首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The present study investigated the occurrence of 29 selected micropollutants such as endocrine disrupting compounds (EDCs) and pharmaceuticals and personal care products (PPCPs) in surface waters and wastewaters in Seoul (South Korea) during both dry and wet weather conditions. The study area was selected based on the lack of available information regarding the suspected contamination of rivers/creeks by EDCs and PPCPs in the Seoul region and the presence of a wastewater treatment plant (WWTP), which serves approximately 4.1 million inhabitants and has a design capacity of 1,297?×?103 m3/day. Many target compounds (83 %) were detected in samples collected from wastewater treatment influent/effluent, creek water, and combined sewer overflow (CSO). The total EDC/PPCP concentrations were as follows: WWTP influent (69,903 ng/L)?>?WWTP effluent (50,175 ng/L) >3 creek samples (16,035–44,446 ng/L) during dry weather, and WWTP influent (53,795 ng/L)?>?WWTP bypass (38,653 ng/L) >5 creek samples (15,260–29,113 ng/L) >2 CSO samples (11,109–11,498 ng/L) during wet weather. EDCs and PPCPs were found to be present at high daily loads (65.1 and 69.8 kg/day during dry and wet weather, respectively) in the WWTP effluent. Compound removal by the WWTP varied significantly by compound: caffeine, diclofenac, ibuprofen, naproxen, and propylparaben (>90 %), and acesulfame, DEET, iohexol, iopromide, and iopamidol (<5 %). These findings and literature information support the hypothesis that the efficiency of removal of EDCs and PPCPs is strongly dependent on both removal mechanism (e.g., biodegradation, adsorption to sludge, and oxidation by chlorine) and compound physicochemical properties (e.g., pK a and hydrophobicity).  相似文献   

2.
Concern over steroid estrogens has increased rapidly in recent years due to their adverse health effects. Effluent discharge from wastewater treatment plants (WWTPs) is the main pollutant source for environmental water. To understand the pollutant level and fate of steroid estrogens in WWTPs, the occurrence of estrone (E1), 17-β-estradiol (E2), estriol (E3), and 17-β-ethinylestradiol (EE2) was investigated in the Gaobeidian WWTP in Beijing, China. Water samples from influent as well as effluent from second sedimentation tanks and advanced treatment processes were taken monthly during 2006 to 2007. In influent, steroid estrogen concentrations varied from 11.6 to 1.1?×?10(2)?ng/l, 3.7 to 1.4?×?10(2)?ng/l, no detection (nd) to 7.6×10(2)?ng/l and nd to 3.3?×?10(2)?ng/l for E1, E2, E3, and EE2, respectively. Compared with documented values, the higher steroid estrogen concentrations in the WWTP influent may be due to higher population density, higher birthrate, less dilution, and different sampling time. Results revealed that a municipal WWTP with an activated sludge system incorporating anaerobic, anoxic, and aerobic processes could eliminate natural and synthetic estrogens effectively. The mean elimination efficiencies were 83.2%, 96.4%, 98.8%, and 93.0% for E1, E2, E3, and EE2, respectively. The major removal mechanism for natural estrogens and synthetic estrogen EE2 were biodegradation and sorption on the basis of mass balance in water, suspension particles, and sludge. In the WWTP effluent, however, the highest concentrations of E1, E2, E3, and EE2 attained were 74.2, 3.9, 5.1, and 4.6?ng/l, respectively. This is concerning as residual steroid estrogens in WWTP effluent could lead to pollution of the receiving water. Advanced flocculation treatment was applied in the WWTP and transformed the residual estrogen conjugates to free species, which were reduced further by filtration with removal shifting from 32% to 57% for natural estrogen, although no EE2 was removed.  相似文献   

