首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The variation in air quality was assessed from the ambient concentrations of various air pollutants [total suspended particle (TSP), particulate matter ≤10 μm (PM10), SO2, and NO2] for pre-Diwali, Diwali festival, post-Diwali, and foggy day (October, November, and December), Delhi (India), from 2002 to 2007. The extensive use of fireworks was found to be related to short-term variation in air quality. During the festival, TSP is almost of the same order as compared to the concentration at an industrial site in Delhi in all the years. However, the concentrations of PM10, SO2, and NO2 increased two to six times during the Diwali period when compared to the data reported for an industrial site. Similar trend was observed when the concentrations of pollutants were compared with values obtained for a typical foggy day each year in December. The levels of these pollutants observed during Diwali were found to be higher due to adverse meteorological conditions, i.e., decrease in 24 h average mixing height, temperature, and wind speed. The trend analysis shows that TSP, PM10, NO2, and SO2 concentration increased just before Diwali and reached to a maximum concentration on the day of the festival. The values gradually decreased after the festival. On Diwali day, 24-h values for TSP and PM10 in all the years from 2002 to 2007 and for NO2 in 2004 and 2007 were found to be higher than prescribed limits of National Ambient Air Quality Standards and exceptionally high (3.6 times) for PM10 in 2007. These results indicate that fireworks during the Diwali festival affected the ambient air quality adversely due to emission and accumulation of TSP, PM10, SO2, and NO2.  相似文献   

2.
Atmospheric aerosol particles and metallic concentrations, ionic species were monitored at the Experimental harbor of Taichung sampling site in this study. This work attempted to characterize metallic elements and ionic species associated with meteorological conditions variation on atmospheric particulate matter in TSP, PM2.5, PM2.5–10. The concentration distribution trend between TSP, PM2.5, PM2.5–10 particle concentration at the TH (Taichung harbor) sampling site were also displayed in this study. Besides, the meteorological conditions variation of metallic elements (Fe, Mg, Cr, Cu, Zn, Mn and Pb) and ions species (Cl, NO3 , SO4 2−, NH4 +, Mg2+, Ca2+ and Na+) concentrations attached with those particulate were also analyzed in this study. On non-parametric (Spearman) correlation analysis, the results indicated that the meteorological conditions have high correlation at largest particulate concentrations for TSP at TH sampling site in this study. In addition, the temperature and relative humidity of meteorological conditions that played a key role to affect particulate matter (PM) and have higher correlations then other meteorological conditions such as wind speed and atmospheric pressure. The parameter temperature and relative humidity also have high correlations with atmospheric pollutants compared with those of the other meteorological variables (wind speed, atmospheric pressure and prevalent wind direction). In addition, relative statistical equations between pollutants and meteorological variables were also characterized in this study.  相似文献   

3.
The relationship between indoor and outdoor particulate air pollution was investigated at an urban background site on the Payambar Azam Campus of Mazandaran University of Medical Sciences in Sari, Northern Iran. The concentration of particulate matter sized with a diameter less than 1 μm (PM1.0), 2.5 μm (PM2.5), and 10 μm (PM10) was evaluated at 5 outdoor and 12 indoor locations. Indoor sites included classrooms, corridors, and office sites in four university buildings. Outdoor PM concentrations were characterized at five locations around the university campus. Indoor and outdoor PM measurements (1-min resolution) were conducted in parallel during weekday mornings and afternoons. No difference found between indoor PM10 (50.1 ± 32.1 μg/m3) and outdoor PM10 concentrations (46.5 ± 26.0 μg/m3), indoor PM2.5 (22.6 ± 17.4 μg/m3) and outdoor PM2.5 concentration (22.2 ± 15.4 μg/m3), or indoor PM1.0 (14.5 ± 13.4 μg/m3) and outdoor mean PM1.0 concentrations (14.2 ± 12.3 μg/m3). Despite these similar concentrations, no correlations were found between outdoor and indoor PM levels. The present findings are not only of importance for the potential health effects of particulate air pollution on people who spend their daytime over a period of several hours in closed and confined spaces located at a university campus but also can inform regulatory about the improvement of indoor air quality, especially in developing countries.  相似文献   

