首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 17 毫秒
1.
宁波市饮用水源地爆发蓝藻水华时微囊藻毒素的污染分析   总被引:3,自引:1,他引:2  
通过固相萃取净化,建立了超高效液相色谱-串联四极杆质谱法测定水中微囊藻毒素MC-LR和MC-RR的方法,并用该方法监测了宁波市两个饮用水源地爆发蓝藻水华时水体中的微囊藻毒素.监测结果表明,姚江水体中的微囊藻毒素污染水平低,MC-LR和MC-RR没有被检出;梅湖水库水体中MC-RR也未被检出,采取措施后,虽MC-LR有时被检出,但最高时也低于国家标准值(1.0μg/L).  相似文献   

2.
同时对海河流域东北部6个水库型地表水水源地开展了藻类及微囊藻毒素(MC-LR和MC-RR)相关研究工作。研究结果表明:海河流域东北部6个水库型地表水水源地中水体富营养化程度有明显改善,但于桥水库、洋河水库水体仍呈富营养化状态并检出MC-LR和MC-RR。另外,富营养化程度高的水体中蓝藻占明显优势,并且微囊藻毒素浓度与其成正相关关系。虽然检出的MC-RR和MC-LR浓度均低于《生活饮用水卫生规范》标准限制,但是在蓝藻暴发期间(特别是暴发后期)应加密监测,确保微囊藻毒素浓度不会对供水人群健康造成危害。  相似文献   

3.
太湖梅梁湾水源水中微囊藻毒素浓度的变化   总被引:1,自引:5,他引:1       下载免费PDF全文
对太湖梅梁湾水源水中的总藻毒素TMC[(TMC-LR) (TMC-RR)]和胞外藻毒素EMC[(EMC-LR) (EMC-RR)]进行了跟踪检测.结果表明,水体中TMC-RR、TMC-LR、EMC-RR、EMC-LR质量浓度平均分别为1.819 μg/L、1.090 μg/L、0.491 μg/L和0.077 μg/L,无锡市的主要水源地水质已受到微囊藻毒素的污染.提出,应加强水源地水体中微囊藻毒素浓度的监测,确保饮用水的安全.  相似文献   

4.
针对水体中低浓度微囊藻毒素(MC-RR和MC-LR)的富集、淋洗、洗脱等前处理环节,采用单因素响应面优化法探讨微囊藻毒素前处理的最佳条件。结果表明:采用体积分数为25%的甲醇水溶液能够取得最佳淋洗效果,由One Factor设计优化得到体积分数为75%的甲醇水溶液作洗脱剂,MC-RR和MC-LR最佳回收率为89.4%和90.7%。方法在0.100 mg/L~5.00 mg/L范围内线性良好,MC-RR和MC-LR的检出限分别为0.07μg/L和0.04μg/L,实际水样加标回收率分别为80.6%和84.9%,平行测定结果的RSD分别为1.6%和2.4%。  相似文献   

5.
水样酸化过滤后用Oasis HLB固相萃取小柱净化富集,采用液相色谱-串联质谱法同时测定地表水中微囊藻毒素(MC-LR和MC-RR),通过优化试验条件,使方法在1.00μg/L~100μg/L范围内线性良好。MC-LR和MC-RR在水中的方法检出限为0.12 ng/L和0.2 ng/L,空白加标回收率为72.7%~88.5%,3次测定结果的RSD为9.1%~10.7%。将该方法用于6个海河流域部分重要水源地水样的监测,虽然部分水样中检测出MC-LR和MC-RR,但检出值均低于标准限值。  相似文献   

6.
为方便地表水中总微囊藻毒素(TMCs)的预警监测,探究提取MC-LR、MC-RR、MC-YR的不同快速前处理方法,建立同时测定3种TMCs的煮沸-过滤-UPLC-MS/MS法。该方法在0.006μg/L~50.0μg/L范围内线性良好,方法检出限为0.006μg/L~0.010μg/L,实际水样3个质量浓度水平的加标回收率为88.6%~108%,6次测定结果的RSD为2.6%~9.4%。  相似文献   

