首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 171 毫秒
1.
基于2016—2022年南京市大气挥发性有机物(VOCs)自动监测数据,分析VOCs污染特征及其臭氧生成潜势(OFP)。结果表明:2016—2022年南京市大气VOCs及其组分体积分数均显著下降,TVOCs 7年均值为21.7×10-9,各组分占比从大到小依次为烷烃>烯烃>芳香烃>炔烃;TVOCs及烷烃、烯烃、芳香烃季节变化一致,均为冬季>秋季>春季>夏季,炔烃为冬季>春季>秋季>夏季;TVOCs及烷烃、烯烃、炔烃月变化整体呈“V”字型特征,芳香烃近似为“W”型;除炔烃外,小时体积分数日变化基本呈“单峰型”特征。2016—2022年OFP年际变化呈显著下降趋势,7年均值为132.1 μg/m3;OFP贡献较大的组分为烯烃(39.1%)和芳香烃(38.1%),臭氧生成的VOCs关键物种为乙烯、间/对二甲苯、甲苯、丙烯和异戊二烯,控制烯烃和芳香烃排放有利于南京市的臭氧污染防治。  相似文献   

2.
利用2020年3月28日—5月3日南京某典型化工园区挥发性有机物(VOCs)离线监测数据,分析了园区内VOCs污染特征及臭氧生成潜势(OFP)。结果表明,春季园区φ(VOCs)范围为22.3×10-9 ~892.6×10-9,82.1%频率的φ(VOCs)<100×10-9;VOCs组分占比表现为:烷烃>含氧挥发性有机物(OVOCs)>烯烃>卤代烃>芳香烃>炔烃>有机硫。高体积分数VOCs中烷烃和烯烃占比高于低体积分数VOCs,受园区内部储罐存储、运输、转运等过程产生的油气挥发及石油化工原料、合成材料的生产影响显著。不同时刻φ(VOCs)表现为夜间最高、早晨其次、下午最低的变化特征,这与园区内部VOCs排放累积、大气边界层抬升和大气光化学反应等因素有关。OFP值范围为166.2~6 920.9 ,μg/m3,56.0%频率的OFP<500。  相似文献   

3.
嘉善夏季典型时段大气VOCs的臭氧生成潜势及来源解析   总被引:2,自引:0,他引:2  
2016年8—9月对长三角南部区域嘉善的大气中挥发性有机化合物(VOCs)变化特征、臭氧生成潜势、臭氧生成控制敏感性和来源进行了研究。结果表明,观测期间VOCs总平均值为27.3×10-9,表现为烷烃卤代烃含氧有机物芳香烃烯烃炔烃;VOCs浓度变化较大,早晚出现峰值,与风速呈负相关的关系,与温度没有明显相关性。VOCs的臭氧生成潜势表现为芳香烃烯烃烷烃含氧有机物卤代烃炔烃。甲苯等10种物质对臭氧生成潜势的贡献达到63%。夏季典型时段臭氧生成对VOCs较敏感,属于VOCs控制区。观测期间测得对VOCs浓度贡献较大的物种来源于溶剂涂料和工业排放。  相似文献   

4.
2018年4月至2019年3月对杭州市城区大气中117种挥发性有机物(VOCs)开展了为期一年的手工采样观测,分析了VOCs各组分的浓度特征、臭氧生成潜势(OFP)和二次有机气溶胶(SOA)生成潜势。结果显示,观测期杭州市大气VOCs体积分数均值为(56.72±29.56)×10-9,含氧挥发性有机物(OVOCs)、烷烃和卤代烃是其主要组分,分别占33.86%、30.70%、15.73%。VOCs体积分数前10位的物种为丙烷、甲醛、异丁烷、乙烷、乙酸乙酯、二氯甲烷、正丁烷、丙酮、甲苯和1,2-二氯乙烷。杭州市VOCs的OFP为135.18×10-9,各VOCs组分的OFP贡献为OVOCs(45%) > 芳香烃(22%) > 烯烃和炔烃(21%) > 烷烃(11%) > 卤代烃(1%),其中甲醛、乙烯和乙醛是OFP主要贡献者。SOA生成潜势为1.64 μg/m3,芳香烃是最重要的SOA前体物。SOA生成潜势最大的5种VOCs物种为甲苯、对/间二甲苯、乙苯、邻二甲苯和苯,因此控制来自机动车尾气和溶剂使用过程中产生的VOCs可有效降低SOA的生成。通过甲苯与苯体积分数比分析发现,杭州市城区芳香烃除了来自机动车尾气以外,在春、夏季和秋、冬季还分别受到生物质燃烧和涂料溶剂的影响;分析了乙烷与乙炔体积分数比、乙炔与CO体积分数比,发现杭州市气团的老化程度呈现整体较高的特点。  相似文献   

5.
利用在线气相色谱-质谱仪于2021年6月—9月在烟台市开展挥发性有机物(VOCs)在线观测,运用比值法和后向轨迹聚类分析研究VOCs的污染特征及来源。结果表明,观测期间,99种VOCs总体积分数的平均值为13.64×10-9,烷烃占比最高,为3893%;其次是卤代烃和含氧挥发性有机物(OVOCs),占比分别为22.07%和20.09%。VOCs总的臭氧生成潜势(OFP)平均值为160.23μg/m3,烯烃贡献最大,其OFP为53.88μg/m3,占比33.63%。机动车尾气排放是烟台市烷烃、烯烃和芳香烃的主要来源。来自山东半岛内陆方向的气团中烷烃、烯烃和芳香烃的体积分数明显高于其他方向的气团,故须针对上述VOCs开展山东半岛区域范围的联防联控。  相似文献   

