated with geogenic inputs, and Cu, Pb, Zn, As, PAHs and PCBs were associated with anthropogenic inputs. Industry and traffic were the most important anthropogenic sources. Soil characteristics were identified as important factors controlling the spatial variability of elements, both from recognised natural and anthropogenic origin. Differences between land uses were observed, which may be attributed to both management practices and proximity to sources.  相似文献   

13.
Guwahati, the lone city on the bank of the entire midstream of the Brahmaputra River, is facing acute civic problem due to severe depletion of water quality of its natural water bodies. This work is an attempt towards water quality assessment of a relatively small tributary of the Brahmaputra called the Bharalu River flowing through the city that has been transformed today into a city drainage channel. By analyzing the key physical, chemical and biological parameters for samples drawn from different locations, an assessment of the dissolved load and pollution levels at different segments in the river was made. Locations where the contaminants exceeded the permissible limits during different seasons were identified by examining spatial and temporal variations. A GIS developed for the watershed with four layers of data was used for evaluating the influence of catchment land use characteristics. BOD, DO and total phosphorus were found to be the sensitive parameters that adversely affected the water quality of Bharalu. Relationship among different parameters revealed that the causes and sources of water quality degradation in the study area were due to catchments input, anthropogenic activities and poor waste management. Elevated levels of total phosphorus, BOD and depleted DO level in the downstream were used to develop an ANN model by taking total phosphorus and BOD as inputs and dissolved oxygen as output, which indicated that an ANN based predictive tool can be utilized for monitoring water quality in the future.  相似文献   

14.
In recent years, much attention has been given to desertification in Xinjiang, China, particularly in the southern edge of the Taklimakan Desert. In this study, an oasis in Minfeng County, which is located in the southern edges of the Taklimakan Desert, was chosen as our case study area. Supervised classification for land types was conducted, and then the change detection and the trend of changes in sandy land areas were analyzed and compared. The results show that the area of sandy land has decreased in the region in the period of 1992-2001. The main change was between sandy land and sparse vegetation in the Desert-oasis ecotone. In addition, the change from woodland to grassland and/or arable land was quite obvious from 1992 to 2001. These changes would probably result in more fragile environment and higher potentiality in land desertification in the area.  相似文献   

15.
The Hulunbir grassland experienced aeolian desertification expansion during 1975–2000, but local rehabilitation during 2000–2006. Northern China suffered severe aeolian desertification during the past 50 years. Hulunbir grassland, the best stockbreeding base in Northern China, was also affected by aeolian desertification. To evaluate the evolution and status of aeolian desertification, as well as its causes, satellite images (acquired in 1975, 1984, 2000, and 2006) and meteorological and socioeconomic data were interpreted and analyzed. The results show there was 2,345.7, 2,899.8, 4,053.9, and 3,859.6 km2 of aeolian desertified land in 1975, 1984, 2000, and 2006, respectively. The spatial pattern dynamic had three stages: stability during 1975–1984, fast expansion during 1984–2000, and spatial transfer during 2000–2006. The dynamic degree of aeolian desertification is negatively related to its severity. Comprehensive analysis shows that the human factor is the primary cause of aeolian desertification in Hulunbir grassland. Although aeolian desertified land got partly rehabilitated, constant increase of extremely severe aeolian desertified land implied that current measures were not effective enough on aeolian desertification control. Alleviation of grassland pressure may be an effective method.  相似文献   

16.
利用2001-2005年的遥感影像数据(覆盖范围主要是克孜勒苏柯尔克孜自治州行政辖区内的阿图什市),通过统计2001-2005 年土地利用数据,分析了该市近五年土地利用/覆盖的时空变化规律,并进而探究了导致该变化发生的自然、人文驱动因素.结果表明:在2001-2005年,该区域林地和草地面积增加,耕地面积减少,土地沙化和盐碱化现象得到遏制.探其原因主要是由社会、经济等人文因素造成,而包括气候波动在内的自然条件只是土地利用变化的背景条件.  相似文献   

