首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
2020年7月对兰州市城区大气挥发性有机物进行连续24 h测定,研究其污染特征和臭氧生成潜势等,并进行来源解析。结果表明:兰州超级站点 VOCs的平均质量浓度为99.59 μg/m3,各类挥发性有机物中烷烃占比最大,占总挥发性有机物浓度的33.81%;对挥发性有机物进行臭氧生成潜势分析,排名靠前的物种为甲苯、乙烯、乙酸乙烯酯;利用PMF模型对挥发性有机物进行源解析,结果显示VOCs来源贡献为机动车源(31.30%)、油气挥发或泄漏(24.10%)、溶剂使用源(18.60%)、燃烧和化工工艺源(17.20%)、天然源(8.80%)。建议将控制机动车排放、油气挥发和泄漏、溶剂使用等作为消减城市大气挥发性有机物和臭氧污染的重点。  相似文献   

2.
2018年4月至2019年3月对杭州市城区大气中117种挥发性有机物(VOCs)开展了为期一年的手工采样观测,分析了VOCs各组分的浓度特征、臭氧生成潜势(OFP)和二次有机气溶胶(SOA)生成潜势。结果显示,观测期杭州市大气VOCs体积分数均值为(56.72±29.56)×10-9,含氧挥发性有机物(OVOCs)、烷烃和卤代烃是其主要组分,分别占33.86%、30.70%、15.73%。VOCs体积分数前10位的物种为丙烷、甲醛、异丁烷、乙烷、乙酸乙酯、二氯甲烷、正丁烷、丙酮、甲苯和1,2-二氯乙烷。杭州市VOCs的OFP为135.18×10-9,各VOCs组分的OFP贡献为OVOCs(45%) > 芳香烃(22%) > 烯烃和炔烃(21%) > 烷烃(11%) > 卤代烃(1%),其中甲醛、乙烯和乙醛是OFP主要贡献者。SOA生成潜势为1.64 μg/m3,芳香烃是最重要的SOA前体物。SOA生成潜势最大的5种VOCs物种为甲苯、对/间二甲苯、乙苯、邻二甲苯和苯,因此控制来自机动车尾气和溶剂使用过程中产生的VOCs可有效降低SOA的生成。通过甲苯与苯体积分数比分析发现,杭州市城区芳香烃除了来自机动车尾气以外,在春、夏季和秋、冬季还分别受到生物质燃烧和涂料溶剂的影响;分析了乙烷与乙炔体积分数比、乙炔与CO体积分数比,发现杭州市气团的老化程度呈现整体较高的特点。  相似文献   

3.
为探究威海市秋季挥发性有机物(VOCs)污染特征及来源,于2021年9月10—20日采用手工加密监测法对威海市秋季大气中VOCs进行监测,分析了气象因素对臭氧(O3)及其前体物的影响和VOCs污染特征,并利用正交矩阵因子模型(PMF)方法对VOCs来源进行了研究。结果表明,威海市温度对O3生成影响明显,尤其是高温、低湿、扩散较差气象条件下,有利于O3前体物的反应消耗,促使O3生成及累积。观测期间,威海市秋季φ(VOCs)平均值为47.84×10-9,VOCs中体积分数占比最高的为含氧挥发性有机物(OVOCs),占比为58.0%,其次为烷烃(21.6%)、卤代烃(10.2%)。O3生成潜势(OFP)平均值为393.95μg/m3,对OFP的贡献占比最高的为OVOCs(74.1%),其次为芳香烃(12.6%)、烷烃(7.0%)和烯烃(5.4%)。PMF源解析结果显示,机动车尾气排放源、工艺过程源、船舶尾气排放源和溶剂使用源是威海市秋季VOCs排放主要来源,贡献占比分别为30.4%,23.9%,21.1%,16.5%。控制机动车排放和工艺过程排放是控制威海市秋季VOCs污染的重要途径。  相似文献   

4.
在石家庄臭氧(O3)污染较重的7月,开展连续10 d(2018年7月6—15日),8次/d的加密监测,获得大气挥发性有机物(VOCs)苏玛罐样品数据及O3在线监测数据,分析了采样期间O3污染特征、VOCs组成及O3生成潜势(OFP)特征,并对VOCs来源进行了研究。结果表明,采样期间O3-3 h浓度最高为243 μg/m3,与相对湿度存在明显的反相关关系,与温度和风速存在良好的正相关关系。VOCs平均体积分数为(75.28±5.81)×10-9,各组分浓度所占比例为OVOCs>烷烃>卤代烃>烯炔烃>芳香烃>其他组分。各类VOCs中,OVOCs对OFP的贡献最大,占64.12%。作为光化学反应的中间产物,OVOCs的一次来源较少,表明二次污染物对石家庄大气O3生成有重要贡献。从具体组分来看,OFP值排名前十的组分以OVOCs为主,其中最高的为甲基丙烯酸甲酯。采样期间,VOCs一次来源主要为汽油车和柴油车尾气排放,贡献率分别为38%与32%;溶剂使用、汽油挥发、生物排放分别占13%、11%、6%。VOCs主要受本地排放影响。  相似文献   

