首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
北京市大气颗粒物的浓度水平和离子物种的化学形态   总被引:7,自引:0,他引:7  
用离子色谱法测定了 1 998年 1 1月至 1 999年 2月期间的 2 4个总悬浮颗粒物 (TSP)样品中 NH+ 4、NO- 3、SO2 - 4和Na+ 质量浓度。研究结果表明 ,北京市冬季大气颗粒物中离子物种的化学形态可以分为三种情况 :污染严重时 ,离子物种以 H2 SO4 、NH4 HSO4 、Na NO3为主要存在形态 ,气溶胶酸性强 ;污染轻时 ,离子物种以 (NH4 ) 2 SO4 、Na NO3为主要存在形态 ,气溶胶呈弱酸性 ;中等污染时 ,离子物种以 (NH4 ) 2 SO4 、NH4 HSO4 、Na NO3几种化学形态存在 ,气溶胶呈中等酸性  相似文献   

2.
Because of the recent frequent observations of major dust storms in southwestern cities in Iran such as Ahvaz, and the importance of the ionic composition of particulate matters regarding their health effects, source apportionment, etc., the present work was conducted aiming at characterizing the ionic composition of total suspended particles (TSP) and particles on the order of ~10?μm or less (PM(10)) during dust storms in Ahvaz in April-September 2010. TSP and PM(10) samples were collected and their ionic compositions were determined using an ion chromatography. Mean concentrations of TSP and PM(10) were 1,481.5 and 1,072.9?μg/m(3), respectively. Particle concentrations during the Middle Eastern Dust (MED) days were up to four times higher than those in normal days. Ionic components contributed to only 9.5% and 11.3% of the total mass of TSP and PM(10), respectively. Crustal ions were most abundant during dust days, while secondary ions were dominant during non-dust days. Ca(2+)/Na(+) and Cl(-)/Na(+) ratios can be considered as the indicators for identification of the MED occurrence. It was found that possible chemical forms of NaCl, (NH(4))(2)SO(4), KCl, K(2)SO(4), CaCl(2), Ca(NO(3))(2), and CaSO(4) may exist in TSP. Correlation between the anionic and cationic components suggests slight anion and cation deficiencies in TSP and PM(10) samples, though the deficiencies were negligible.  相似文献   

3.
乌鲁木齐市可吸入颗粒物水溶性离子特征及来源解析   总被引:2,自引:1,他引:1  
采暖期时在乌鲁木齐市采集了环境空气中的可吸入颗粒物,对可吸入颗粒物质量浓度及8种水溶性离子的特征和来源进行了分析。结果表明,细粒子和粗粒子的月平均质量浓度分别是53.5~233.3μg/m3和38.9~60.9μg/m3;细粒子和粗粒子中水溶性离子主要由SO24-、NH4+和NO3-组成;粗粒子中NH4+与NO3-和SO24-的相关性分别是0.70和0.66,细粒子中NH4+与NO3-和SO24-的相关性分别是0.89和0.93,铵盐是乌鲁木齐可吸入颗粒物主要存在形式;煤烟尘是乌鲁木齐市采暖期可吸入颗粒物的主要来源。  相似文献   

4.
Soil dust particles transported from loess regions of the Asian continent, called Asian dust, highly influences the air quality of north-eastern Asia and the northern Pacific Ocean. In order to investigate the effects of these dust storms on the chemical composition of atmospheric aerosol particles with different size, measurements of size distributions of total aerosol and major ion species were carried out on Jeju Island, Korea during April 2001. Juju Island was chosen for the study because the levels of emissions of anthropogenic air pollutants are very low. A 5-stage cascade impactor was used to sample size-fractionated aerosol particles. Samples were analyzed for major water-soluble ions using Dionex DX-120 ion chromatograph. The average mass concentration of total aerosol was found to be 24.4 and 108.3 microg m(-3) for non-Asian dust and Asian dust periods, respectively. The total aerosol size distribution, measured during the non-Asian dust period, was bimodal, whereas the coarse particles dominated the size distribution of total aerosol during the Asian dust period. It was found that SO4(2-), NH4+ and K+ were mainly distributed in fine particles, while Cl-, NO3-, Na+, Mg2+ and Ca2+ were in coarse particles. Although SO4(2-) was mainly distributed in fine particles, during the Asian dust period, the concentrations in coarse particles were significantly increased. This indicates heterogeneous oxidation of SO2 on wet surfaces of basic soil dust particles. The NH4+ was found to exist as (NH4)2SO4 in fine particles, with a molar ratio of NH4+ to SO4(2-) of 2.37 and 1.52 for non-Asian dust and Asian dust periods, respectively. Taking into account the proximity of the sampling site to the sea, and the observed chloride depletion, coarse mode nitrate, during the non-Asian dust period, is assumed to originate from the reaction of nitric acid with sodium chloride on the surfaces of sea-salt particles although the chloride depletion was not shown to be large enough to prove this assumption. During the Asian dust period, however, chloride depletion was much smaller, indicating coarse nitrate particles were mainly produced by the reaction of nitric acid with surfaces of basic soil particles. Most chloride and sodium components were shown to originate from sea-salt particles. Asian dust aerosols, arriving at Jeju Island, contained considerable amounts of sea-salt particles as they passed over the Yellow Sea. Ca2+ was shown to be the most abundant species in Asian dust particles.  相似文献   

