首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
针对南京市典型道路的交通噪声控制措施,分别选取低噪声路面、声屏障、隔声窗3种噪声控制措施进行监测,监测显示低噪声路面对整体声级降噪有限,声屏障对于1kHz倍频带以上的中高频隔声相对较好,真空玻璃隔声窗能对低频噪声有显著改善。  相似文献   

2.
徐振华  周鹏 《干旱环境监测》1992,6(2):89-91,106
对乌鲁木齐至成都旅客列车车厢内的噪声监测表明,一般情况下车厢内噪声等效A声级不超过铁道部部颁标准要求(TB1932-87).在车厢机械陈旧、路况复杂、隧道、狭谷等情况下,车厢乘务室内噪声等效A声级可达74.9~84.6dB(A),最高超标9.6dB(A),全程超标2.2dB(A).  相似文献   

3.
通过布设不同类型的多个点位,对山东省某城市多条道路两侧建筑物的室内外交通噪声进行了测量,并对实测数据进行了分析。结果表明,为降低道路两侧建筑物的环境噪声,通过在道路与两侧建筑物之间的区域采取降噪措施,降噪幅度是有限的;为降低建筑物内的房间噪声,通过对建筑物本身采取噪声防护措施,降噪效果明显。  相似文献   

4.
海口市声环境影响因素分析及预测   总被引:7,自引:0,他引:7       下载免费PDF全文
噪声污染一直是海口市主要的环境问题之一。主要原因是城市纵深度太低,道路密度太高,交通布局不合理,1991年-2000年城市区域环境噪声和道路交通噪声的平均值分别为59.0dB(A)和69.5dB(A)。利用城市区域环境噪声预测方法和道路交通噪声预测方法对该市噪声进行预测,2001年-2005年该市的区域噪声昼间平均等效声级综合预测值在57.6dB(A)-56.7dB(A)之间;道路交通噪声昼间平均等效声级综合预测值在68.2dB(A)-68.3dB(A)之间。  相似文献   

5.
城市公交车定置噪声测试与特征分析   总被引:1,自引:0,他引:1  
对北京市典型类别公交车的噪声污染水平及排放特征进行了测试和研究。研究和统计结果表明,北京城市在用公交车的定置噪声排放水平总体处于90~103 dB(A),其A计权频域特征以人耳敏感的中高频噪声为主,对城市居民的环境影响较大,是目前城市内需要重点关注的噪声污染源。相关数据将为交通和环保部门有针对性地提出噪声控制措施和制订相关法规提供有效支撑。  相似文献   

6.
中国机场周围区域飞机噪声监测一直采用计权等效连续感觉噪声级L_(WECPN)为评价量,标准修订后拟采用昼夜等效声级L_(dn)为评价量,监测方法也相应更改。该文通过理论推导及宁波栎社机场噪声现场监测数据,系统比较了2种机场周围区域飞机噪声监测方法,并分析了监测结果的差异及影响因素。结果表明:L_(WECPN)与L_(dn)在相差10 dB的基础上,差值受到单次飞机噪声值和傍晚飞行次数2个因素影响。单次飞机噪声监测量L_(EPN)和L_(AE)在飞机匀速直线经过时差值约为3.75 dB,实际上受到飞行航迹、飞机运动状态、噪声传播环境、突发噪声干扰等因素影响,此次监测的187次飞机L_(EPN)和L_(AE)的差值范围为2.1~5.5 dB。傍晚飞行次数引起的监测结果差值范围为0~4.8 dB。  相似文献   

7.
姚海英  邵红 《干旱环境监测》1991,5(4):245-248,254
对学校环境噪声作了初步调查表明:学校环境噪声主要污染源来自交通噪声,危害最大的是位于交通干线两侧的学校.上课时间能持续在64.5~66.9dB(A)之间的较高水平.其噪声污染与距噪声源距离呈负相关(r=-0.679).  相似文献   

8.
冒莹  李沫 《干旱环境监测》2009,23(4):243-245
为了解和掌握环境背景噪声对边界噪声监测结果的影响情况,本文就此作了相应的探讨。结果显示:当测量值与背景值的差值超过10dB(A)时,可以忽略背景值对测量结果的影响;当测量值与背景值的差值为3~10dB(A)时,应分段考虑背景值的修正;当测量值与背景值的差值小于3dB(A)时,应重新选择时间进行测定。  相似文献   

9.
据现场实测,风电场300 m范围内社会噪声测值水平较低,且昼夜变化较小,对风电场背景噪声贡献不大;风机停运时背景噪声值随风速递增,二者之间存在较好的多项式回归性。在测得风机运行时噪声值和测点风速的情况下,根据回归方程式得到背景噪声,当风机运行时测得的噪声值与背景噪声之差大于1.5 dB(A)时,可以运用噪声叠加原理计算风机噪声,并且其计算误差在可接受范围之内。  相似文献   