5.
利用南京市2022年挥发性有机物(VOCs)在线监测数据,对VOCs污染特征、来源及对臭氧的影响进行了分析研究。结果表明:2022年南京市φ(TVOCs)年均值为25.1×10-9,其中各组分占比为烷烃>含氧挥发性有机物(OVOCs)>氯代烃>烯烃>芳香烃>炔烃。TVOCs及烷烃、烯烃和芳香烃的体积分数季节变化表现为冬季>秋季>春季>夏季,φ(OVOCs)季节变化表现为夏季>秋季>春季>冬季。烷烃、烯烃和炔烃日变化呈“双峰型”特征,芳香烃和氯代烃为“单峰型”。臭氧生成潜势(OFP)贡献总体表现为OVOCs>烯烃>芳香烃>烷烃>氯代烃>炔烃,但冬季烯烃的贡献率最高。南京市臭氧生成的关键VOCs物种为乙醛、乙烯、丙烯、间/对-二甲苯和甲苯。正交矩阵因子分解结果显示,机动车尾气、生物质燃烧和工业生产是南京VOCs的主要来源;对南京臭氧生成贡献最大的VOCs来源为溶剂涂料使用和石化行业。  相似文献   

6.
嘉善夏季典型时段大气VOCs的臭氧生成潜势及来源解析   总被引:2,自引:0,他引:2  
2016年8—9月对长三角南部区域嘉善的大气中挥发性有机化合物(VOCs)变化特征、臭氧生成潜势、臭氧生成控制敏感性和来源进行了研究。结果表明,观测期间VOCs总平均值为27.3×10-9,表现为烷烃卤代烃含氧有机物芳香烃烯烃炔烃;VOCs浓度变化较大,早晚出现峰值,与风速呈负相关的关系,与温度没有明显相关性。VOCs的臭氧生成潜势表现为芳香烃烯烃烷烃含氧有机物卤代烃炔烃。甲苯等10种物质对臭氧生成潜势的贡献达到63%。夏季典型时段臭氧生成对VOCs较敏感,属于VOCs控制区。观测期间测得对VOCs浓度贡献较大的物种来源于溶剂涂料和工业排放。  相似文献   

7.
选择某喷涂企业附近环境空气为采样点位,在3个监测时段(5、9、11月)基于成分监测车在线监测107种挥发性有机物(VOCs),分析环境空气中VOCs污染特征和成分,结合走航监测车进行溯源分析,利用MCM模式结合敏感性实验研究了臭氧生成机制。结果表明:5月A时段的VOCs总浓度(247.43 μg/m3)高于其他2个监测时段(134.29、107.07 μg/m3),体现了VOCs季节性的变化趋势;3个监测时段VOCs浓度均以含氧有机物为主,其占比分别为44.36%、55.30%和37.90%,其次为芳香烃和烷烃,但不同监测时段同类VOCs占比各不相同,体现了不同季节VOCs浓度的差异性。3个监测时段均排在浓度排名前10位的物种有6种,分别为乙醇、丙酮、对/间二甲苯、苯、二氯甲烷和甲苯,说明该监测点位存在稳定污染排放源。走航溯源监测获得空气点位及附近喷涂企业内VOCs浓度和成分特征,结果显示环境大气中的VOCs主要组分来自喷涂企业厂区使用的挥发性溶剂的排放和油性漆的挥发排放。研究臭氧生成潜势(OFP)可知,芳香烃的OFP值在3个监测时段占比最高,对臭氧生成贡献较高的物种主要有对/间二甲苯、甲苯等芳香烃,乙醇和甲基丙烯酸甲酯等含氧有机物,异戊二烯和丙烯等烯烃类物种。MCM模式结果显示:5月A时段监测期间的臭氧光化学生成速率大于9月B时段和11月C时段,O3生成过程主要受甲基过氧自由基(CH3O2)+NO 和过氧化羟基自由基(HO2)+NO 控制。相对增量反应敏感性实验结果显示:3个监测时段臭氧生成均处于VOCs控制区,5月A时段,控制异戊二烯、芳香烃类物种可以大幅减少臭氧的生成,9月B时段需主要控制芳香烃和含氧有机物的排放,11月C时段则需控制芳香烃物种的排放。就VOCs单体而言,3个监测时段减少对/间二甲苯的浓度,对臭氧生成影响较大。走航溯源耦合在线监测方法可以实现臭氧污染快速原位溯源。  相似文献   