4.
An investigation to find out presence of particulate matter in Marikana, a mining area in Rustenburg town, South Africa, was carried out in the months of August and November of 2008. Samples were collected for measurements of particulate matter (PM) of particle diameters of PM10, PM2.5, and PM1. After gravimetric analysis of daily measurements, it was found that PM10 concentration values ranged between 3 and 9 ??g/m3, PM2.5 concentration values ranged between 16 and 26 ??g/m3, and PM1 concentration values ranged between 14 and 18 ??g/m3 for the month of August 2008. For the month of November, it was found that PM10 concentration values ranged between 2 and 8 ??g/m3, PM2.5 concentration values ranged between 0 and 5 ??g/m3, and PM1 concentration values ranged between 4 and 15 ??g/m3. This study was undertaken as preliminary work having in mind that mining activities could be emitting high levels of particulate matter in the atmosphere which might be degrading the quality of the air. It was observed, however, that the daily particulate matter especially of PM10 emitted were quite low when compared to laid down International Air Quality Standards. The standards did not give guidelines for particulate matter of diameter 2.5 ??m. It was concluded that particulate matter came from three major sources: platinum mining, domestic biomass burning, and traffic emissions due to fuel burning.  相似文献   

5.
Severe particulate matter (PM, including PM2.5 and PM10) pollution frequently impacts many cities in the Yangtze River Delta (YRD) in China, which has aroused growing concern. In this study, we examined the associations between relative humidity (RH) and PM pollution using the equal step-size statistical method. Our results revealed that RH had an inverted U-shaped relationship with PM2.5 concentrations (peaking at RH = 45–70%), and an inverted V-shaped relationship (peaking at RH = 40 ± 5%) with PM10, SO2, and NO2. The trends of polluted-day number significantly changed at RH = 70%. The very-dry (RH < 45%), dry (RH = 45–60%) and low-humidity (RH = 60–70%) conditions positively affected PM2.5 and exerted an accumulation effect, while the mid-humidity (RH = 70–80%), high-humidity (RH = 80–90%), and extreme-humidity (RH = 90–100%) conditions played a significant role in reducing particle concentrations. For PM10, the accumulation and reduction effects of RH were split at RH = 45%. Moreover, an upward slope in the PM2.5/PM10 ratio indicated that the accumulation effects from increasing RH were more intense on PM2.5 than on PM10, while the opposite was noticed for the reduction effects. Secondary transformations from SO2 and NO2 to sulfate and nitrate were mainly responsible for PM2.5 pollution, and thus, controlling these precursors is effective in mitigating the PM pollution in the YRD, especially during winter. The conclusions in this study will be helpful for regional air-quality management.  相似文献   

6.
Port causes environmental and health concerns in coastal cities if its operation and development are not made environmentally compatible and sustainable. An emission inventory is necessary to assess the impact of port projects or growth in marine activity as well as to plan mitigation strategies. In this study, a detailed emission inventory of total suspended particulate (TSP) matter, respirable particulate matter (PM10), sulphur dioxide (SO2) and oxides of nitrogen (NOx) for a port having operation and construction activities in parallel is compiled. The study has been done for 1 year. Results show that the maximum contribution of emission of air pollutants in the port area was from TSP (68.5%) and the minimum was from SO2 (5.3%) to the total pollutants considered in this study. Total TSP emission from all activities of the port was 4,452 tyr???1 and PM10 emission was 903 tyr???1 in the year 2006. Re-suspension of dust from paved roads was the major contributor of TSP and PM10 in the road transport sector. Construction activities of the port had contributed 3.9% of TSP and 7.4% of PM10 to total emission of particulate matter. Of the total particulate emissions from various port activities approximately 20% of TSP could be attributed to PM10. The sectoral composition indicates that major contribution of SO2 emission in the port was from maritime sector and major contribution of NOx was from road transport sector.  相似文献   

7.
The World Health Organization has estimated that air pollution is responsible for 1.4 % of all deaths and 0.8 % of disability-adjusted life years. NOIDA, located at the National Capital Region, India, was declared as one of the critically air-polluted areas by the Central Pollution Control Board of the Government of India. Studies on the relationship of reduction in lung functions of residents living in areas with higher concentrations of particulate matter (PM) in ambient air were inconclusive since the subjects of most of the studies are hospital admission cases. Very few studies, including one from India, have shown the relationship of PM concentration and its effects of lung functions in the same location. Hence, a cross-sectional study was undertaken to study the effect of particulate matter concentration in ambient air on the lung functions of residents living in a critically air-polluted area in India. PM concentrations in ambient air (PM1, PM2.5) were monitored at residential locations and identified locations with higher (NOIDA) and lower concentrations (Gurgaon). Lung function tests (FEV1, PEFR) were conducted using a spirometer in 757 residents. Both air monitoring and lung function tests were conducted on the same day. Significant negative linear relationship exists between higher concentrations of PM1 with reduced FEV1 and increased concentrations of PM2.5 with reduced PEFR and FEV1. The study shows that reductions in lung functions (PEFR and FEV1) can be attributed to higher particulate matter concentrations in ambient air. Decline in airflow obstruction in subjects exposed to high PM concentrations can be attributed to the fibrogenic response and associated airway wall remodeling. The study suggests the intervention of policy makers and stake holders to take necessary steps to reduce the emissions of PM concentrations, especially PM1, PM2.5, which can lead to serious respiratory health concerns in residents.  相似文献   

