首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 578 毫秒
1.
以重庆市某工业园区表层土壤为研究对象,探讨了土壤重金属在不同季节的污染特征,利用污染指数法、健康风险模型和主成分/绝对主成分得分受体模型进行风险评价和源分析。结果表明:不同季节土壤样品间各重金属含量差异显著。35.5%的样品中汞含量超出土壤污染风险筛选值,其他元素未超标。与土壤背景值相比,各元素表现出不同程度的富集,汞超标约110~1300倍。内梅罗指数显示土壤整体和汞元素处于轻度污染及以下,其他元素为安全。潜在生态危害指数显示,土壤整体和汞属于极强污染,镉属于轻微~强污染,其他元素为轻微污染。土壤重金属总致癌风险为2.6×10-7~1.0×10-5,总非致癌风险熵均小于1,砷存在致癌风险,主要通过经口摄入暴露。秋季中,汞、六价铬、铅、镍、砷和铜来自工业源,镉主要来源于自然成因。春季中,镉和铅来自交通、冶金和燃煤等排放,镍、砷和铜源于冶炼和金属表面处理等排放,汞主要来自化工生产和燃料燃烧。交通运输、工业生产和燃料燃烧等污染的排放是土壤重金属的主要来源,今后应加强园区内汞、砷和镉的源头减排和治理。  相似文献   

2.
电镀污泥标准浸出方法的比对   总被引:1,自引:0,他引:1  
采用3种固体废物浸出毒性标准浸出方法处理电镀污泥,考察浸提剂、样品粒径、液固比、振荡时间、振荡方式等因素对电镀污泥中重金属浸出效果的影响,用电感耦合等离子体原子发射光谱法同时测定浸出液中铜、锌、镍、铬、铅、镉、钡等元素。试验表明:醋酸缓冲溶液体系浸出液中重金属浓度最高;样品粒径越小,浸出毒性越大;翻转振荡比水平振荡更有利于重金属浸出;液固比增大,重金属浸出量增加;虽然液固比和振荡时间对重金属浸出效果均有影响,但很难确定最佳值。  相似文献   

3.
TCLP法对天津市农田重金属生态风险评价   总被引:1,自引:0,他引:1  
TCLP法是用缓冲剂提取重金属的一种方法,该法评价重金属生态风险在美国已开展多年。利用TCLP法对天津市某农田土壤重金属进行生态风险评价,结果表明,在采集的23个样品中有效态铜、铅、锌、镉的含量范围为1.13~5.26、2.11~5.22、2.60~30.6、1.09×10-3~77.9×10-3mg/kg,普遍低于铜、铅、锌、镉在土壤中的总量(22.1~66.8、21.2~50.6、56.8~445、0.04~0.20 mg/kg)。镉的TCLP有效态与总量的差别最大。锌、铅存在轻微污染,污染率分别为21.7%、4.3%。  相似文献   

4.
铅冶炼区土壤重金属总量和有效态含量的函数分析   总被引:1,自引:0,他引:1  
采集铅冶炼企业周边3 000 m范围内220个表层土壤样品,测定了有毒有害元素铅、镉、砷和汞的总量和有效态含量,探讨了它们之间的关系。结果表明:研究区土壤受到汞、砷、铅、镉的污染依次明显严重,土壤重金属的总量和有效态含量的变异系数均大于100%,土壤镉、铅、汞、砷的生物有效性系数平均值分别为25.9%、17.2%、0.58%、0.11%。土壤铅、镉和砷的总量与其有效态含量呈显著正相关(P0.001),而汞的总量与其有效态含量的相关性不显著(P0.05)。土壤铅和镉的总量和有效态含量可以用直线函数和幂函数表达,函数反推的有效态值和对应统计值的变异系数不大于10%。  相似文献   

5.
湛江南桥河、北桥河水重金属含量及分布的研究   总被引:1,自引:0,他引:1  
通过硝酸-过氧化氢微波消解样品,采用ICP-AES法测定了河水中锌、铅、镉、砷、镍、铁、铬、铜等重金属元素的含量,并分析了这些重金属元素在不同河段、不同水期含量的分布情况。测定结果的RSD<9%,加标回收率在86.0%~103.4%之间,检出限在0.832~2.42μg/L之间,该方法快速、稳定、效果较好。  相似文献   

6.
土壤重金属元素检测国际实验室比对研究   总被引:1,自引:0,他引:1  
IERM和CNAS合作组织开展了亚太实验室合作组织(APLAC)能力验证计划"APLAC T066土壤重金属元素检测",其目的是评价参加实验室定量分析土壤重金属元素总量的能力。研究所用的能力验证样品为IERM研制的土壤标准样品。结果表明,参加实验室检测土壤砷、铜、汞、镍、铅和锌的结果满意率分别为85.7%、95.8%、77.1%、83.3%、93.5%和91.7%。样品消解过程加入氢氟酸时,铅和锌的检测结果与标准值更加接近,说明检测土壤重金属元素总量时氢氟酸的加入非常关键。文章还对比对实验室结果评价的统计方法进行了探讨。  相似文献   