17.
This study aims to monitor the arid Algerian High Plateaus, a key region for pastoral activities which has suffered harsh and widespread degradation from the eighties. This area is not sufficiently known by the international scientific community. For this purpose, we considered phytoecological inventories and thematic maps that have been carried out during 30 years. Available data for the study are vegetation maps derived from aerial photographs (1975-1978) and from satellite imagery (2006). The parameters considered include vegetation, flora, and soil surface properties. The study area is part of the ROSELT/OSS (ROSELT: Réseau d'Observatoires de Surveillance Ecologique à Long Terme (Long Term Ecological Monitoring Observatories Network); OSS: Observatory of the Sahara and the Sahel) network observatory (OSS 2008). To assess land degradation, we used landscape ecology parameters. These include the number and surface area of vegetation units, synthesized by the large patch index and the Shannon landscape diversity index. All parameters reflect an increase in landscape heterogeneity. The largest decline is observed for Stipa tenacissima vegetation units constituting 2/3 of the landscape in 1978 and occupied just 1/10 in 2006. Vegetation units linked to degradation, such those dominated by Salsola vermiculata, inexistent in 1978, now dominate the steppe. Another result of the ongoing landscape degradation on the plateaus between 1975 and 2006 is the decrease of vegetation cover. In 1978, 1/3 of rangelands only had low vegetation covers, inferior to 15%. Presently 9/10 present the same class cover. This can be explained by severe spells of drought combined by an exponential rise of livestock during the last 30 years. This has in turn greatly undermined the fodder potential of the steppe. Results suggest that the "greening-up" described by several authors in the Sahel over the last 40 years is not observed in the Algerian, nor in the North African steppes. On the contrary, the desertification is still ongoing and the threshold of irreversibility seems to be imminent.  相似文献   

18.
With rapid population growth and rural to-urban migration in many Chinese cities, a large amount of natural lands have been converted to urban and agricultural lands recently. During this process of land conversion, economic development and quality of life improvement are considered as major goals, and their influences on ecological systems have often been neglected. The degradation of natural ecological systems due to land use change, however, has become severe,and may require immediate attentions from urban planners and local governments. Taking HaDaQi industrial corridor, Heilongjiang Province, China,as a case study area, this paper examined the trend of land use changes during 1990–2005, and quantified their influences on natural eco system service values. In particular, this study applied two major valuation methods, and examined whether different valuation methods generate significantly different results. Analysis of results suggests that human dominated land uses (e.g., urban and agriculture)have expanded rapidly at the cost of natural lands (e.g., wetlands and forest). Due to these land use changes, the total ecosystem service value decreased 29% (2.26% annually) from 1990 to 2005 when the first method was applied, and this rate is estimated to be 15.7% (1.13% annually)with the second approach. Moreover, the annual rate of ecosystem service value decline during 2000–2005 is about four times higher than that in 1990–2000 with both methods, suggesting much more severe ecosystem degradation during 2000–2005.  相似文献   

19.
This study aims to assess the relative importance of natural and anthropogenic variables on the change of the red-crowned crane habitat in the Yellow River Nature Reserve, East China using multitempopral remote sensing and geographic information system. Satellite images were used to detect the change in potential crane habitat, from which suitable crane habitat was determined by excluding fragmented habitat. In this study, a principal component analysis (PCA) with seven variables (channel flow, rainfall, temperature, sediment discharge, number of oil wells, total length of roads, and area of settlements) and linear regression analyses of potential and suitable habitat against the retained principal components were applied to explore the influences of natural and anthropogenic factors on the change of the red-crowned crane habitat. The experimental results indicate that suitable habitat decreased by 5,935 ha despite an increase of 1,409 ha in potential habitat from 1992 to 2008. The area of crane habitat changed caused by natural drivers such as progressive succession, retrogressive succession, and physical fragmentation is almost the same as that caused by anthropogenic forces such as land use change and behavioral fragmentation. The PCA and regression analyses revealed that natural factors (e.g., channel flow, rainfall, temperature, and sediment discharge) play an important role in the crane potential habitat change and human disturbances (e.g., oil wells, roads, and settlements) jointly explain 51.8 % of the variations in suitable habitat area, higher than 48.2 % contributed by natural factors. Thus, it is vital to reduce anthropogenic influences within the reserve in order to reverse the decline in the suitable crane habitat.  相似文献   

20.
Advancing land degradation in the irrigated areas of Central Asia hinders sustainable development of this predominantly agricultural region. To support decisions on mitigating cropland degradation, this study combines linear trend analysis and spatial logistic regression modeling to expose a land degradation trend in the Khorezm region, Uzbekistan, and to analyze the causes. Time series of the 250-m MODIS NDVI, summed over the growing seasons of 2000–2010, were used to derive areas with an apparent negative vegetation trend; this was interpreted as an indicator of land degradation. About one third (161,000 ha) of the region’s area experienced negative trends of different magnitude. The vegetation decline was particularly evident on the low-fertility lands bordering on the natural sandy desert, suggesting that these areas should be prioritized in mitigation planning. The results of logistic modeling indicate that the spatial pattern of the observed trend is mainly associated with the level of the groundwater table (odds?=?330 %), land-use intensity (odds?=?103 %), low soil quality (odds?=?49 %), slope (odds?=?29 %), and salinity of the groundwater (odds?=?26 %). Areas, threatened by land degradation, were mapped by fitting the estimated model parameters to available data. The elaborated approach, combining remote-sensing and GIS, can form the basis for developing a common tool for monitoring land degradation trends in irrigated croplands of Central Asia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号