首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.

Annual and seasonal rainfall trends in the Limbang River Basin (LRB), located in the equatorial tropics of Malaysian Borneo, have been characterised through Mann-Kendall and Spearman’s Rho non-parametric tests. Rainfall from 13 rain gauge stations in the LRB for the period 1948–2016 was examined in the present study. Basic statistical analysis of rainfall in the region indicates normal distribution, low missing percentage and homogenous characteristics of precipitation. Annual and seasonal rainfall in the LRB shows spatial variation while considering different rain gauge stations. In annual rainfall, eight stations showed a decreasing trend and five stations showed an increasing trend. Rain gauge stations which showed a statistically significant increase in annual rainfall were Limbang DID (2.77 and 2.85 mm/year) and Long Napir (3.65 and 3.77 mm/year). In recognising the two annual monsoon seasons in this area, a significant increase in rainfall was noticed in Long Napir (2.79 and 2.88 mm/year) during the Southwest monsoon (SWM) period. During the Northeast monsoon (NEM), along with Long Napir (3.90 and 3.95 mm/year), Limbang DID (2.86 and 3.02 mm/year), Pandaruan (1.82 and 1.87 mm/year) and Medamit Nanga (1.93 and 2.00 mm/year) also showed a significant increase in rainfall. At the same time, a distinct trend was noticed in rainfall amounts during the inter-monsoon (IM) periods. During the first inter-monsoon month (April), seven rain gauge stations showed an increasing trend in rainfall, whereas in the second inter-monsoon month (October), nine stations showed a decreasing rainfall trend. In April, Long Napir (1.86 and 1.95 mm/year) indicated a significant increasing trend, whereas in the month of October, the rain gauge station at Ukong showed a significant decreasing trend (− 2.45 and − 2.37 mm/year). Though minor spatial changes in trend characteristics were observed among the rain gauge stations, the LRB as a whole showed a consistent increasing (significant and non-significant) trend in annual and seasonal rainfall.

  相似文献   

2.
A study was conducted to investigate the influence of Asian monsoon on chlorophyll-a (Chl-a) content in Sabah waters and to identify the related oceanographic conditions that caused phytoplankton blooms at the eastern and western coasts of Sabah, Malaysia. A series of remote sensing measurements including surface Chl-a, sea surface temperature, sea surface height anomaly, wind speed, wind stress curl, and Ekman pumping were analyzed to study the oceanographic conditions that lead to large-scale nutrients enrichment in the surface layer. The results showed that the Chl-a content increased at the northwest coast from December to April due to strong northeasterly wind and coastal upwelling in Kota Kinabalu water. The southwest coast (Labuan water) maintained high concentrations throughout the year due to the effect of Padas River discharge during the rainy season and the changing direction of Baram River plume during the northeast monsoon (NEM). However, with the continuous supply of nutrients from the upwelling area, the high Chl-a batches were maintained at the offshore water off Labuan for a longer time during NEM. On the other side, the northeast coast illustrated a high Chl-a in Sandakan water during NEM, whereas the northern tip off Kudat did not show a pronounced change throughout the year. The southeast coast (Tawau water) was highly influenced by the direction of the surface water transport between the Sulu and Sulawesi Seas and the prevailing surface currents. The study demonstrates the presence of seasonal phytoplankton blooms in Sabah waters which will aid in forecasting the possible biological response and could further assist in marine resource managements.  相似文献   

3.
Variability in horizontal zooplankton biomass distribution was investigated over 13 months in the Godavari estuary, along with physical (river discharge, temperature, salinity), chemical (nutrients, particulate organic matter), biological (phytoplankton biomass), and geological (suspended matter) properties to examine the influencing factors on their spatial and temporal variabilities. The entire estuary was filled with freshwater during peak discharge period and salinity near zero, increased to ~ 34 psu during dry period with relatively high nutrient levels during former than the latter period. Due to low flushing time (< 1 day) and high suspended load (> 500 mg L?1) during peak discharge period, picoplankton (cyanophyceae) contributed significantly to the phytoplankton biomass (Chl-a) whereas microplankton and nanoplankton (bacillariophyceae, and chlorophyceae) during moderate and mostly microplankton during dry period. Zooplankton biomass was the lowest during peak discharge period and increased during moderate followed by dry period. The zooplankton abundance was controlled by dead organic matter during peak discharge period, while both phytoplankton biomass and dead organic matter during moderate discharge and mostly phytoplankton biomass during dry period. This study suggests that significant modification of physico-chemical properties by river discharge led to changes in phytoplankton composition and dead organic matter concentrations that alters biomass, abundance, and composition of zooplankton in the Godavari estuary.  相似文献   