8.
利用2020年3月28日—5月3日南京某典型化工园区挥发性有机物(VOCs)离线监测数据,分析了园区内VOCs污染特征及臭氧生成潜势(OFP)。结果表明,春季园区φ(VOCs)范围为22.3×10-9 ~892.6×10-9,82.1%频率的φ(VOCs)<100×10-9;VOCs组分占比表现为:烷烃>含氧挥发性有机物(OVOCs)>烯烃>卤代烃>芳香烃>炔烃>有机硫。高体积分数VOCs中烷烃和烯烃占比高于低体积分数VOCs,受园区内部储罐存储、运输、转运等过程产生的油气挥发及石油化工原料、合成材料的生产影响显著。不同时刻φ(VOCs)表现为夜间最高、早晨其次、下午最低的变化特征,这与园区内部VOCs排放累积、大气边界层抬升和大气光化学反应等因素有关。OFP值范围为166.2~6 920.9 ,μg/m3,56.0%频率的OFP<500。  相似文献   

9.
为研究菏泽市环境空气中VOCs的污染特征,参照EPA TO-15方法对菏泽市环境空气中的VOCs进行分析,并对VOCs的组成、浓度状况、来源和对臭氧生成潜势的贡献等进行探讨。结果表明,该市环境空气中共定性检出挥发性有机物82种,其中烷烃和苯系物分别占有机物种类的29%、22%,VOCs平均浓度为25.6μg/m3。监测期间,环境空气中的VOCs主要来自汽车尾气排放、汽油蒸汽、液态石油的挥发,其中交通尾气排放是该区域监测期间的主要排放源。烷烃、芳烃是对菏泽市环境空气中臭氧生成潜势贡献较大的关键活性组分,其对臭氧生产潜势的贡献率分别为32.6%、49.9%。  相似文献   

10.
对大连市2015年秋冬季环境空气中VOCs进行采样分析,获得其组成、含量、昼夜和季节变化规律,分析不同类别VOCs的来源,并计算不同VOCs物种的臭氧生成潜势(OFP)。结果表明:大连市环境空气中秋季VOCs平均体积浓度(55.81×10-9)略高于冬季(42.66×10-9);秋季VOCs以羰基化合物和烷烃为主,而冬季VOCs以烷烃和烯炔烃为主。大连环境空气中光化学反应的主要VOCs类别为羰基化合物、烯炔烃和芳香烃,主要物种为丙烷、乙烷、正丁烷和乙烯。羰基化合物含量高与机动车尾气及医院大量试剂的使用有关,烷烃主要来源于汽油车与液化石油气(LPG)燃烧排放,芳香烃主要由机动车排放贡献。各类别VOCs的组分含量与其OFP并不一致,大连市环境空气中各类VOCs的OFP由高到低依次为羰基化合物>芳香烃>烯炔烃>烷烃。  相似文献   