5.
为了研究在线离子色谱法测定大气PM2.5中NH4^+、NO3^-、SO4^2-的不确定性来源,探讨了标准曲线的浓度范围及浓度梯度设置对离子浓度结果的影响,并对标准曲线设定方案进行了优化。结果表明:不同浓度范围的标准曲线对于NH4+的浓度结果有较大的影响,存在1. 87%~14. 91%的偏差,对于NO3^-、SO4^2-的影响较小,相对偏差分别为2. 94%和2. 82%;非均匀布点和均匀布点标准曲线定量NH4+的结果存在4. 15%~4. 25%的偏差,对于NO3^-和SO4^2-,相对偏差分别为0. 10%和5. 99%。对于二次拟合的NH4^+,在样品浓度波动较大时,可以将样品划分为低浓度范围和高浓度范围,分别选用低浓度段标准曲线和高浓度段标准曲线,以期得到更合理的浓度结果。  相似文献   

6.
为探究典型燃煤工业城市邯郸市的大气细颗粒物(PM2.5)污染水平及水溶性无机离子特征,于2016年1—12月采集了当地大气PM2.5样品,然后利用离子色谱法测得水溶性无机离子的组分,分析了不同季节水溶性无机离子随PM2.5的浓度变化特征。通过对PM2.5中的阴离子、阳离子进行分析发现,SO4^2-、NO3^-和NH4^+在春夏秋冬四季均为PM2.5中的主要离子成分,SO4^2-、NO3^-和NH4^+的浓度之和在春夏秋冬四季占各季节总的水溶性无机离子浓度的百分比分别为84.6%、77.4%、89.9%、62.5%。其中,在春季和冬季含量最高的3种离子分别是NO3^-、SO4^2-和NH4^+,夏季含量最高的3种离子分别是SO4^2-、NH4^+和NO3^-,而秋季含量最高的3种离子分别是NH4^+、SO4^2-和NO3^-。相关性分析发现,2016年春季、夏季和秋季PM2.5为酸性,冬季为碱性。SO4^2-、NO3^-、NH4^+浓度分析表明,冬季PM2.5中的一次建筑扬尘排放较多。通过主成分分析法得出,PM2.5中水溶性无机离子主要来源于二次转化和生物质燃烧。  相似文献   

7.
Water-soluble inorganic ions in aerosol samples have been studied. The sample collection took place during summer in 2003 at a European background site which is operating within the framework of the European Monitoring and Evaluation Program. Gent type PM10 stacked filter unit (SFU) samplers were operated in parallel on a day and night basis to collect particles in separate coarse (2.0-10 microm) and fine (<2.0 microm) size fractions. Particulate masses were measured gravimetrically; the filters from one of the SFU samplers were analyzed by particle-induced X-ray emission spectrometry (PIXE) and instrumental neutron activation analysis (INAA). Filters from the other SFU sampler were analyzed by ion chromatography (IC) for major inorganic anions (MSA-, NO2(-), NO3(-), Cl-, Br-, SO4(2-), oxalate) and cations (Na+, K+, NH4(+), Mg2+, Ca2+). The water-soluble inorganic ions measured were responsible for 44% and 16% of the total fine and coarse particulate mass, respectively. In the fine size fraction, the main ionic components were SO4(2-) and NH4(+) accounting for about 90% of fine ionic mass. In the coarse fraction the main ionic components were Ca2+ and NO3(-), followed by SO4(2-). Significant day and night difference in the mass concentrations was observed only for fine NO3(-). The molar ratios of fine NH4(+) to SO4(2-) indicated their complete neutralization to (NH4)2SO4. According to the cation-to-anion ratios the coarse particles were alkaline, while the fine particles were slightly acidic or neutral. By comparing the corresponding concentrations obtained from PIXE/INAA and IC, we determined the water-extractable part of the individual species. We also investigated the effect of long-range transported air masses on the local air concentrations, and we found that the air quality of this background monitoring station was affected by regional pollution sources.  相似文献   