8.
石家庄市大气颗粒物元素组分特征分析   总被引:2,自引:1,他引:1       下载免费PDF全文
为研究石家庄市大气颗粒物的污染特征及其来源,于2013年4—5月在主城6区分别采集TSP、PM10和PM2.5颗粒物样品,利用ICP-MS分析其中的22种元素浓度。结果表明,石家庄市城区Ca、Fe元素在各粒径颗粒物中含量都较高,PM2.5中的S、K含量较高,PM10和TSP中Mg、Al的浓度相对较高。颗粒物的主要来源为燃煤尘、道路尘和建筑尘,TSP、PM10和PM2.5具有较好的统计相关性和同源性。  相似文献   

9.
An air quality sampling program was designed and implemented to collect the baseline concentrations of respirable suspended particulates (RSP = PM10), non-respirable suspended particulates (NRSP) and fine suspended particulates (FSP = PM2.5). Over a three-week period, a 24-h average concentrations were calculated from the samples collected at an industrial site in Southern Delhi and compared to datasets collected in Satna by Envirotech Limited, Okhla, Delhi in order to establish the characteristic difference in emission patterns. PM2.5, PM10, and total suspended particulates (TSP) concentrations at Satna were 20.5 ± 6.0, 102.1 ± 41.1, and 387.6 ± 222.4 μg m−3 and at Delhi were 126.7 ± 28.6, 268.6 ± 39.1, and 687.7 ± 117.4 μg m−3. Values at Delhi were well above the standard limit for 24-h PM2.5 United States National Ambient Air Quality Standards (USNAAQS; 65 μg m−3), while values at Satna were under the standard limit. Results were compared with various worldwide studies. These comparisons suggest an immediate need for the promulgation of new PM2.5 standards. The position of PM10 in Delhi is drastic and needs an immediate attention. PM10 levels at Delhi were also well above the standard limit for 24-h PM10 National Ambient Air Quality Standards (NAAQS; 150 μg m−3), while levels at Satna remained under the standard limit. PM2.5/PM10 values were also calculated to determine PM2.5 contribution. At Satna, PM2.5 contribution to PM10 was only 20% compared to 47% in Delhi. TSP values at Delhi were well above, while TSP values at Satna were under, the standard limit for 24-h TSP NAAQS (500 μg m−3). At Satna, the PM10 contribution to TSP was only 26% compared to 39% in Delhi. The correlation between PM10, PM2.5, and TSP were also calculated in order to gain an insight to their sources. Both in Satna and in Delhi, none of the sources was dominant a varied pattern of emissions was obtained, showing the presence of heterogeneous emission density and that nonrespirable suspended particulate (NRSP) formed the greatest part of the particulate load.  相似文献   

10.
This study monitored atmospheric pollutants during high wind speed (> 7 m s−1) at two sampling sites: Taichung Harbor (TH) and Wuci traffic (WT) during March 2004 to January 2005 in central Taiwan. The correlation coefficient (R 2) between TSP, PM2.5, PM2.5−10 particle concentration vs. wind speed at the TH and WT sampling site during high wind speed (< 7 m s−1) were also displayed in this study. In addition, the correlation coefficients between TSP, PM2.5 and PM2.5−10 of ionic species vs. high wind speed were also observed. The results indicated that the correlation coefficient order was TSP > PM2.5−10 > PM2.5 for particle at both sampling sites near Taiwan strait. In addition, the concentration of Cl, NO3 , SO4 2−, NH4 +, Mg2+, Ca2+ and Na+ were also analyzed in this study.  相似文献   