4.
Due to the close proximity of the Bay of Bengal and the freshwater inflow of Bhagirathi-Hooghly, Diamond Harbour appeared as an important coastal station of the Bhagirathi-Hooghly estuary. The spatial and temporal composition and abundance of microphytoplankton species was examined in relation to physical and chemical surface water variables (i.e., salinity, nutrient, and temperature).The primary objective of the study was to observe the variations in phytoplankton species assemblages as a response to environmental variables. Hierarchical cluster analysis and non-metric multidimensional scaling were used to find out distinct seasonal groups based on the composition of phytoplankton. The results indicate that several key environmental factors like temperature, DIN content, and molar ratio of nutrients like DIN-DIP and DIN-DSi influenced seasonal phytoplankton assemblages within the estuary. The distribution of phytoplankton population showed two main groups where the blue-green and green algal populations favored the warmer conditions of summer and monsoon months, whereas the diatom population primarily flourished in the cooler months of autumn and winter.  相似文献   

5.
A significant variation in physicochemical properties of the Kalpakkam coastal waters, eastern part of India, was observed during the event of southwest to northeast monsoon transition. Increase in nitrate, total nitrogen, and silicate concentrations were noticed during post-transition period. Ammonia concentration was at peak during transition period as compared to pre- and post-transition periods. Hypo-saline condition (~23 psu) was observed during post-transition as the surface water salinity decreased by ~10 psu from the pre-transitional values. Turbidity, suspended particulate matter, phosphate and total phosphorous values decreased marginally, coinciding with northward to southward current reversal. A drastic decrease (eightfold) in chlorophyll-a concentration was observed in the coastal water during post-transition period.  相似文献   

6.
Fine spatial and temporal phytoplankton variability in Mali Ston Bay has been observed for the first time based on physicochemical properties and small herbivorous zooplankton. Extensive year-through research was conducted during 2002 at Usko station which is traditionally an area of intensive shellfish farming. The Neretva River inflow, submarine springs (“vruljas”) and precipitation are additional sources of nutrients in the bay. Temperature and salinity, combined with total inorganic nitrogen (TIN) were observed to be the most important environmental factors driving the succession of phytoplankton communities. Orthophosphate was a potential limiting factor for phytoplankton development. The nanophytoplankton abundances, as well as the microphytoplankton diatoms are controlled by herbivorous zooplankton grazing (‘top-down’ control) more than other groups of microphytoplankton. Nanophytoplankton dominated phytoplankton abundance and its most intensive development was recorded in winter and spring, while increase in microphytoplankton abundance occurred in spring and autumn. Diatoms dominated microphytoplankton abundance mostly in winter and autumn, while dinoflagellates dominated in spring and summer. Considering the number of taxa and abundance, dinoflagellates were the dominant microphytoplankton group during the year and were the main component of the spring blooms. At that time, in conditions of elevated temperature (>16 °C), decreased salinity (34–36) and increased concentrations of TIN, blooms of harmful dinoflagellate Prorocentrum minimum were recorded for the first time in the bay. The results showed a significant difference in environmental conditions, as well as in the annual phytoplankton succession and community structure, as compared with studies carried out more than 20 years ago in this area.  相似文献   

7.
Tawa River is the biggest left bank tributary of the Narmada, the largest west-flowing river of the Indian peninsula. Central India enjoys a tropical climate, is highly urbanized, and the river flow is mostly controlled by monsoon; a large part of the population depend on rivers for their livelihood. Spatial and temporal variations in the hydrochemistry of the Tawa River were studied based on seasonal sampling along the course of the river and its tributaries. The study is important because not much data exist on small size rivers and the river processes spell out correctly in smaller basins. The monsoon season accounts for more than 70 % of river water flow. The basin is characterized by silicate lithology; however, water chemistry is controlled by carbonate-rich soils and other weathering products of the silicate rocks, as indicated by the high (Ca?+?Mg)/(Na?+?K) ratios (>3.8). The values of the Na-normalized ratios of Ca2+, Mg2+, and HCO3 ? suggest that both the carbonate and silicate lithology contribute to the hydrochemistry. On average, 42 % of HCO3 ? in the Tawa River water is contributed by silicate weathering and 58 % from carbonate lithology. The water remains undersaturated with respect to calcite during the monsoon and post-monsoon seasons and supersaturated during the pre-monsoon season. A significant influence of mining in the basin and other industrial units is observed in water chemical composition.  相似文献   