7.
通过对浙江省近700组实际土壤样品进行分析,研究了土壤中铜、铅、锌、铬、镍、镉、砷、汞7种重金属和砷测定的精密度控制指标(实验室内相对偏差和实验室间相对偏差),并与行业标准分析方法和文献进行了比较,旨在为环境监测质量控制与质量保证工作提供参考。经统计分析,建议实验室内相对偏差控制指标如下:铜,≤15%;铅,≤15%;锌,≤15%;铬,≤15%;镍,≤15%;镉,≤20%;砷,≤15%;汞,≤50%。建议实验室间相对偏差控制指标如下:铜,≤25%;铅,≤25%;锌,≤20%;铬,≤20%;镍,≤25%;镉,≤35%;砷,≤25%;汞,≤55%。  相似文献   

8.
奎屯市北郊蔬菜污灌区土壤重金属污染调查   总被引:1,自引:0,他引:1  
通过对奎屯市北郊污灌区菜地土壤中重金属含量的分析表明,所调查的污灌菜地土壤中铅、锌、镉、砷和汞均未超标,部分地块铜超标,说明多年来因工业废水的浇灌,已造成铜对局部区域土壤的污染。  相似文献   

9.
为揭示土壤主要无机元素积累成因,制定科学防控措施,以菏泽市养殖型、蔬菜型、粮食型、工业型4种类型村庄为研究对象,分析了11个典型村庄8种土壤主要无机元素含量、分布特征及污染风险。结果表明,土壤镉、汞、砷、铅、铬、铜、镍、锌的质量分数分别为0. 01~0. 53、0. 002~0. 145、5. 51~15. 20、17. 6~75. 8、14. 5~69. 9、13. 3~33. 8、18. 8~46. 9、41. 5~96. 4 mg/kg。蔬菜型村庄镉、汞、铅元素含量最高;粮食型村庄铬、铜、镍含量最高;养殖型村庄砷、锌元素含量最高;工业型村庄铬、铜、镍元素含量较高,其余元素的含量都较低。各主要无机元素平均值均未超过农用地土壤污染筛选值,但除汞外,均超过了黄河故道区域土壤环境背景值,尤以镉最显著。  相似文献   

10.
湖北省重点区域及周边表层土壤重金属污染现状及评价   总被引:1,自引:0,他引:1  
对湖北省内9类不同重点区域及周边表层土壤环境质量进行检测,测定重金属镉、汞、砷、铅、铬、铜、镍、锌含量水平,采用内梅罗污染指数法和Hakanson潜在生态风险指数法对检测结果进行评价。结果表明:9类不同重点区域及周边土壤环境质量整体良好,未受重金属污染的土壤监测点位比例为68.2%~92.6%,轻度污染的点位比例为5.8%~20.4%,中度污染为0.0%~8.6%,重度污染为0.0%~9.1%;污染企业周边、油田采矿区周边、固废处置场地周边、工业遗留遗弃场地及周边4类重点区域受重金属污染相对较严重,影响其土壤环境质量的重金属主要是镉、砷、铜、铅;9类不同重点区域周边土壤环境质量的潜在生态风险等级以轻微、中度为主,对应的监测点位比例分别为36.4%~80.5%、18.1%~47.7%,潜在生态风险等级为强度、很强、极强的监测点位比例总和为1.4%~15.9%,主要分布在受重金属污染严重的监测区域。  相似文献   

11.
以长沙某河库兼用型饮用水水源地一、二级保护区土壤为研究对象,于2018年8月采用网格布点法在一级和二级保护区分别布设3个和7个采样点,在水源地历史采样区布设5个采样点,探究土壤中Cd、Pb、Cr、Cu、Zn、Ni、Hg、As的含量分布及污染水平。结果表明:土壤中As、Cd、Cr、Cu、Hg、Ni、Pb、Zn的含量均值分别为46.56、4.90、81.87、46.64、0.19、30.11、75.11、237.93 mg/kg。重金属元素含量均值超过农用地污染风险筛选值的样品占比排序为Cd (86.7%)>Zn (60%)>As (53.3%)>Cu (6.7%)=Pb (6.7%)。土壤中As、Cd、Cr、Cu、Hg、Ni、Pb、Zn的单因子污染指数分别为1.55、16.34、0.41、0.47、0.08、0.30、0.63、0.95,主要为Cd、As污染。研究区土壤重金属综合污染指数为11.71,属重污染等级。水源地一级保护区、二级保护区、历史采样区2018年、历史采样区2014年土壤重金属综合污染指数分别为20.41、14.94、1.98、1.17。后期应加强对该饮用水水源地土壤中Cd、Pb、Cu、Zn、As的污染控制和治理。  相似文献   