11.
The emission estimation of nine volatile organic compounds (VOCs) from eight organic liquids storage tanks companies in Dar-es-Salaam City Tanzania has been done by using US EPA standard regulatory storage tanks emission model (TANKS 4.9b). Total VOCs atmospheric emission has been established to be 853.20 metric tones/yr. It has been established further that petrol storage tanks contribute about 87% of total VOCs emitted, while tanks for other refined products and crude oil were emitting 10% and 3% of VOCs respectively. Of the eight sources (companies), the highest emission value from a single source was 233,222.94 kg/yr and the lowest single source emission value was 6881.87 kg/yr. The total VOCs emissions estimated for each of the eight sources were found to be higher than the standard level of 40,000 kg/yr per source for minor source according to US EPA except for two sources, which were emitting VOCs below the standard level. The annual emissions per single source for each of the VOCs were found to be below the US EPA emissions standard which is 2,000~kg/yr in all companies except the emission of hexane from company F1 which was slightly higher than the standard. The type of tanks used seems to significantly influence the emission rate. Vertical fixed roof tanks (VFRT) emit a lot more than externally floating roof tanks (EFRT) and internally floating roof tanks (IFRT). The use of IFRT and EFRT should be encouraged especially for storage of petrol which had highest atmospheric emission contribution. Model predicted atmospheric emissions are less than annual losses measured by companies in all the eight sources. It is possible that there are other routes for losses beside atmospheric emissions. It is therefore important that waste reduction efforts in these companies are directed not only to reducing atmospheric emissions, but also prevention of the spillage and leakage of stored liquid and curbing of the frequently reported illegal siphoning of stored products. Emission rates for benzene, toluene, and xylene were used as input to CALPUFF air dispersion model for the calculation of spatial downwind concentrations from area sources. By using global positioning system (GPS) and geographical information system (GIS) the spatial benzene concentration contributed by organic liquid storage tanks has been mapped for Dar-es-Salaam City. Highest concentrations for all the three toxic pollutants were observed at Kigamboni area, possibly because the area is located at the wind prevailing direction from the locations of the storage tanks. The model predicted concentrations downwind from the sources were below tolerable concentrations by WHO and US-OSHA. The highest 24 hrs averaging time benzene concentration was used for risk assessment in order to determine maximum carcinogenic risk amongst the population exposed at downwind. Established risk for adult and children at 2.9×10-3 and 1.9×10-3 respectively, are higher than the acceptable US-EPA risk of 1×10-6. It is very likely that the actual VOCs concentrations in some urban areas in Tanzania including Dar-es-Salaam City are much higher than the levels reported in this study when other sources such as petrol stations and motor vehicles on the roads are considered. Tanzania Government therefore need to put in place: an air quality policy and legislation, establish air quality guidelines and acquire facilities which will enable the implementation of air quality monitoring and management programmes.  相似文献   

12.
国内外VOCs排放管理控制历程   总被引:2,自引:0,他引:2  
介绍了挥发性有机污染物(VOCs)的定义、来源和危害,回顾了国内外VOCs监测技术、观测浓度、排放标准及规范,概括了欧美等发达国家宏观层面上的VOCs排放管理控制战略、经验及效果.建议我国建立VOCs在线监测网络,开展VOCs排放清单计算工作,进一步加强机动车尾气排放VOCs控制,初步制定宏观层面的VOCs总体控制战略...  相似文献   

13.
工业化与城镇化交替演进使珠三角及其周边地区土地利用类型较为复杂。快速的城市化进程使城市建成区与大量村镇工业园区互相交错。这种变化势必会增加挥发性有机物(VOCs)在组分构成和空间分布上的复杂性,并对臭氧(O3)污染的时空变化产生影响。为厘清这种排放的空间异质性特征及其对O3污染分布的影响,分别选取可以代表清远市典型工业园区和城市建成区的站点开展观测研究。结果表明:工业园区和城市建成区VOCs浓度水平和污染特征有较大的空间差异,其中代表村镇工业园区的龙塘站VOCs日均浓度为30.42×10-9,高于代表城市建成区的技师学院站(17.32×10-9)。龙塘站二甲苯和甲苯的臭氧生成潜势(OFP)比技师学院站高57.6×10-9,且该值相当于技师学院站排名前10位物种OFP的总和。气象分析表明:2个站点之间并非彼此的上、下风向,而是共同受到局地气团的影响。源解析结果表明:源排放是造成这种空间异质性的内因,其中交通源对技师学院的贡献更高,而工业相关排放源对龙塘的贡献更高。该研究进一步比较了周边站点O3时间序列的一致性,并模拟2个站点的O3生成速率。研究发现O3在局地范围内变化较小,高VOCs排放的地点对局地O3有较高的贡献,局地内不同地点的O3生成过程也存在较大差异。据此,笔者提出O3污染防控建议:短期内可通过技术手段和观测数据发现O3污染的重要贡献点,并进行针对性的"散乱污"清理整治和涉VOCs行业综合整治,长期看应科学合理规划城市发展布局和产业布局,预留城市通风廊道,以有效减少O3污染。  相似文献   

14.
城市大气中挥发性有机化合物监测技术进展   总被引:6,自引:5,他引:1  
挥发性有机物(VOCs)是臭氧及二次有机颗粒物(SOA)的主要前体物。近年来,我国逐步将VOCs纳入大气污染物控制体系。准确可靠的监测技术是大气VOCs研究及控制的重要前提保障。按照采样方法、分析方法 2个方面介绍并讨论了城市大气中VOCs的现有监测方法,较为详细地介绍了几类广泛采用的离线及在线监测技术,简要讨论了目前VOCs监测中存在的一些问题,展望了今后的发展趋势。  相似文献   