6.
运用大气挥发性有机物(VOCs)快速在线连续自动监测系统,于2018年7月对南通市区环境空气中VOCs进行观测,分析VOCs的浓度状况、组成特征、对臭氧生成潜势的贡献及主要来源。结果表明:观测期间共检出100种VOCs,总挥发性有机物(TVOCs)的平均体积分数为(38. 18±23. 63)×10^-9,各物种体积分数从大到小顺序依次为烷烃>含氧有机物>芳香烃>卤代烃>烯、炔烃;芳烃和烯烃是最主要的活性物种,间/对二甲苯、甲苯、邻二甲苯等是VOCs的关键活性组分;利用PMF模型解析得到VOCs的主要污染来源是工业排放与溶剂使用、机动车尾气排放、燃料挥发排放和生物源排放。  相似文献   

7.
为探究威海市秋季挥发性有机物(VOCs)污染特征及来源,于2021年9月10—20日采用手工加密监测法对威海市秋季大气中VOCs进行监测,分析了气象因素对臭氧(O3)及其前体物的影响和VOCs污染特征,并利用正交矩阵因子模型(PMF)方法对VOCs来源进行了研究。结果表明,威海市温度对O3生成影响明显,尤其是高温、低湿、扩散较差气象条件下,有利于O3前体物的反应消耗,促使O3生成及累积。观测期间,威海市秋季φ(VOCs)平均值为47.84×10-9,VOCs中体积分数占比最高的为含氧挥发性有机物(OVOCs),占比为58.0%,其次为烷烃(21.6%)、卤代烃(10.2%)。O3生成潜势(OFP)平均值为393.95μg/m3,对OFP的贡献占比最高的为OVOCs(74.1%),其次为芳香烃(12.6%)、烷烃(7.0%)和烯烃(5.4%)。PMF源解析结果显示,机动车尾气排放源、工艺过程源、船舶尾气排放源和溶剂使用源是威海市秋季VOCs排放主要来源,贡献占比分别为30.4%,23.9%,21.1%,16.5%。控制机动车排放和工艺过程排放是控制威海市秋季VOCs污染的重要途径。  相似文献   

8.
2020年4—9月通过离线采样研究了盐城市城区大气中的挥发性有机物(VOCs)浓度水平及组成特征、臭氧生成潜势、二次有机气溶胶生成潜势以及毒性效应等多效应评估和来源贡献。结果表明:盐城市城区VOCs平均体积浓度为35.09×10-9,盐塘湖公园站点浓度最高;盐城市VOCs主要组分为含氧有机物(OVOCs)和烷烃。通过挥发性有机物多效应评估发现,关键物种为乙醛、对二乙苯、丙酮、甲苯和间/对二甲苯等。采样期间对VOCs浓度的主要贡献来源为二次生成、工业排放和交通排放。  相似文献   

9.
以京津冀及周边"2+26"城市之一濮阳为例,对环境空气VOCs的污染特征及其臭氧生成潜势进行分析。研究表明:濮阳市的臭氧生成对VOCs浓度比较敏感,VOCs各组分的平均浓度表现为含氧有机物烷烃芳香烃烯烃炔烃,乙烯和丙酮是浓度水平最高的2种物质,对VOCs浓度贡献分别为11. 3%和10. 5%; VOCs各组分的臭氧生成潜势量表现为含氧有机物芳香烃烯烃烷烃炔烃。OFP排名前三位的是乙醛、乙烯和甲苯,其对臭氧生成的贡献量超过了总量的三分之一;制定关键物质选取原则,筛选出濮阳市VOCs的关键种类; VOCs及其关键种类与气温和风向存在一定的相关关系;濮阳市VOCs关键种类的污染主要来源于化石燃料燃烧、石油化工生产和溶剂涂料挥发等工业生产和机动车尾气排放等。  相似文献   

10.
济南市环境空气VOCs污染特征及来源识别   总被引:4,自引:4,他引:0  
对济南市2010年6月至2012年5月环境空气中56种挥发性有机污染物(VOCs)进行在线气相色谱监测,研究其污染特征并识别其主要来源。结果表明,该期间总挥发性有机化合物(TVOCs)变化规律基本一致,其平均浓度水平夏季冬季秋季春季;TVOCs浓度的日变化趋势呈双峰分布,与早晚交通高峰相吻合;济南市城区环境空气中VOCs的主要物种是C3~C5的烷烃、丙烯、顺-2-丁烯、甲苯和间、对二甲苯等;不同季节环境空气中VOCs的主要物种基本一致,夏季烯烃所占比重高于其他季节;烷烃、烯烃与TVOCs的浓度日变化趋势相似,呈明显的双峰状,而芳香烃浓度日变化规律双峰特征不明显。济南市城区VOCs的主要来源为汽车尾气、工业源、燃烧源。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号