12.
This study first presents the spatial distribution, temporal variation, and sources of heavy metal pollution in groundwater of a nonferrous metal mine area in China. Unconfined groundwater was polluted by Pb, Zn, As, and Cu, in order, while confined karst water in the mines showed pollution in the following sequence: Zn, Cd, Cu, Pb, and As. Pollution by Pb was widespread, while Zn, As, Cu, and Cd were found to be high in the north–central industrial region and to decrease gradually with distance from smelters and tailings. Vertically, more Pb, Zn, Cu, and Cd have accumulated in shallow Quaternary groundwater, while more As have migrated into the deeper fracture groundwater in the local discharge area. Zn, Cd, and Cu concentrations in groundwater along the riverside diminished owing to reduced wastewater drainage since 1977, while samples in the confluence area were found to have increasing contents of Pb, Zn, As, Cu, and Cd since industrialization began in the 1990s. Sources of heavy metals in groundwater were of anthropogenic origin except for Cr. Pb originated primarily from airborne volatile particulates, wastewater, and waste residues and deposited continuously, while Zn, Cd, and Cu were derived from the wastewater of smelters and leakage of tailings, which corresponded to the related soil and surface residue researches. Elevated As values around factories might be the result of chemical reactions. Flow patterns in different hydrogeological units and adsorption capability of from Quaternary sediments restricted their cross-border diffusion.  相似文献   

13.
Active and abandoned primary and secondary goldmines have been observed to be major sources of metals into the environment. This study assessed the level of metal concentrations in rock and tailing samples collected from the abandoned primary goldmine site at Iperindo. A total of five rock and ten tailing samples were collected for this study. The tailing samples were subjected to physicochemical analysis using standard methods. The samples were analyzed for metals using inductively coupled plasma/optical emission spectrometry technique. The results obtained indicated that tailings were acidic (pH 5.02), with electrical conductivity 133.4 μS/cm, cation exchange capacity 8.95 meq/100 g, available phosphorus was 4.74 mg/L, organic carbon 5.58 %, and organic matter 9.63 %. The trends for metal concentrations within the samples were in the order: Zn?>?Cu?>?Co?>?Pb?>?Cr?>?As?>?Cd for rock samples, Cu?>?Zn?>?Cr?>?Pb?>?As?>?Co?>?Cd in tailing samples. Cd, Pb, and Zn in the rock were above the Abundance of Elements in Average Crustal Rocks standards. Principal component analysis showed higher variations among samples in Iperindo. Cd, Pb, Cr, Co, Cu, As, and Zn were strongly loaded to principal component 1, with these metals significantly contributing to variations in 65.76 % of rock and 53.24 % of tailing. This study suggests that the metal concentration in tailings is a reflection of the metal composition of the rocks.  相似文献   

14.
都江堰市城区周边农田土壤重金属污染状况分析与评价   总被引:4,自引:1,他引:3  
以都江堰城区周边农耕地为对象,按照国标方法对土壤样本中的Cr、Cu、Cd、Pb、Zn五种重金属元素含量进行测定。结果表明,部分样本中的Cd、Cu含量超过国家土壤环境质量二级标准。采用单因子污染指数和土壤综合污染指数评价方法,以国家土壤环境质量二级标准为评价标准,对研究区内Cr、Cu、Cd、Pb、Zn重金属的污染状况进行评价,评价结果显示,Cu、Cd为主要污染元素,污染指数处于轻、中度污染,Cr、Pb、Zn对土壤尚未构成污染关系,研究区土壤重金属总体污染程度较轻。  相似文献   

15.
大冶龙角山地区土壤中重金属污染现状与评价   总被引:2,自引:0,他引:2  
为了研究大冶龙角山地区尾砂坝内尾砂排放对下游耕地土壤中重金属含量的影响,本文对尾矿坝及河流两岸的耕地进行布点采样,通过等离子体发射光谱仪(ICP—OES)测定土壤中A5、Cd、Cr、Cu、Pb、Zn6种重金属的含量,并用污染指数法进行分析评价。旨在调查研究的基础上,使人们认识当地重金属污染的严重性,加大环境保护力度。  相似文献   