15.
为了提高挥发性有机物(VOCs)分析的准确性,笔者考察了3种采样罐和2种气袋对116种VOCs的保存效果。结果表明:VOCs在不同种类采样罐和气袋中的保存情况有一定差异,整体上Silonite采样罐的保存效果相对更稳定,罐内水分含量会对部分VOCs的保存效果造成影响(特别是对含氧有机物);保存实际样品时,能保证VOCs分析准确性的时间为12 d。  相似文献   

16.
The main objective of this work was to quantify and characterize the major indoor air contaminants present in different stages of a municipal WWTP, including microorganisms (bacteria and fungi), carbon dioxide, carbon monoxide, hydrogen sulfide ammonia, formaldehyde, and volatile organic compounds (VOCs). In general, the total bacteria concentration was found to vary from 60 to >52,560 colony-forming units (CFU)/m3, and the total fungi concentration ranged from 369 to 14,068 CFU/m3. Generally, Gram-positive bacteria were observed in higher number than Gram-negative bacteria. CO2 concentration ranged from 251 to 9,710 ppm, and CO concentration was either not detected or presented a level of 1 ppm. H2S concentration ranged from 0.1 to 6.0 ppm. NH3 concentration was <2 ppm in most samples. Formaldehyde was <0.01 ppm at all sampling sites. The total VOC concentration ranged from 36 to 1,724 μg/m3. Among the VOCs, toluene presented the highest concentration. Results point to indoor/outdoor ratios higher than one. In general, the highest levels of airborne contaminants were detected at the primary treatment (SEDIPAC 3D), secondary sedimentation, and sludge dehydration. At most sampling sites, the concentrations of airborne contaminants were below the occupational exposure limits (OELs) for all the campaigns. However, a few contaminants were above OELs in some sampling sites.  相似文献   

17.
Air samples were collected in Beijing from June through August 2008, and concentrations of volatile organic compounds (VOCs) in those samples are here discussed. This sampling was performed to increase understanding of the distributions of their compositions, illustrate the overall characteristics of different classes of VOCs, assess the ages of air masses, and apportion sources of VOCs using principal compound analysis/absolute principal component scores (PCA/APCS). During the sampling periods, the relative abundance of the four classes of VOCs as determined by the concentration-based method was different from that determined by the reactivity approach. Alkanes were found to be most abundant (44.3–50.1%) by the concentration-based method, but aromatic compounds were most abundant (38.2–44.5%) by the reactivity approach. Aromatics and alkenes contributed most (73–84%) to the ozone formation potential. Toluene was the most abundant compound (11.8–12.7%) during every sampling period. When the maximum incremental reactivity approach was used, propene, toluene, m,p-xylene, 1-butene, and 1,2,4-trimethylbenzene were the five most abundant compounds during two sampling periods. X/B, T/B, and E/B ratios in this study were lower than those found in other cities, possibly due to the aging of the air mass at this site. Four components were extracted from application of PCA to the data. It was found that the contribution of vehicle exhaust to total VOCs accounted for 53% of VOCs, while emissions due to the solvent use contributed 33% of the total VOCs. Industrial sources contributed 3% and biogenic sources contributed 11%. The results showed that vehicle exhausts (i.e., unburned vehicle emissions + vehicle internal engine combustion) were dominant in VOC emissions during the experimental period. The solvent use made the second most significant contribution to ambient VOCs.  相似文献   

18.
2019年8—9月,在常州市洛阳小学、市监测站和武澄工业园3个监测站点开展了为期49 d的环境空气57种挥发性有机物(VOCs)离线加密监测,分析其浓度水平及组成特征。结果表明,3个站点VOCs的体积分数分别为29.8×10-9,20.8×10-9和25.3×10-9。3个站点中烷烃的值均值最大,其值占比依次为59.1%,57.2%和51.4%,烷烃中均以乙烷、丙烷和正丁烷值最大。应用臭氧生成潜势(OFP)、OH自由基消耗速率和二次有机气溶胶生成潜势(SOAP)分别对3个站点进行计算,结果显示,各站点芳香烃的数值均最大,OFP占比为67.1%~68.0%,OH自由基消耗速率占比为45.4%~52.0%,SOAP占比为93.3%~94.7%,芳香烃中关键活性组分是甲苯、乙苯和二甲苯等。上风向的洛阳小学与武澄工业园VOCs浓度比市区的市监测站更高,OFP和SOAP也均高于市监测站,表明上风方向的VOCs排放对市区影响较大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号