3.
The aim of this work is to establish baseline levels of pharmaceuticals in three wastewater treatment plant (WWTP) streams in the greater Dublin region to assess the removal efficiency of the selected WWTPs and to investigate the existence of any seasonal variability. Twenty compounds including several classes of antibiotics, acidic and basic pharmaceuticals, and prescribed medications were selected for investigation using a combination of membrane filtration, solid phase extraction (SPE) cleanup, and liquid chromatography–electrospray ionization tandem mass spectrometry. Fourteen of the selected compounds were found in the samples. Increased effluent concentrations, compared to influent concentrations, for a number of compounds (carbamazepine, clotrimazole, propranolol, nimesulide, furosemide, mefenamic acid, diclofenac, metoprolol, and gemfibrozil) were observed. The detected concentrations were generally below toxicity levels and based on current knowledge are unlikely to pose any threat to aquatic species. Mefenamic acid concentrations detected in both Leixlip and Swords effluents may potentially exert ecotoxicological effects with maximum risk quotients (i.e., ratio of predicted exposure concentration to predicted no effect concentration) of 4.04 and 1.33, respectively.  相似文献   

4.
Concentrations of six endocrine-disrupting compounds (EDCs), bisphenol A (BPA), estrone (E(1)), 17β-estradiol (E(2)), estriol (E(3)), 17α-ethynylestradiol (EE(2)) and diethylstilbestrol (DES), were assessed in influents, effluents and excess sludge in ten municipal wastewater treatment plants (WWTPs) in the Three Gorges Reservoir (TGR) area, Chongqing, China. Three types of activated sludge treatment processes, oxidation ditch (OD), reversed anaerobic-anoxic-oxic (rA(2)/O) technology and sequential batch reactor (SBR), were used in the surveyed WWTPs. These WWTPs were all combined landfill leachate-sewage treatment plants. All analytes were extracted by solid-phase extraction (SPE) in the dissolved phase and by accelerated solvent-based extraction (ASE) in sludge. Gas chromatography-mass spectrometry (GC-MS) was employed for the analysis of EDCs. Among these EDCs, BPA was the most frequently detected and abundant compound (100.0-10566.7 ng L(-1), 15.5-1210.7 ng L(-1) and 85.0-2470.4 ng g(-1) with respect to the influents, effluents and excess sludge samples). The greatest levels of steroidal estrogens in municipal influents were observed in E(3) which were all >100 ng L(-1), followed by E(1) (42.2-110.7 ng L(-1)) and E(2) (7.4-32.7 ng L(-1)), and in the effluents and sludge were E(1) > E(3) > E(2) which were all <31 ng L(-1) and 105 ng g(-1), respectively. Regarding synthetic estrogens, EE(2) was frequently detected in the influents, occurring below 50 ng L(-1), while DES was not detected at all. A high correlation coefficient was observed between the leachate-sludge ratio and concentrations of influent EDCs, and it was statistically significant (i.e., R > 0.65, P < 0.05), but removal efficiency of the EDCs did not show significant differences with OD, rA(2)/O and SBR processes. Furthermore, modification of treatment technology as well as operational parameters, such as hydraulic retention time (HRT), sludge retention time (SRT) and disinfection process (DP), were recommended to further eliminate the residual EDCs.  相似文献   

5.
In this study, 16 polycyclic aromatic hydrocarbons (PAHs) were detected in sewage sludge samples from four wastewater treatment plants (WWTPs) in Qingdao, China. These WWTPs differ in the type of treatment used and in the origin of the wastewater. The total amounts of PAHs in digested sludges ranged from 1.9645 to 6.5752 mg/kg, which did not exceed the projected European Union cut-off limits (6 mg/kg) for sludge found in farmland, except for the Haibohe WWTP. Significant differences were observed in overall PAH values between WWTPs receiving domestic effluents and those receiving industrial effluents. The total amounts of PAHs in digested sludge from the Licunhe and Haibohe WWTPs, which mainly received industrial effluents, were markedly higher than those of the Tuandao and Huangdao WWTPs, which received only domestic effluents. The distribution of PAH compounds in digested sludges were analysed. At the Tuandao, Huangdao and Licunhe WWTPs, 2-, 3-, 4-benzene rings were predominant, accounting for 100%, 99.8% and 99.0% of the sum concentration of 16 PAHs (∑PAHs), respectively. At the Haibohe WWTP, a large number of high molecular weight PAHs (5-, 6-benzene rings) were observed, accounting for 30% of the ∑PAHs. The sum of seven carcinogenic PAHs (∑PAHs-c) ranged from 0.8694 to 3.0389 mg/kg in four WWTPs. The highest value was found in the Haibohe WWTP. Moreover, the PAH concentrations in sludges from the different treatment processes in the Licunhe and Tuandao WWTPs are discussed.  相似文献   