11.
A large variety of ornamental and decorative items are manufactured from bone waste by various unorganized sectors in India. An initial survey indicated that workers were exposed at various phases of final product. The subjects (12 industrial units) were tested for total suspended particulate matter (TSPM), particulate matter <10  $\upmu $ m (PM10), and particulate matter <2.5  $\upmu $ m (PM2.5). Prevalent levels of TSPM ranged between 2.90 and 5.89 mg m???3. Respirable fractions of occupational dust as PM10 and PM2.5 were found in the range of 0.30?C2.08 and 0.26?C0.50 mg m???3, respectively. Cytotoxicity study was conducted using hemolysis as a sensitive marker. In an in vitro study, rat RBCs were exposed to the concentration of 25?C1,000  $\upmu $ g/ml for 15?C120 min. A considerable variation was observed in the hemolytic activity of samples collected from different areas. At 500  $\upmu $ g/ml concentration, the hemolytic activity (12 h) was found to be in the range of 18?C25%. Due to limitation in sample mass of respirable fractions, only one concentration (100  $\upmu $ g/ml/2 h) was used for comparative study on hemolysis of RBCs caused by PM10 and PM2.5. Interestingly, the hemolytic activity was more at PM2.5 than PM10 and TSPM. These results suggest that the respirable particles are capable of reaching deep into the respiratory system. The finding is significant notably when there are no standards available in occupationally exposed populations. This is the first such study. Data could be of importance to policy makers and regulators.  相似文献   

12.
The objective of the study is to investigate seasonal and spatial variations of PM10 (particulate matter with aerodynamic diameter less than or equal to 10 μm) and TSP (total suspended particulate matter) of an Indian Metropolis with high pollution and population density from November 2003 to November 2004. Ambient concentration measurements of PM10 and TSP were carried out at two monitoring sites of an urban region of Kolkata. Monitoring sites have been selected based on the dominant activities of the area. Meteorological parameters such as wind speed, wind direction, rainfall, temperature and relative humidity were also collected simultaneously during the sampling period from Indian Meteorological Department, Kolkata. The 24 h average concentrations of PM10 and TSP were found in the range 68.2–280.6 μg/m3 and 139.3–580.3 μg/m3 for residential (Kasba) area, while 62.4–401.2 μg/m3 and 125.7–732.1 μg/m3 for industrial (Cossipore) area, respectively. Winter concentrations of particulate pollutants were higher than other seasons, irrespective of the monitoring sites. It indicates a longer residence time of particulates in the atmosphere during winter due to low winds and low mixing height. Spread of air pollution sources and non-uniform mixing conditions in an urban area often result in spatial variation of pollutant concentrations. The higher particulate pollution at industrial area may be attributed due to resuspension of road dust, soil dust, automobile traffic and nearby industrial emissions. Particle size analysis result shows that PM10 is about 52% of TSP at residential area and 54% at industrial area.  相似文献   

13.
This study reports the quantification of the toxicity of particulate matter (PM)-bound metals and their possible associated risks to human health. For assessment of PM, 24-h samples of PM10 and PM2.5 were collected by Mini Vol-TAS sampler at an urban site of Pune. Samples were sequentially extracted with ultrapure water and concentrated HNO3 and analyzed for “soluble” and “total” metals. Factor analysis identified the resuspension of road dust due to traffic, biomass burning, construction activities, and wind-blown dust as possible sources that played an important role for overall pollution throughout the year. Water-soluble proportion was found to be ≤20 % for Cr, Co, Fe, and Al; ≥50 % for Sr, Cd, Ca, and Zn; and a substantial proportion (~25–45 %) for Mn, Ba, K, Na, Ni, Mg, Cu, and Pb metals in PM10. For PM2.5, the water-soluble proportion was ≤20 % for Fe, Co, Ni, Cr, and Al, while Sr, K, and Cd were mostly soluble (>50 %) and Cu, Ba, Mn, Ca, Zn, Pb, Na, and Mg were substantially soluble (~25–45 %). In the present study, among the toxic metals, Cd and Pb show higher concentration in the soluble fraction and thus represent the higher bioavailability index and especially are harmful to the environment and exposed person. Risk calculations with a simple exposure assessment method showed that the cancer risks of the bioavailable fractions of Cr, Cd and Ni were greater than the standard goal.  相似文献   