8.
Al, Cd, Cr, Cu, Fe, Mn, Pb, Zn, NH4+, Mg2+, Ca2+, Na+, K+, Cl-, NO3- and SO4(2-), along with pH were determined in wet and dry deposition samples collected at Al-Hashimya, Jordan. Mean trace metal concentrations were similar or less than those reported for other urban regions worldwide, while concentrations of Ca2+ and SO4(2-) were the highest. The high Ca2+ concentrations were attributed to the calcareous nature of the local soil and to the influence of the Saharan dust, while the high concentrations of SO4(2-) were attributed to the influence of anthropogenic sources and Saharan dust soil. Except for SO4(2-), NO3-, and Ca2+, dry deposition fluxes of measured metals and ions were higher than their corresponding wet deposition fluxes. The high annual average pH values recorded for wet and dry deposition samples were attributed to the neutralization of acidity by alkaline species. Cd, Cr, Cu, Pb, Zn, NO3- and SO4(2-) were enriched in wet and dry deposition samples relative to crustal material, and a significant anthropogenic contribution to these elements and ions is tentatively suggested. Finally, the possible sources and the main factors affecting the concentrations of the measured species are discussed.  相似文献   

9.
The concentrations of ammonium NH4+, nitrate NO3-, and nitrite NO2- ions were recorded along with ammonia (NH(3)) emission from a fertilized rice field located in the Kwangju province in South Korea over a period of 4 months (June to October 2006). The highest magnitude of NH(3) flux was 20,754 microg m(-2) h(-1), while the average flux value over the entire sampling period was 2,395 microg m(-2) h(-1). The highest ionic concentrations were 1.67, 0.44, and 0.71 ppm for NH4+, NO3-, and NO2- ions, respectively. Possible effects of soil pH on NH(3) fluxes were detected, as they concurrently exhibited a gradual and periodic change during the sampling period. Positive correlations existed between concentrations of NH4+ and NO2- ions and the soil pH. Positive correlations also existed between NH(3) emission flux and ambient (and water) temperatures. Results indicated that fertilizer application to rice can lead to significant emission of NH(3) along with NH4+ and NO3- ions.  相似文献   

10.
In this work we present the results of extensive characterization and optimization of the Ambient Ion Monitor-Ion Chromatograph (AIM-IC) system, an instrument developed by URG Corp. and Dionex Inc. for simultaneous hourly measurements of the water-soluble chemical composition of atmospheric fine particulate matter (PM(2.5)) and associated precursor gases. The sampling assembly of the AIM-IC consists of an inertial particle size-selection assembly, a parallel-plate wet denuder (PPWD) for the collection of soluble gases, and a particle supersaturation chamber (PSSC) for collection of particles, in series. The analytical assembly of the AIM-IC consists of anion and cation IC units. The system detection limits were determined to be 41 ppt, 5 ppt, and 65 ppt for gas phase NH(3(g)), SO(2(g)), and HNO(3(g)) and 29 ng m(-3), 3 ng m(-3), and 45 ng m(-3) for particle phase NH(4)(+), SO(4)(2-), and NO(3)(-) respectively. From external trace gas calibrations with permeation sources, we determined that the AIM-IC is biased low for NH(3(g)) (11%), SO(2(g)) (19%), and HNO(3(g)) (12%). The collection efficiency of SO(2(g)) was found to strongly depend on the composition of the denuder solution and was found to be the most quantitative with 5 mM H(2)O(2) solution for mixing ratios as high as 107 ppb. Using a cellulose membrane in the PPWD, the system responded to changes in SO(2(g)) and HNO(3(g)) within an hour, however for NH(3(g)), the timescale can be closer to 20 h. With a nylon membrane, the instrument response time for NH(3(g)) was significantly improved, becoming comparable to the responses for SO(2(g)) and HNO(3(g)). Performance of the AIM-IC for collection and analysis of PM(2.5) was evaluated by generating known number concentrations of ammonium sulfate and ammonium nitrate particles (with an aerodynamic diameter of 300 nm) under laboratory conditions and by comparing AIM-IC measurements to measurements from a collocated Aerosol Mass Spectrometer (AMS) during a field-sampling campaign. On average, the AIM-IC and AMS measurements agreed well and captured rapid ambient concentration changes at the same time. In this work we also present a novel inlet configuration and plumbing for the AIM-IC which minimizes sampling inlet losses, reduces peak smearing due to sample carryover, and allows for tower-height sampling from the base of a research tower.  相似文献   