6.
The presence of the anesthetic lidocaine (LDC), the analgesic tramadol (TRA), the antidepressant venlafaxine (VEN) and the metabolites O-desmethyltramadol (ODT) and O-desmethylvenlafaxine (ODV) was investigated in wastewater treatment plant (WWTP) effluents, in surface waters and in groundwater. The analytes were detected in all effluent samples and in only 64% of the surface water samples. The mean concentrations of the analytes in effluent samples from WWTPs with wastewater from only households and hospitals were 107 (LDC), 757 (TRA), 122 (ODT), 160 (VEN) and 637 ng L(-1) (ODV), while the mean concentrations in effluents from WWTPs treating additionally wastewater from pharmaceutical industries as indirect dischargers were for some pharmaceuticals clearly higher. WWTP effluents were identified as important sources of the analyzed pharmaceuticals and their metabolites in surface waters. The concentrations of the compounds found in surface waters ranged from 相似文献   

7.
Titanium dioxide nanoparticles increasingly will be used in commercial products and have a high likelihood of entering municipal sewage that flows to centralized wastewater treatment plants (WWTPs). Treated water (effluent) from WWTPs flows into rivers and lakes where nanoparticles may pose an ecological risk. To provide exposure data for risk assessment, titanium concentrations in raw sewage and treated effluent were determined for 10 representative WWTPs that use a range of unit processes. Raw sewage titanium concentrations ranged from 181 to 1233 μg L(-1) (median of 26 samples was 321 μg L(-1)). The WWTPs removed more than 96% of the influent titanium, and all WWTPs had effluent titanium concentrations of less than 25 μg L(-1). To characterize the morphology and presence of titanium oxide nanoparticles in the effluent, colloidal materials were isolated via rota-evaporation, dialysis and lyophilization. High resolution transmission electron microscopy and energy dispersive X-ray analysis indicated the presence of spherical titanium oxide nanoparticles (crystalline and amorphous) on the order of 4 to 30 nm in diameter in WWTP effluents. This research provides clear evidence that some nanoscale particles will pass through WWTPs and enter aquatic systems and offers a methodological framework for collecting and analyzing titanium-based nanomaterials in complex wastewater matrices.  相似文献   

8.
Disinfection by-product formation potentials (DBPFPs) in wastewater effluents from eight wastewater treatment plants (WWTPs) were investigated. In addition, a WWTP with one primary effluent and two different biological treatment processes was selected for a comparative study. Formation potential tests were carried out to determine the levels of DBP precursors in wastewater. WWTPs that achieved better organic matter removal and nitrification tended to result in lower DBPFPs in effluents. For the WWTP with two processes, haloacetic acid, trihalomethane, and chloral hydrate precursors were predominant DBP precursors in the primary and secondary effluents. The percent reductions of haloacetonitrile and haloketone formation potentials averaged at 96% which was high in comparison to the reductions of other classes of DBPFPs. In addition, biological treatment changed the DBPFP speciation profile by lowering the HAAFP/THMFP ratio. The eight plant survey and the comparative analysis of the WWTP with two processes implied that besides nitrification, there may be other confounding factors impacting DBPFPs. Oxic and anoxic conditions, formation and degradation of soluble microbial products had impacts on the DBPFP reductions. This information can be used by water and wastewater professionals to better control wastewater-derived DBPs in downstream potable water supplies.  相似文献   

9.
The removal capacity of different wastewater treatment plant (WWTP) technologies adopted in rural areas for phthalate was investigated in the Eastern Cape, South Africa. Wastewater samples collected from three selected WWTPs which use activated sludge (AS), trickling filter (TF), and oxidation pond (OP) technology were extracted using the solid-phase extraction method followed by gas chromatography-mass spectrometry (GC-MS) analysis. The six selected phthalate esters (PAEs) dimethyl phthalate (DMP), diethyl phthalate (DEP), di-n-butyl phthalate (DBP), benzyl butyl phthalate (BBP), di(2-ethyl hexyl) phthalate (DEHP), and di-n-octyl phthalate (DOP) were detected in all the samples collected from the WWTPs. DBP was the most abundant compound in the influent, effluent, and sludge samples with a maximum detection of 2497 μgL?1, 24.2 μgL?1, and 1249 μg/g dW, respectively, followed by DEHP and BBP. There was a relatively high removal capacity achieved by AS in Alice, TF in Berlin, and OP in Bedford with a removal efficiency that varied between 77 and 99%, 76 and 98%, and 61 and 98%, respectively. A high significant correlation of PAE removal with total suspended solids (TSS) and turbidity suggests that the removal performance proceeded more through adsorption on settling particles and sludge than on biodegradation. However, the concentrations of PAEs detected in the final effluent and sludge samples exceeded acceptable levels allowed internationally for a safe aquatic environment. AS may have exhibited a more stable and better performance across the different seasons; however, pollution source control still deserves a special attention to prevent the risk posed by these micropollutants.  相似文献   