14.
Air quality in Hyderabad, India, often exceeds the national ambient air quality standards, especially for particulate matter (PM), which, in 2010, averaged 82.2?±?24.6, 96.2?±?12.1, and 64.3?±?21.2 μg/m3 of PM10, at commercial, industrial, and residential monitoring stations, respectively, exceeding the national ambient standard of 60 μg/m3. In 2005, following an ordinance passed by the Supreme Court of India, a source apportionment study was conducted to quantify source contributions to PM pollution in Hyderabad, using the chemical mass balance (version 8.2) receptor model for 180 ambient samples collected at three stations for PM10 and PM2.5 size fractions for three seasons. The receptor modeling results indicated that the PM10 pollution is dominated by the direct vehicular exhaust and road dust (more than 60 %). PM2.5 with higher propensity to enter the human respiratory tracks, has mixed sources of vehicle exhaust, industrial coal combustion, garbage burning, and secondary PM. In order to improve the air quality in the city, these findings demonstrate the need to control emissions from all known sources and particularly focus on the low-hanging fruits like road dust and waste burning, while the technological and institutional advancements in the transport and industrial sectors are bound to enhance efficiencies. Andhra Pradesh Pollution Control Board utilized these results to prepare an air pollution control action plan for the city.  相似文献   

15.
采用石墨炉原子吸收分光光度法、双道原子荧光光谱法研究乌鲁木齐市采暖期前期与后期不同粒径大气颗粒物(TSP、PM_(10)、PM_5、PM_(2.5))中Hg、As、Zn、Pb、Ni等5种重金属元素的质量浓度,并对重金属污染水平进行评价。Hg质量浓度为0.3~5.7 ng/m3;As质量浓度为15.3~122.5 ng/m~3;Zn质量浓度为298.0~1 686.5 ng/m~3;Pb质量浓度为0.5~88.8 ng/m~3;Ni质量浓度为10.4~25.5 ng/m~3。Igeo计算得出采暖期后期的TSP、PM_(10)、PM_5、PM_(2.5)中各重金属Igeo值均高于采暖期前期,其中Hg元素为严重污染;富集因子分析得出Hg、Zn元素的EFi值大于10,说明这些元素是人为源贡献。通过研究乌鲁木齐市不同时期、不同粒径大气颗粒物中各种重金属污染状况,为乌鲁木齐大气污染治理提供科学支持。  相似文献   

16.
One-minute PM2.5 concentration was obtained with LD-5C pocket microcomputer laser dust instrument from Dec. 15th, 2005 to Jan. 16th, 2006 and Mar. 17th to Apr. 28th, 2006 in Beijing. The concentration of SO2, NO2, O3, CO, and PM10 from Jan. 1st, 2001 to Dec. 31st, 2004 were obtained from the conversion of air pollution index. Results showed that all the pollutants showed cyclic characteristics. The longer yearly cycles was shown from SO2, NO2, O3, CO, and PM10, as the sampling time was 4-year long and daily collected. The shorter hourly and daily cycle was shown from 1-min PM2.5, as the sampling time was about 1-month long and one collected at 1 min. The spectral density analysis confirmed this from the periodogram graphs. The longer yearly cycle (365, 180 days), the seasonal cycle (120, 60–90 days), and monthly cycle (21, 23, 27 days) of SO2, NO2, CO, O3, and PM10 were obviously shown. In addition, the shorter weekly cycle of 5–7 days is obviously shown, too. The shorter hourly cycle (8–12, 4–6, 3, 1–2 h, 20 min) of 1-min PM2.5 was also indicated from spectral density analysis. Two major factors contribute the 1-min PM2.5 cycles, i.e., the meteorological factors and source effects. Both the relative humidity and dew point showed consistent variation with PM2.5, but the wind speed showed inverse variations with PM2.5. Furthermore, the spectral density analysis of the meteorological factors (4–5, 2–2.5, 1–1.5 days, 12, 6–8, 3 h) may partially explain the cycles of PM2.5. As for the sources effects, it can be shown from the strong dust storm of April 16–18th, 2006. PM2.5 constantly increased tens and even hundreds of times high concentration within a few minutes due to the intensity of the dust sources.  相似文献   