8.
The study was carried out to understand the variability in phytoplankton production (Chlorophyll a) and mesozooplankton diversity from two different shallow coastal regions of south Andaman viz. Port Blair Bay (PBB), the only real urban area among the islands and Mahatma Gandhi Marine National Park, a Marine Protected Area (MPA) at Wandoor. Seasonal sampling was carried out during the Northeast monsoon (NEM—November 2005), Intermonsoon (IM—April 2006), and Southwest monsoon (SWM—August 2006). Significant (P?<?0.05) seasonal variation was observed in the environmental variables at both the regions. Higher average chlorophyll a (Chl. a) and mesozooplankton standing stock were observed at PBB compared to MPA, but the seasonal variation observed was marginal at both the study areas. Chl. a showed a steep increasing gradient from outer to the inner regions of the PBB. The number of zooplankton taxa recorded at both areas was quite similar, but marked differences were noticed in their relative contribution to the total abundance. Eventhough the Copepoda dominated at both the areas, the non-copepod taxa differed significantly between the regions. Dominance of carnivores such as siphonophores and chaetognaths were noticed at PBB, while filter feeders such as appendicularians and decapod larvae were more abundant at MPA. A total of 20 and 21 copepod families was recorded from PBB and MPA, respectively. Eleven species of chaetognaths were observed as common at both areas. Larval decapods were found to be predominant at MPA with 20 families; whereas, at PBB, only 12 families were recorded. In the light of the recent reports on various changes occurring in the coastal waters of the Andaman Islands, it is suspected that the difference in Chl. a as well as the mesozooplankton standing stock and community structure observed between the two study areas may be related to the various anthropogenic events influencing the coastal waters.  相似文献   

9.
There are many factors that influence PM10 concentration in the atmosphere. This paper will look at the PM10 concentration in relation with the wet season (north east monsoon) and dry season (south west monsoon) in Seberang Perai, Malaysia from the year 2000 to 2004. It is expected that PM10 will reach the peak during south west monsoon as the weather during this season becomes dry and this study has proved that the highest PM10 concentrations in 2000 to 2004 were recorded in this monsoon. Two probability distributions using Weibull and lognormal were used to model the PM10 concentration. The best model used for prediction was selected based on performance indicators. Lognormal distribution represents the data better than Weibull distribution model for 2000, 2001, and 2002. However, for 2003 and 2004, Weibull distribution represents better than the lognormal distribution. The proposed distributions were successfully used for estimation of exceedences and predicting the return periods of the sequence year.  相似文献   

10.
The subtropical Hong Kong (HK) waters are located at the eastern side of the Pearl River Estuary. Monthly changes of water quality, including nutrients, dissolved oxygen (DO), and phytoplankton biomass (Chl-a) were routinely investigated in 2003 by the Hong Kong Environmental Protection Department in three contrasting waters of HK with different prevailing hydrodynamic processes. The western, eastern, and southern waters were mainly dominated by nutrient-replete Pearl River discharge, the nutrient-poor coastal/shelf oceanic waters, and mixtures of estuarine and coastal seawater and sewage effluent of Hong Kong, respectively. Acting in response, the water quality in these three contrasting areas showed apparently spatial–temporal variation pattern. Nutrients usually decreased along western waters to eastern waters. In the dry season, the water column was strongly mixed by monsoon winds and tidal currents, which resulted in relatively low Chl-a (<5 μg l?1) and high bottom DO (>4 mg l?1), suggesting that mixing enhanced the buffering capacity of eutrophication in HK waters. However, in the wet season, surface Chl-a was generally >10 μg l?1 in southern waters in summer due to halocline and thermohaline stratification, adequate nutrients, and light availability. Although summer hypoxia (DO <2 mg l?1) was episodically observed near sewage effluent site and in southern waters induced by vertical stratification, the eutrophication impacts in HK waters were not as severe as expected owing to P limitation and short water residence time in the wet season.  相似文献   