10.
This study quantifies the regional distribution of the micropollutant benzothiazole (BT) in river water by sampling 15 river sites in the Schwarzbach watershed (about 400 km(2)) from November 2008 to February 2010. Additionally, wastewater samples from three municipal wastewater treatment plants (WWTPs) in Germany were analyzed. BT was detected in all wastewater influent and effluent samples as well as in all river water samples collected downstream of wastewater discharge. This corroborates the ubiquitous occurrence of BT in the aqueous environment. Concentrations were between 58 and 856 ng L(-1) in the river water. The observed mean concentration at the outlet of the investigated catchment was 109 ng L(-1). With only a few exceptions, temporal and spatial variations of BT concentrations in river water were low. Rather similar BT concentrations over a wide range of river discharge indicate that dilution along the mainstream is negligible and, thus, supports the hypothesis that paved surface runoff during rain events is an important BT source not only for wastewater influent but also for river water. This was supported by detecting the highest BT concentrations at sampling locations close to the dense highway network around the city of Frankfurt. Since BT was also detected in river water collected from locations that were clearly unaffected by wastewater effluent discharge, surface runoff must be considered as a diffuse source of BT in river water.  相似文献   

11.
Hospital effluent and connected waste water treatment plant (WWTP) influent and effluent were sampled daily to determine the levels and inter-day variations of three naturally occurring steroid estrogens: estrone, 17β-estradiol, estriol, and synthetic 17α-ethinylestradiol. After solid phase extraction, interferences were removed with a silica gel clean-up step and the samples analysed using gas chromatography with mass selective detection (GC-MSD). The determined inter-day concentrations in hospital effluent were between 8.6 to 31.3 ng L(-1) for estrone, 相似文献   

12.
Endocrine disrupting compounds (EDCs), represented by steroid hormones, organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), and bisphenol A have been determined in four sediment cores from the Gulf of Mexico, from New Orleans surface water (Lake Pontchartrain and Mississippi River), and from the influent and effluent of a New Orleans municipal sewage treatment plant. During the five-month monitoring of selected EDCs in the Mississippi River (MR) and Lake Pontchartrain (LP) in 2008, 21 of 29 OCPs in MR and 17 of 29 OCPs in LP were detected; bisphenol A was detected in all of the samples. Steroid hormones (estrone, 17β-estradiol and 17α-ethinylestradiol) were detected occasionally. Total EDC (OCPs + PCBs + steroid hormones + bisphenol A) concentrations in the two surface water samples were found to vary from 148 to 1112 ng L(-1). Strong correlation of the distribution of total OCPs, total PCBs and total EDCs between solid and water phases was found in LP, while moderate or no correlation existed in MR. OCPs, PCBs, steroid hormones, and bisphenol A were all detected in the ocean sediments, and total EDCs were measured in the range of 77 to 1796 ng g(-1) dry sediment weight. The EDCs were also found in untreated and treated municipal sewage samples with a removal efficiency of 83% for OCPs but no removal efficiency for 17α-ethinylestradiol.  相似文献   