17.
Ambient concentrations of PM2.5 and PM10 are of concern with respect to effects on human health and environment. Increased levels of mortality and morbidity have been associated with respirable particulate air pollution. In India, it is not yet mandatory to monitor PM2.5 levels therefore very limited information is available on PM2.5 levels. To understand the fine particle pollution and also correlate with PM10 which are monitored regularly in compliance with ambient air quality standards. This study was carried out to monitor PM2.5, PM10, and NO2 for about one year in a residential cum commercial area of Mumbai city with a view to understand their correlation. The average PM2.5 concentration at ambient and Kerbsite was 43 and 69 μg/m3. The correlation coefficients between PM2.5 and PM10 at ambient and Kerbsite were 0.83 and 0.85 respectively thus indicating that most of the PM2.5 and PM10 are from similar sources. TSP, PM10 levels exceeded Central Pollution Control Board(CPCB) standard during winter season. PM2.5 levels also exceeded 24 hourly average USEPA standard during winter season indicating unhealthy air quality.  相似文献   

18.
The temporal and spatial trends in the variability of PM10 and PM2.5 from 2010 to 2015 in the metropolitan area of Lima-Callao, Peru, are studied and interpreted in this work. The mean annual concentrations of PM10 and PM2.5 have ranges (averages) of 133–45 μg m?3 (84 μg m?3) and 35–16 μg m?3 (26 μg m?3) for the monitoring sites under study. In general, the highest annual concentrations are observed in the eastern part of the city, which is a result of the pattern of persistent local winds entering from the coast in a south-southwest direction. Seasonal fluctuations in the particulate matter (PM) concentrations are observed; these can be explained by subsidence thermal inversion. There is also a daytime pattern that corresponds to the peak traffic of a total of 9 million trips a day. The PM2.5 value is approximately 40% of the PM10 value. This proportion can be explained by PM10 re-suspension due to weather conditions. The long-term trends based on the Theil-Sen estimator reveal decreasing PM10 concentrations on the order of ?4.3 and ?5.3% year?1 at two stations. For the other stations, no significant trend is observed. The metropolitan area of Lima-Callao is ranked 12th and 16th in terms of PM10 and PM2.5, respectively, out of 39 megacities. The annual World Health Organization thresholds and national air quality standards are exceeded. A large fraction of the Lima population is exposed to PM concentrations that exceed protection thresholds. Hence, the development of pollution control and reduction measures is paramount.  相似文献   

19.
北京地区不同季节PM2.5和PM10浓度对地面气象因素的响应   总被引:1,自引:0,他引:1  
利用2013年1月—2014年12月北京地区PM_(2.5)和PM_(10)监测数据和同期近地面气象观测数据,采用非参数分析法(Spearman秩相关系数)研究了北京地区PM_(2.5)和PM_(10)的浓度对不同季节地面气象因素的响应。结果表明:北京地区大气颗粒物浓度水平具有明显的季节特征,冬季大气颗粒物污染最严重,夏季最轻。不同季节影响颗粒物浓度水平的气象因素各不相同,其中风速和日照时数为主要影响因素。PM_(2.5)和PM_(10)质量浓度对气象因素变化的响应程度也有较大区别,PM_(2.5)/PM_(10)比值冬季最高,PM_(2.5)影响最大,春季最低,PM_(10)影响最大。这些结论可对制订科学有效的大气污染控制策略提供参考。  相似文献   

20.
2020年2—3月,位于福建沿海地区中部的莆田市在环境空气质量自动监测过程中出现了严重的PM_(10)和PM_(2.5)质量浓度"倒挂"现象,小时值"倒挂"率为19.86%,日均值"倒挂"率为16.67%。在高相对湿度和低风速气象条件下,颗粒物会出现严重的"倒挂"现象,"倒挂"过程中常伴随着颗粒物和气态污染物(SO_2、NO_2和CO)质量浓度的增加。因此,于2020年2月16日—3月26日开展了颗粒物自动监测和手工监测比对,并结合气象参数、气态污染物质量浓度,以及PM_(10)和PM_(2.5)中水溶性离子和液态水的含量特征,进一步探讨了莆田市颗粒物质量浓度"倒挂"的主要成因。研究表明,PM_(10)和PM_(2.5)自动监测仪器检测原理的差异是导致颗粒物质量浓度"倒挂"的重要原因之一,而气象条件(相对湿度、气温和风速等)、颗粒物质量浓度、颗粒物中主要吸湿组分(NO_3~-、SO_4~(2-)和NH_4~+)和液态水的含量也是颗粒物质量浓度"倒挂"的主要影响因素。莆田市2020年2—3月出现高频率"倒挂"现象是多重因素共同作用的结果,解决该问题需要同时考虑监测仪器检测原理、气象参数、颗粒物质量浓度和吸湿组分等的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号