11.
A study pertaining to the seasonal variation in physicochemical properties of the coastal waters was carried out at Kalpakkam coast for a period of 1 year (February 2006 to January 2007). It revealed that the coastal water was significantly influenced by freshwater input during North East (NE) monsoon and post-monsoon periods. Concentration of all the nutrients and dissolved oxygen (DO) was relatively high during the NE monsoon, whereas, salinity and chlorophyll-a (chl-a) were at their minimum level during this period. Phytoplankton production peak was observed in summer during which a typical marine condition prevailed. The present observed values of nitrate, phosphate, silicate, and turbidity are significantly high (five to ten times) compared to that of the pre-Tsunami period from this coast. Relatively low DO and chl-a concentration was noticed during the post-Tsunami period. A notable feature of this study is that though nutrient concentration in the coastal waters during post-Tsunami period has increased significantly, turbidity, the most single dominating factor, was found to adversely affect the phytoplankton production during post-Tsunami period as reflected by relatively low chl-a concentration. Thus, the post-Tsunami period may result in a change in coastal biodiversity pattern concomitant with change in coastal water quality.  相似文献   

12.
Tayrona National Natural Park (TNNP) is a hotspot of coral reef biodiversity in the Colombian Caribbean, located between the city of Santa Marta (>455,000 inhabitants) and several smaller river mouths (Rio Piedras, Mendihuaca, Guachaca). The region also experiences a strong seasonal variation in physical parameters (temperature, salinity, wind, and water currents) due to alternating dry seasons with coastal upwelling and rainy seasons. However, the spatial and temporal effects on water quality parameters relevant for coral reef functioning have not been investigated. Therefore, inorganic nutrient, chlorophyll a, and particulate organic carbon (POC) concentrations along with biological O2 demand (BOD), pH, and water clarity directly above local coral reefs (~10 m water depth) were monitored for 25 months in four bays along a distance gradient (12–20 km) to Santa Marta in the southwest and to the first river mouth (17–27 km) in the east. This is by far the most comprehensive coral reefs water quality dataset for the region. Findings revealed that particularly during non-upwelling, chlorophyll a and POC concentrations along with BOD significantly increased with decreasing distance to the rivers in the east, suggesting that the observed spatial water quality decline was triggered by riverine runoff and not by the countercurrent-located Santa Marta. Nitrate, nitrite, and chlorophyll a concentrations significantly increased during upwelling, while pH and water clarity decreased. Generally, water quality in TNNP was close to oligotrophic conditions adequate for coral reef growth during non-upwelling, but exceeded critical threshold values during upwelling and in relation to riverine discharge.  相似文献   

13.
Seasonal and spatial phytoplankton distribution in relation to environmental factors was investigated in New Mangalore Port, a major port along the west coast of India. A well-mixed water column characterized the non-monsoon seasons, whereas it was weakly stratified during monsoon. Water quality index (TRIX) scores indicated good water quality except during pre-monsoon (inner zone surface) and monsoon (near bottom waters). Surface abundance of tychopelagic diatoms (Paralia sulcata, Melosira nummuloides, Cylindrotheca closterium, and Nitzschia sigma) was higher during non-monsoon seasons. Certain centric diatoms, e.g., Leptocylindrus danicus, P. sulcata, and Rhizosolenia imbricata, dominated during pre-monsoon (inner zone) and positively correlated with TRIX. High Skeletonema costatum and dinoflagellate abundance during the monsoon season coincided with high nutrient concentrations. Five potential toxic and fourteen harmful/bloom forming algal species were encountered at abundances below the level that can be considered as harmful to the ecosystem. In addition to a baseline database, this study highlights the potential use of certain diatom species as indicators of hydrography and water quality for monitoring dynamic coastal marine ecosystems.  相似文献   

14.
Though constituent concentrations and loads in rivers exhibit apparent seasonal fluctuations, they are characterized by event-driven nature of the fluctuations in respond to natural processes and seasonal anthropogenic activities. This study aimed at establishing relationship between streamflow and sulfate load in Gin River, the major water source in southern Sri Lanka and assessing seasonal sulfate levels in the streamflow following monsoon pattern and cultivation seasons. Rating curve, a load-streamflow regression model, was developed using adjusted maximum likelihood estimation. Following the assumptions of model fit, the regression model showed low correlation among explanatory variables and good empirical agreement with the measured data exhibiting its applicability to deduce sulfate loads from streamflow data, during non-sampling periods. Sulfate loads, highly dependent on streamflow, peaked annually in April–June (south-west monsoon contributing to Yala cultivation season) and October–December (north-east monsoon contributing to Maha cultivation season), following the bimodal monsoon pattern in the catchment. Median sulfate load exhibited fourfold increase from the lowest value 8,888 kg/day in August (non-cultivation season) to the highest value 38,185 kg/day in November (Maha cultivation season), despite the twofold increase of median streamflow between the two months. Flow-weighted sulfate concentrations showed varying flow dependence attributed to the seasonality. At low streamflows (above 70th percentile), sulfate concentration and streamflow were inversely related and at high streamflows (below 30th percentile), and sulfate concentration and streamflow were directly related. Elevated sulfate concentrations attributed to less soluble sulfate irons were clearly evident during the two cultivation seasons which coincided with the monsoon periods.  相似文献   