10.
分析了背景噪声测量不确定性以及背景修正对噪声监测结果的影响,提出,在实际噪声测量工作中,当测量值与背景值的差值≥3 dB且测量值修正结果与排放限值非常接近时,以及当测量值与背景值的差值3 dB且测量值与排放限值的差值≤4 dB时,对背景噪声进行重复测量,计算背景噪声测量不确定性,利用公式法进行定量背景修正的建议,并在噪声测量和数据处理过程中降低背景噪声测量不确定性,从而减少背景修正对噪声测量结果的影响,更加客观地反映噪声的真实情况。  相似文献   

11.
The City of Amman, Jordan, has been subjected to persistent increase in road traffic due to overall increase in prosperity, fast development and expansion of economy, travel and tourism. This study investigates traffic noise pollution in Amman. Road traffic noise index L 10(1 h) was measured at 28 locations that cover most of the City of Amman. Noise measurements were carried out at these 28 locations two times a day for a period of one hour during the early morning and early evening rush hours, in the presence and absence of a barrier. The Calculation of Road Traffic Noise (CRTN) prediction model was employed to predict noise levels at the locations chosen for the study. Data required for the model include traffic volume, speed, percentage of heavy vehicles, road surface, gradient, obstructions, distance, noise path, intervening ground, effect of shielding, and angle of view. The results of the investigation showed that the minimum and the maximum noise levels are 46 dB(A) and 81 dB(A) during day-time and 58 dB(A) and 71 dB(A) during night-time. The measured noise level exceeded the 62 dB(A) acceptable limit at most of the locations. The CTRN prediction model was successful in predicting noise levels at most of the locations chosen for this investigation, with more accurate predictions for night-time measurements.  相似文献   

12.
Walking is necessary for experiencing urban space, but pedestrians are seriously disturbed by traffic noise. This study aimed to clarify spatial variations in soundscape evaluation in pedestrian spaces used solely for walking, including traffic noise annoyance, the dominance of various sound sources, and the perceptual dimensions of the soundscape. Three traffic noise level areas, at various distances from the road, were evaluated in a typical pedestrian space in China, using a questionnaire survey in an on-site study. The results reveal that, first, the soundscape evaluations in the high-noise area (70 dBA) and middle-noise area (60 dBA) are more similar, but present a larger difference with the low-noise area (50 dBA). The latter is more complicated, and more subjective evaluations in this area are required than for higher sound-level areas. Second, the correlation between the soundscape evaluations of the middle-noise area and the low-noise area demonstrates more similarity, but presents a larger difference with the high-noise area, meaning the effectiveness in the high-noise area may differ from lower sound level areas even with the same soundscape improvement measures. Finally, the relationship of the dominance of natural sound with other soundscape evaluations become weaker as the distance from the road increases; this means that deliberately increasing natural sound might be an effective method to improve the soundscape quality in the high-noise area. These findings can provide a reference for soundscape evaluations and landscape design in pedestrian spaces where traffic noise is a problem.  相似文献   

13.
与一般城市道路相比,城市高架复合道路通行能力大、行车速度高、车辆行驶状态复杂,交通噪声污染极为突出。选取深圳市典型的高架复合道路——春风高架和爱国高架进行实地监测,同时运用SoundPLAN软件模拟其噪声污染现状与安装声屏障后的降噪效果。根据监测模拟结果,从合理进行道路规划、装设声屏障和铺设低噪声路面等方面提出高架复合道路噪声污染控制的对策建议。  相似文献   

14.
基于道路交通噪声990 h监测数据,对英国CRTN模型中源强计算模型在中国的适用性进行了验证。试验结果表明,理论计算与实测结果之间平均仅相差0.57 dB(A),CRTN源强预测模型在中国可以可靠地预测道路交通噪声。  相似文献   

15.
The major objective of the investigation was to evaluate the road traffic noise and its likely impacts on the local community of Asansol city (West Bengal, India) by monitoring and modeling. The attitudinal response of local population due to existing vehicular noise is presented in the paper. Noise and Attitudinal Survey was conducted at 25 locations. A total of 869 individuals were surveyed. The relationship between traffic noise levels and annoyance was studied using correlation, linear and multiple linear regressions analysis. The average L(dn) value was 73.28 +/- 8.51 dB(A) (55.1-87.3); The Traffic Noise Index (TNI) was 80.62 +/- 15.88 dB(A) (49.4-115.8). The mean value of percent of population Highly Annoyed (%HA) due to road traffic noise was 26.50 +/- 3.37 (19.44-33.2), whereas the mean dissatisfaction score (MDS) was 2.96 +/- 0.90 (1.04-4.45). Annoyance modeling was also performed based on field data. It can be said that Noise values gives desirable annoyance predicting values in comparison to vehicular data.  相似文献   