11.
Emissions of NOx and SO2 were monitored in the presence of ammonia liquor in a 0.09 m2 and 2 m high stainless-steel fluidized-bed combustor. Experiments were carried out at 2 m/s fluidizing velocity, 40% excess air, and 870 °C bed temperature. Ammonia liquor with 7% ammonia by weight was injected into the freeboard of the combustor 52 cm above the distributor through a water-cooled injector. A 65 : 34 primary/secondary air ratio was maintained throughout the investigation. Approximately 70% of NO and 20% of SO2 was reduced at an NH3/NO molar ratio of 2 : 1, respectively. However, a higher reduction in SO2 emissions (62%) was achieved at a very high NH3/NO molar ratio of 7 : 1. These experiments showed that ammonia addition did have a significant effect in SO2 reduction if injected in an excess amount. The injection of ammonia liquor combined with staged combustion was found to be very effective in reducing NOx emissions. A reduction of about 50% was achieved at an NH3/NO molar ratio of 0.6 : 1 which is also coupled with a very low level of ammonia in the flue.  相似文献   

12.
A major Irish study, based upon more than 8000 samples collected over the measurement period of 22 years, for sulfur dioxide (SO2-S), sulfate (SO4-S) and nitrogen dioxide (NO2-N) concentrations (microg m(-3)) within air, and the ionic composition of precipitation samples based on sodium (Na+), potassium (K+), magnesium (Mg2+), calcium (Ca2+), chloride (Cl-), sulfate (SO4-S), non-sea salt sulfate (nssSO4-S), ammonium (NH4-N), and nitrate (NO3-N) weighted mean concentrations (mg l(-1)), has been completed. For the air samples, the sulfur dioxide and sulfate concentrations decreased over the sampling period (1980-2004) by 75% and 45%, respectively, whereas no significant trend was observed for nitrogen dioxide. The highest concentrations for sulfur dioxide, sulfate and nitrogen dioxide were associated with wind originating from the easterly and northeasterly directions i.e. those influenced by Irish and European sources. The lowest concentrations were associated with the westerly directions i.e. for air masses originating in the North Atlantic region. This was further verified with the use of backward (back) trajectory analysis, which allowed tracing the movement of air parcels using the European Centre for Medium range Weather Forecasting (ECMWF) ERA-40 re-analysis data. High non-sea salt sulfate levels were being associated with air masses originating from Europe (easterlies) with lower levels from the Atlantic (westerlies). With the precipitation data, analysis of the non-sea salt sulfate concentrations showed a decrease by 47% since the measurements commenced.  相似文献   

13.
根据南通市2016和2017年冬季大气多参数站自动监测PM2.5数据和在线离子色谱分析仪Marga监测的PM2.5中水溶性离子数据,分析了南通市冬季PM2.5中水溶性离子污染特征。结果表明,南通市2016和2017年冬季,ρ(PM2.5)分别为58和54μg/m 3,均高出其年均值(14μg/m^3);ρ(水溶性离子)总占ρ(PM2.5)百分比分别为74.5%和74.3%;二次离子ρ(NO3^-、SO4^2-和NH4^+)占ρ(PM2.5)百分比分别为66.8%和66.6%;各水溶性离子占比大小依次为:NO3^-、SO4^2-、NH4^+、Cl^-、K^+、Na^+、Ca^2+、Mg^2+。对ρ(NO3^-)/ρ(SO 4^2-)分析表明,移动源已经成为南通市冬季的主要污染源,且呈逐年增强趋势。对氯氧化率和硫氧化率的分析表明,南通市冬季存在较明显的二次污染,SO2的转化程度大于NO2。除Na^+和Mg^2+外,其他离子与PM2.5均呈显著相关性,NO3^-、SO4^2-与NH4^+之间的相关系数最高,Cl^-与除Na^+外的所有阳离子均呈显著相关性。  相似文献   