15.
In the peri-urban areas of central India, sewage water is a valuable resource for agricultural production. In this study, impact of domestic sewage water irrigation for 5 years on Vertisol with no previous history of sewage irrigation was investigated in an ongoing field experiment at Bhopal (India) under subtropical monsoon type climate. The wheat (Triticum aestivum) crop was grown during post-rainy winter season with 30 cm of irrigation (groundwater or sewage water) and four nutrient treatments (T1, 0; T2, 100%; T3, 50%; and T4, 50% of general recommended doses of NPK + FYM at 10 Mg/ha). Results showed that sewage irrigation of about 150 cm over a period of 5 years resulted significant increases in salinity as well as available fractions of N, P, K, and micronutrients, viz., Zn, Fe, and Mn in soils. Carbon and phosphorus applied through sewage water were accumulated more in subsoil layer compared to topmost plough layer. Soil microbiological activity, as indicated by soil respiration, microbial biomass C, as well as dehydrogenase enzyme activity was higher in sewage water-irrigated soils. There was also significant increase in fungal and actinomycetes as well as total coliform population in such soils. Nutrients supplied through sewage water were not able to raise the productivity of wheat to the level that obtained through fertilizers at the recommended level which indicated that additional nutrients through fertilizers are required to obtain higher productivity of wheat under sewage farming. Protein and Zn content in wheat grains were more when the crop was grown with sewage irrigation. Overall results show that except for increase in coliform population, short duration (5 years) of municipal sewage water irrigation did not have any appreciable harmful effect on soil quality as well as crop productivity; rather, it proved beneficial in improving soil fertility, wheat productivity, and produce quality.  相似文献   

16.
Revisiting the Chesapeake Bay Phytoplankton Index of Biotic Integrity   总被引:1,自引:0,他引:1  
In 2006, a phytoplankton index of biotic integrity (PIBI) was published for Chesapeake Bay Lacouture et al. (Estuaries 29(4):598–616, 2006). The PIBI was developed from data collected during the first 18 years (1985–2002) of the Chesapeake Bay Program long-term phytoplankton and water quality monitoring programs. Combinations of up to nine phytoplankton metrics were selected to characterize bay habitat health according to plankton community condition in spring and summer seasons across four salinity zones. The independent data available at the time for index validation was not sufficient to test the PIBI because they lacked critical index parameters (pheophytin and dissolved organic carbon) and reference samples for some seasons and salinity zones. An additional 8 years of monitoring data (2003–2010) are now available to validate the original index, reassess index performance and re-examine long-term trends in PIBI conditions in the Bay. The PIBI remains sensitive to changes in nutrient and light conditions. Evaluation of the PIBI results over the entire 1985–2010 time period shows no discernible trends in the overall health of Bay habitat based on phytoplankton community conditions. This lack of overall PIBI trend appears to be a combined response to declines in water clarity and improvements in dissolved inorganic nitrogen and dissolved phosphorus conditions in the bay.  相似文献   

17.
Seasonal variation of the hydrography along the southeast Arabian Sea is described using data collected onboard FORV Sagar Sampada in September–October 2003 (later phase of Southwest monsoon, SWM) and March–April 2004 (Spring inter monsoon, SIM). During the later phase of the SWM, upwelling was in the withdrawal phase and the frontal structure was clearer in the northern sections (13 and 15°N lat) indicating strong upwelling in the area. The driving force of upwelling is identified as the combination of alongshore wind stress and remote forcing with a latitudinal variability. Although a more prominent upwelling was found in the north, a maximum surface Chlorophyll-a was found in the south (10°N). During the SIM, the area was characterized by oligotrophic water with relatively high Sea Surface Temperature (>29°C) and low salinity (33.8 to 35.4). During March, the surface hydrography was found to be controlled mainly by the intrusion of low-saline waters from the south, while during September by the high saline water from the north. The presence of various water masses [Arabian Sea High Salinity Water (ASHSW), Persian Gulf Water (PGW), Red Sea Water (RSW)] and their seasonal variations in the region is discussed and their decreasing influence towards the south is noted during both periods of observation. During the SWM, the dynamic topography showed the equator-ward flow of the West India Coastal Current (WICC) at the surface and a pole-ward coastal under current at sub-thermocline depth. During the SIM, surface circulation revealed the WICC flowing pole-ward north of 13°N, but equator-ward flow in the south, with a clockwise circulation around the Lakshadweep High.  相似文献   