16.
The noise pollution is a major problem for the quality of life in urban areas. This study was conducted to compare the noise pollution levels at busy roads/road junctions, passengers loading parks, commercial, industrial and residential areas in Ilorin metropolis. A total number of 47-locations were selected within the metropolis. Statistical analysis shows significant difference (P < 0.05) in noise pollution levels between industrial areas and low density residential areas, industrial areas and high density areas, industrial areas and passengers loading parks, industrial areas and commercial areas, busy roads/road junctions and low density areas, passengers loading parks and commercial areas and commercial areas and low density areas. There is no significant difference (P > 0.05) in noise pollution levels between industrial areas and busy roads/road junctions, busy roads/road junctions and high density areas, busy roads/road junctions and passengers loading parks, busy roads/road junctions and commercial areas, passengers loading parks and high density areas, passengers loading parks and commercial areas and commercial areas and high density areas. The results show that Industrial areas have the highest noise pollution levels (110.2 dB(A)) followed by busy roads/Road junctions (91.5 dB(A)), Passengers loading parks (87.8 dB(A)) and Commercial areas (84.4 dB(A)). The noise pollution levels in Ilorin metropolis exceeded the recommended level by WHO at 34 of 47 measuring points. It can be concluded that the city is environmentally noise polluted and road traffic and industrial machineries are the major sources of it. Noting the noise emission standards, technical control measures, planning and promoting the citizens awareness about the high noise risk may help to relieve the noise problem in the metropolis.  相似文献   

17.
Fence for traffic noise control sometimes causes adverse effect on air pollution. Thus in this study, performance of porous fence as a tool for control of both air pollution and noise pollution was evaluated. A two-dimensional numerical model for flow and pollutant concentration and an analytical model for traffic noise were utilized in the analysis of a double-decked road structure with fences only at ground (Case 1) and at both ground and upper deck (Case 2). Porous fences were assumed only at the ground level since the solid fences at the upper deck usually leads to desirable result on air pollution. Effects of the variable porosity on air quality and noise level near road were evaluated. Obtained results showed: (1) flow pattern in leeward of fence was drastically changed at 40–50% porosity in Case 1 and 50% in Case 2. The porosity larger than 40% excluded presence of a circulation behind the fence. (2) Effect of porous fence on air pollution was different in Cases 1 and 2. In Case 1, the porous fence generally resulted in the reduction of air pollution at the ground level; on the other hand, in Case 2, it rather led to increase of the concentration. (3) Traffic noise level was also largely changed by the porosity of the fence; an example of simultaneous evaluation of the effects of porous fence on both air and noise pollution in Case 1 showed that the fence of 60% porosity leads to reduction of air pollution by 20% compared with solid fence case, and reduction of noise pollution by 4–6% in dB compared with no fence case, at l m high and 10 m from the road.  相似文献   

18.
测点高度对道路交通噪声监测数据的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
通过在4城市对132条道路进行了道路交通噪声测点高度试验,系统分析了测点高度从手工监测的1.2 m向自动监测的4.5 m转化后,在不同道路情况对道路交通噪声监测数据的影响。结果表明,测点高度提高后监测结果变化在±3 dB(A)以内。待测道路的车道数和测点与机动车道的距离是其主要影响因素。对两测点高度进行对比,4.5 m高度噪声值随水平距离增加衰减较小,测量结果更稳定。  相似文献   

19.
This paper provides a critical review of different approaches applied in the Belgian asphalt sector in order to reduce the environmental impact of bituminous road construction works. The focus is on (1) reusing reclaimed asphalt pavement, (2) reducing the asphalt production temperature, and (3) prolonging the service life of the pavement. Environmental impact assessment of these methods is necessary to be able to compare these approaches and understand better the ability to reduce the environmental impact during the life cycle of the road pavement. Attention should be drawn to the possible shift in environmental impact between various life cycle stages, e.g., raw material production, asphalt production, or waste treatment. Life cycle assessment is necessary to adequately assess the environmental impact of these approaches over the entire service life of the bituminous pavement. The three approaches and their implementation in the road sector in Flanders (region in Belgium) are described and the main findings from life cycle assessment studies on these subjects are discussed. It was found from the review that using reclaimed asphalt pavement in new bituminous mixtures might yield significant environmental gains. The environmental impact of the application of warm mix asphalt technologies, on the other hand, depends on the technique used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号