14.
A highly significant second-order polynomial relation between SO(2) emissions and SO(4)(2-) concentrations during 1970-2000 (r(2)= 0.80, p= <0.001), and a linear relation between NO(x) and NO(3)(-) concentrations during 1991-2000 (r(2)= 0.67, p= 0.004) in bulk precipitation were found for the Hubbard Brook Experimental Forest, NH based on emissions from a 24 h, back-trajectory determined source area. Earlier periods (1965-1980) for SO(2)ratio SO(4)(2-) and longer periods (1965-2000) for NO(x)ratio NO(3)(-) had poorer linear relations, r(2)= 0.03, p= 0.51 and r(2)= 0.22, p= 0.004, respectively. Methodology by the US Environmental Protection Agency for calculating emissions data during this period has changed significantly and frequently, making trend analysis difficult. Given the large potential for errors in estimating emissions and to a lesser extent, deposition, the robust relations between SO(2) emissions and SO(4)(2-) concentrations in bulk precipitation at the Hubbard Brook Experimental Forest show that careful, long-term measurements from a single monitoring site can provide sound and reasonable data on trends in air pollution.  相似文献   

15.
A field campaign on aerosol chemical properties and trace gases measurements was carried out along the Delhi-Hyderabad-Delhi road corridor (spanning about 3,200 km) in India, during February 1-29, 2004. Aerosol particles were collected on quartz and cellulose filters using high volume (PM(10)) sampler at various locations along the route (i.e., urban, semi-urban, rural, and forest areas) and have been characterized for major cations (Na(+), Ca(2+), Mg(2+), K(+), and NH (4) (+)), anions (Cl(-), NO (3)(-), and SO (4)(2-)), and heavy metals (Cu, Cd, Fe, Zn, Mn, and Pb). Simultaneously, we measured NO(2) and SO(2) gases. These species show large spatial and temporal variations. The ambient PM(10) concentration has been observed to be the highest (55 ± 4 μg m(-3)) near semi-urban areas followed by forest areas (48 ± 2 μg m(-3)) and in rural areas (44 ± 22 μg m(-3)). The concentrations of NO( x ) (NO(2)+NO) and SO(2) ranged from 16 to 69 μg m(-3) and 4 to 11 μg m(-3), respectively. Among anions, NO(3)(-) and SO(4) (2-) are the major constituents of PM(10). The urban and semi-urban sites showed enhanced concentrations of Fe, Zn, Mn, Cd, and Pb. This study provide information about atmospheric concentrations of various species in the northern to central India, which may be important for policy makers to better understand the air quality of the region.  相似文献   

16.
17.
A temporary renovation activity releases considerably high concentrations of particulate matter, viable and non-viable, into air. These pollutants are a potential contributor to unacceptable indoor air quality (IAQ). Particulate matter and its constituents lead, sulfate, nitrate, chloride, ammonium and fungi as well as fungal spores in air were evaluated in a building during renovation action. Suspended dust was recorded at a mean value of 6.1 mg m(-3) which exceeded the Egyptian limit values for indoor air (0.15 mg m(-3)) and occupational environments (5 mg m(-3)). The highest particle frequency (23%) of aerodynamic diameter (dae) was 1.7 microm. Particulate sulfate (SO(4)(2-)), nitrate (NO(3)(-)), chloride (Cl(-)), ammonium (NH(4)(+)) and lead components of suspended dust averaged 2960, 28, 1350, 100 and 13.3 microg m(-3), respectively. Viable fungi associated with suspended dust and that in air averaged 1.11 x 10(6) colony forming unit per gram (cfu g(-1)) and 92 colony forming unit per plate per hour (cfu p(-1) h(-1)), respectively. Cladosporium(33%), Aspergillus(25.6%), Alternaria(11.2%) and Penicillium(6.6%) were the most frequent fungal genera in air, whereas Aspergillus(56.8%), Penicillium(10.3%) and Eurotium(10.3%) were the most common fungal genera associated with suspended dust. The detection of Aureobasidium, Epicoccum, Exophiala, Paecilomyces, Scopulariopsis, Ulocladium and Trichoderma is an indication of moisture-damaged building materials. Alternaria, Aureobasidium, Cladosporium, Scopulariopsis and Nigrospora have dae > 5 microm whereas Aspergillus, Penicillium and Verticillium have dae < 5 microm which are suited to penetrate deeply into lungs. Particulate matter from the working area infiltrates the occupied zones if precautionary measures are inadequate. This may cause deterioration of IAQ, discomfort and acute health problems. Renovation should be carefully designed and managed, in order to minimize degradation of the indoor and outdoor air quality.  相似文献   