7.
为了解供水水库的蓝藻种群和微囊藻毒素的季节变化,于2012年1—12月对韶关的苍村、瀑布和花山3座供水水库进行了采样分析。结果表明,3座水库为中营养型水库,监测蓝藻共9属(种),优势种为鱼腥藻和微囊藻,蓝藻最高丰度为5.67×107L-1;降水导致营养盐物质带入水库和水体不稳定性是蓝藻种群和优势种在夏秋两季季节变化和占优势的主要影响因子。3座水库ρ(微囊藻毒素)为0.1~0.9μg/L,最高值接近世界卫生组织对饮用水中MC-LR的指导性限制值(1μg/L)标准。微囊藻与微囊藻毒素呈显著正相关性(R=0.871,P0.01),表明产微囊藻毒素的蓝藻主要为微囊藻,当水库发生微囊藻水华时有发生微囊藻毒素的风险。  相似文献   

8.
建立了固相萃取-高效液相色谱法(SPE-HPLC)测定东湖水样中微囊藻毒素(MC)的方法,考察了不同流动相、淋洗液和洗脱液对MC-RR和MC-LR测定的影响。结果表明,MC-RR和MC-LR的方法检出限分别为0.0789μg/L和0.0234μg/L,其线性定量范围分别为0.1~10.0mg/L和0.06~10.0mg/L;样品测定回收率为78.4%~97.4%,RSD小于6.3%。该法灵敏度高,快速准确,用于实际水样测定的结果令人满意。  相似文献   

9.
采集重庆3个典型岩溶地区113个地下水样品,利用人体暴露风险系数法对16种优先控制多环芳烃(PAHs)饮水途径健康风险进行评价。结果表明:地下水中PAHs、致癌PAH和BaP的质量浓度分别为200 ng/L~2 638 ng/L、未检出~362 ng/L和未检出~62.7 ng/L,其中南川区地下水中BaP质量浓度为45.1 ng/L,已超过《生活饮用水卫生标准》(GB 5749—2006)的水质要求。PAHs污染水平为南川区老龙洞流域青木关流域,与国内其他岩溶地区地下水相比,处于较高污染水平。人群的致癌风险(ILCR)为5×10~(-10)~2.80×10~(-5),其中南川区ILCR10~(-6),具有潜在致癌风险;非致癌类PAHs饮水途径健康风险处于10~(-11)~10~(-9)水平,远低于USEPA规定的阈值1。  相似文献   

10.
于2021年4月对鸭绿江干流及其主要支流水体中14种目标有机磷酸酯(OPEs)的浓度水平及污染特征进行了调查研究。结果表明,鸭绿江中∑OPEs的浓度从上游到下游逐渐升高,质量浓度为11.6~557.0 ng/L,平均质量浓度为202.5 ng/L,处于世界偏低,全国中下水平。鸭绿江水体中ρ(氯代OPEs)>ρ(烷基代OPEs)>ρ(芳基代OPEs)。14种OPEs中,磷酸三(1氯2丙基)酯(TCPP)质量浓度最高,其次是磷酸三(2氯乙基)酯(TCEP),平均占比分别为31.8%和20.9%。鸭绿江上游水体中OPEs的质量浓度为11.6~135.5 ng/L,平均值为52.8 ng/L,质量浓度最高的是烷基代OPEs;下游水体中OPEs的质量浓度为179.1~557.0 ng/L,平均值为382.3 ng/L,质量浓度最高的是氯代OPEs。上游水体中OPEs主要来源于大气沉降、径流携带等环境迁移,下游水体则主要受到丹东市区生活污水和沿江工业园区废水排放的影响。研究可为今后科学评估此类物质的环境风险并采取精准管控措施,提供数据支持和科学依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号