18.
This paper deals with the diversity and seasonal variations of macro-benthic infauna and associated environmental factors influencing the benthic community in the inshore waters of southern Indian coast. Four seasonal collections (2006–2007) were made at three different depths (5, 15 and 25 m) in the inshore waters of Pazhayar, Parangipettai and Cuddalore and at 5 m near State Industrial Promotion Council of Tamilnadu (SIPCOT), covering 10 stations in Bay of Bengal. Altogether, 80 infaunal samples (Van-veen grab 0.1 m2) were collected which revealed the occurrence of 132 species representing five diverse groups. Polychaetes were the dominant group (45%), followed by bivalves (31%) and gastropods (16%). Diversity (H’log2) was maximum (4.601) at Parangipettai 25 m during the pre-monsoon season, and the minimum (0.954) was in SIPCOT during monsoon. Multivariate analyses were used to define assemblages.  相似文献   

19.
This long-term study, performed during the years 2003–2005 and 2008–2009, investigated the carbon (C), nitrogen (N), and phosphorus (P) contents of the phyto- and zooplankton communities and the nutrient regime of Cabo Frio Bay, SE Brazil. The information intends to serve as baseline of the plankton C, N, and P stoichiometry for the calibration of biogeochemical and ecological models in support to future findings related to the local and regional phenomena of climatic change. Cabo Frio Bay is a small semienclosed system set adjacent to a region subject to sporadic coastal upwelling. Zooplankton exhibited average annual C, N, and P contents of 11.6?±?6.9 %, 2.8?±?1.8 %, and 0.18?±?0.08 %, and phytoplankton (>20 μm) 6.8?±?6.0 %, 1.6?±?1.5 %, and 0.09?±?0.08 %, respectively. The C/N/P ratios correspond to the lowest already found to date for a marine environment. The low C contents must have been brought about by a predominance of gelatinous zooplankton, like Doliolids/ Salps and also Pteropods. Average annual nutrient concentrations in the water were 0.21?±?0.1 μM for phosphate, 0.08?±?0.1 μM for nitrite, 0.74?±?1.6 μM for nitrate, and 1.27?±?1.1 μM for ammonium. N/P ratios were around 8:1 during the first study period and 12:1 during the second. The plankton C/N/P and N/P nutrient ratios and elemental concentrations suggest that the system was oligotrophic and nitrogen limited. The sporadic intrusions of upwelling waters during the first study period had no marked effect upon the systems metabolism, likely due to dilution effects and the short residence times of water of the bay.  相似文献   

20.
A floating bed system vegetated with Oenanthe javanica was adopted in this study to treat two types of low-pollution wastewater (LPW): polluted river water (PRW) and treated domestic wastewater (DW). The water was treated for 111 days during the low-temperature season. The results indicated that the total nitrogen (TN) removal rates were higher in the DW groups than in the PRW groups during the initial 30 days. This difference may stem from the different C/N ratio of the influent. As the water temperature rose above 15.5 °C after March 12, the purification capability of nitrogen in the DW groups was enhanced, and the removal rates of TN were 89.8 and 76.8 % in DW and the control 2 at 111 days. Conversely, the performance of total phosphorus (TP) removal was robust during the initial stage of the experiment, despite receiving domestic wastewater with a relatively high N/P ratio (16:1). The TP removal rates in DW were as high as 91.5 % compared to 78.9 % in PRW at 30 days. At the same time, the N/P ratios of plant tissue were higher in the DW groups compared to that in the PRW groups. Plant uptake played a significant role in nutrient removal in the PRW groups (52.5 % for TN, 68.2 % for TP), followed by sedimentation. In contrast, plant uptake only accounted for 25.3 % of TN removal and 24.1 % of TP removal in DW. The results provide engineering parameters for the future design of an ecological remediation technology for LPW purification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号