18.
采用在线单颗粒气溶胶质谱技术源解析方法,对桂林市PM2.5典型排放源的粒径和化学成分进行质谱分析,采集燃煤/燃气源、工业工艺源、扬尘源、油烟源4类共计7个典型排放源。结果表明,桂林市4类排放源细颗粒物的粒径分布为0.25~1.25μm,80%以上的细颗粒分布在0.2~1.0μm的小粒径范围,峰值约0.68μm。细颗粒物离子成分含有Na~+、Mg~+、K~+、NH~+4、Fe~+、Pb~+、Cd~+、V~+、Mn~+、Li~+、Al~+、Ca~+、Cu~+、Zn~+、Cr~+、CN~-、PO_3~-、NO_2~-、NO_3~-、Cl~-、SO_4~(2-)、SiO_3~-等成分,桂林市细颗粒物为元素碳、有机碳元素碳、有机碳、富锰颗粒、富铁颗粒、富钾颗粒、矿物质、左旋葡聚糖以及其他金属等9类。  相似文献   

19.
A study for assessment and management of air quality was carried out in the Ib Valley area of the Ib Valley coalfield in Orissa state, India. The 24 h average concentrations of suspended particulate matter (SPM), respirable particulate matter (RPM), sulfur dioxide (SO(2)) and oxides of nitrogen (NO(x)) were determined at regular intervals throughout one year at twelve monitoring stations in residential areas and six monitoring stations in mining/industrial areas. The 24 h average SPM and RPM concentrations were 124.6-390.3 microg m(-3) and 25.9-119.9 microg m(-3) in residential areas, and were 146.3-845.2 microg m(-3) and 45.5-290.5 microg m(-3) in industrial areas. During the study period, 24 h and annual average SPM and RPM concentrations exceeded the respective standards set in the Indian national ambient air quality standard (NAAQS) protocol as well as USEPA, EU, WHO and World Bank standards at most of the residential and industrial areas. However, concentrations of SO(2)(annual average: 24.6-36.1 microg m(-3) and 24 h average: 17.0-46.3 microg m(-3)) and NO(x)(annual average: 23.6-40.9 microg m(-3) and 24 h average: 18.3-53.6 microg m(-3)) were well within the prescribed limit of the NAAQS and international standards in both residential and industrial areas. The temporal variations of SPM and RPM fitted polynomial trends well and on average in the mining area 31.91% of the SPM was RPM. The linear regression correlation coefficients between SPM and RPM and between NO(x) and SO(2) were 0.94 (+/-0.04) and 0.66 (+/-0.10), respectively. The optimum interpolation technique, kriging, determined that maximal concentrations of SPM and RPM occurred within the mining site. Highest concentrations of particulate matter were observed during the winter season followed by summer, autumn and rainy seasons. An action plan is formulated for effective control of air pollution at source, and mitigative measures should include implementation of green belts around the sensitive areas where the concentration of air pollutants exceeds the standard limit.  相似文献   

20.
We developed a method to analyze atmospheric SO(x) (particulate SO(4)(2-)+ gaseous SO(2)) and NO(x) (NO + NO(2)) simultaneously using a battery-operated portable filter pack sampler. NO(x) determination using a filter pack method is new. SO(x) and NO(x) were collected on a Na(2)CO(3) filter and PTIO (2-phenyl-4,4,5,5-tetramethylimidazoline-3-oxide-1-oxyl) + TEA (triethanolamine) filters (6 piled sheets), respectively. Aqueous solutions were then used to extract pollutants trapped by the filters and the resulting extracts were pre-cleaned (e.g. elimination of PTIO) and analyzed for sulfate and nitrite by ion chromatography. Recoveries of SO(2) and NO(x) from standard pollutant gases and consistency of the field data with those from other instrumental methods were examined to evaluate our method. SO(x) and NO(x) could be analyzed accurately with determination limits of 0.2 ppbv and 1.0 ppbv (as daily average concentrations), respectively. The sampler can determine SO(x) and NO(x) concentrations at mountainous or remote sites without needing an electric power supply.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号