16.
为探索贵州煤矿区表层水-沉积物中重金属的分布特征及来源,科学制定环境保护与污染治理措施,以新寨河为研究对象,在11个样点共采集66个表层水体和沉积物样品,通过对Cd、Pb、Cr、Zn、Cu、As、Hg、Fe、Mn等9种重金属元素进行分析,揭示其在新寨河的空间分布特征。同时,利用多指数法开展了有毒重金属元素污染状况评价,通过相关性分析和主成分分析解析了重金属的来源。结果表明,新寨河流域表层水体中,Fe、Mn点位超标率达100%。表层水中重金属元素的平均含量排序为Fe>Mn>Zn>Cu>Cr>As>Cd>Pb>Hg,而沉积物中重金属元素的平均含量排序则是Fe>Mn>Zn>Cr>Cu>As>Pb>Cd>Hg,表明新寨河表层水体和沉积物中重金属元素的空间分布存在一定差异。各重金属元素的内梅罗综合污染指数介于0.59~1.13之间,表明新寨河表层水体中重金属的污染程度达到轻微污染水平。单种重金属元素的潜在生态危害系数计算结果显示,90.91%和9.09%的沉积物样点分别被归类为轻微风险和中等风险。所有样点沉积物的潜在生态危害指数介于14.57~120.55之间(均值为72.08),表明新寨河沉积物的潜在生态风险较低。Cu、As在多个样点存在污染现象,需予以重点监控管理。新寨河流域重金属的来源可分为三大类:Cd、Pb、Cr、Zn、Cu为第一类,对应地表径流源;As、Fe、Mn为第二类,对应煤矿开采源;Hg为第三类,对应复合源。  相似文献   

17.
乌鲁木齐市米东污灌区农田土壤重金属污染评价   总被引:7,自引:0,他引:7  
对米东污灌区农田土壤重金属含量进行监测分析,利用不同的评价方法和标准对土壤重金属的环境质量进行评价。结果表明:米东污灌区农田土壤重金属含量分别为Cd(0.12±0.06)mg/kg,Cu(40.43±5.30)mg/kg,Zn(78.38±11.04)mg/kg,Pb(11.66±11.79)mg/kg,Ni(20.24±8.05)mg/kg,Cr(75.81±8.05)mg/kg。以国家土壤环境质量标准(二级)为标准评价,各元素的污染指数排序为Cu>Ni>Cr>Zn>Cd>Pb,综合污染指数为0.337,污染程度为安全。以食用农产品产地土壤环境质量要求为标准评价,各元素的污染指数排序为Cu>Ni>Cr>Zn>Cd>Pb,综合污染指数为0.343,污染程度为安全。表明米东污灌区农田土壤重金属含量尚能达到食用农产品产地土壤环境质量要求。Pb、Cu、Zn的平均含量超过乌鲁木齐市土壤背景值,这说明污灌区土壤重金属Pb、Cu、Zn近年来已有所累积,存在一定的污染风险。  相似文献   

18.
某铀尾矿库周围农田土壤重金属污染潜在生态风险评价   总被引:6,自引:1,他引:5  
为能够定量评价铀尾矿库周围农田土壤重金属污染程度及其潜在生态危害性,采用Hakanson潜在生态风险指数法对土壤中重金属进行综合污染评价。结果表明,铀尾矿库周围部分农田土壤中重金属Cd、Ni、As、Cu、Hg、Zn含量存在积累和超标情况,尤以Cd的污染最严重,Ni、As次之;Pb、Cr含量能够满足标准限值要求。潜在生态风险评价结果显示,铀尾矿库周围农田土壤重金属潜在生态风险较高,主要潜在生态风险因子为Cd,其次是Hg、As,Cr、Pb、Ni、Cu、Zn并不构成潜在生态风险。铀尾矿库周围农田土壤中较高水平的Cd在构成环境污染的同时,也构成了较严重的生态危害,应加强对重金属Cd、Hg的生态风险防治。  相似文献   

19.
This study was conducted to investigate the pollution load index, fraction distributions, and mobility of Pb, Cd, Cu, and Zn in garden and paddy soils collected from a Pb/Zn mine in Chenzhou City, China. The samples were analyzed using Leleyter and Probst’s sequential extraction procedures. Total metal concentrations including Pb, Cd, Cu, and Zn exceeded the maximum permissible limits for soils set by the Ministry of Environmental Protection of China, and the order of the pollution index was Cd > Zn > Pb > Cu, indicating that the soils from both sites seriously suffered from heavy metal pollution, especially Cd. The sums of metal fractions were in agreement with the total contents of heavy metals. However, there were significant differences in fraction distributions of heavy metals in garden and paddy soils. The residual fractions of heavy metals were the predominant form with 43.0% for Pb, 32.3% for Cd, 33.5% for Cu, and 44.2% for Zn in garden soil, while 51.6% for Pb, 40.4% for Cd, 40.3% for Cu, and 40.9% for Zn in paddy soil. Furthermore, the proportions of water-soluble and exchangeable fractions extracted by the selected analytical methods were the lowest among all fractions. On the basis of the speciation of heavy metals, the mobility factor values of heavy metals have the following order: Cd (25.2–19.8%) > Cu (22.6–6.3%) > Zn (9.6–6.0%) > Pb (6.7–2.5%) in both contaminated soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号