13.
污水处理厂出水中主要离子和重点元素的浓度特征及去除效果会影响受纳水体的盐度、碱度等指标,从而影响河湖的生态服务功能,但是这方面的研究长期以来未得到充分关注。在陕西省全境选择51家城镇污水处理厂,测定进水和出水中的钾、钙、钠、镁、氟、氯和硫酸根离子,以及铁、锰、硼、钼、锶等重点元素的浓度。测定结果显示:陕西省城镇污水处理厂进水和出水中的阳离子以钠离子为主,其次是钙、镁离子,钾离子浓度最低;阴离子中,氯离子浓度最大,其次为硫酸根离子。就总离子浓度而言,陕北和关中地区污水处理厂进水的离子浓度普遍高于陕南地区。相关性分析结果显示:在污水处理厂进水中,钠、氟、氯、镁及硫酸根离子相互之间均呈现显著正相关关系;铁、锰在进水中没有表现出明显的相关关系,而在出水中呈现显著的正相关关系。污水处理厂仅能够处理污水中少量的氟、钾和镁离子。铁元素和锰元素在经过污水处理厂的处理后,浓度有所升高。此研究的研究结果可为河湖水化学组成管理决策提供参考。  相似文献   

14.
The concentrations and removal efficiencies of various kinds of micropollutants were investigated and the relationships between the input sources of industrial wastewater and occurrence patterns of each micropollutant were identified at nine on-site industrial wastewater treatment plants (WWTPs). The distribution pattern of each compound varied according to the WWTP type and several micropollutants were significantly related with specific industries: chlorinated phenols (ClPhs) with paper and metal industries, polycyclic aromatic hydrocarbons (PAHs) with petrogenic- and pyrogenic-related industries, polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) with the paper industry, and chlorinated benzenes (ClBzs) with dye-related industries. The activated sludge (AS) process was very efficient in the removal of ClPhs and PAHs, and the filtration process in the removal of PCDD/Fs and 1,4-dioxane. Generally, the removal efficiencies of each micropollutant varied according to the WWTP type.  相似文献   

15.
Six trace contaminants (acesulfame (ACE), sucralose (SUC), carbamazepine (CBZ), diatrizoic acid (DTA), 1H-benzotriazole (BTZ) and its 4-methyl analogue (4-TTri)) were traced from wastewater treatment plants (WWTPs) to receiving waters and further to riverbank filtration (RBF) wells to evaluate their prediction power as potential wastewater markers. Furthermore, the persistence of some compounds was investigated in advanced wastewater treatment by soil aquifer treatment (SAT). During wastewater treatment in four conventional activated sludge WWTPs ACE, SUC, and CBZ showed a pronounced stability expressed by stable concentration ratios in influent (in) and effluent (out) (ACE/CBZ: in45, out40; SUC/CBZ: in1.8, out1.7; and ACE/SUC: in24, out24). In a fifth WWTP, additional treatment with powdered activated carbon led to a strong elimination of CBZ, BTZ, and 4-TTri of about 80% and consequently to a distinctive shift of their ratios with unaffected compounds. Data from a seven month monitoring program at seven sampling locations at the rivers Rhine and Main in Germany revealed the best concentration correlation for ACE and CBZ (r(2) = 0.94) and also a good correlation of ACE and CBZ concentrations to BTZ and 4-TTri levels (r(2) = 0.66 to 0.82). The comparison of ratios at different sampling sites allowed for the identification of a CBZ point source. Furthermore, in Switzerland a higher consumption of SUC compared to Germany can be assumed, as a steadily increasing ACE/SUC ratio along the river Rhine was observed. In RBF wells a good correlation (r(2) = 0.85) was again observed for ACE and CBZ. Both also showed the highest stability at a prolonged residence time in the subsurface of a SAT field. In the most peripheral wells ACE and CBZ were still detected with mean values higher than 36 μg L(-1) and 1.3 μg L(-1), respectively. Although SUC concentrations in wastewater used for SAT decreased by more than 80% from about 18 μg L(-1) to 2.1 μg L(-1) and 3.5 μg L(-1) in these outlying wells, the compound was still adequate to indicate a wastewater impact in a qualitative way.  相似文献   

16.
The mass flows of selected pharmaceuticals and personal care products (PPCPs) were studied in the aqueous compartment of the river Somes in Romania. PPCPs were measured in wastewater treatment effluents and in the receiving river water. The analytical method for the determination of PPCPs in river water was based on solid phase extraction and GC-ITMS. Carbamazepine, pentoxyfylline, ibuprofen, diazepam, galaxolide, tonalide and triclosan were determined in wastewater effluents with individual concentrations ranging from 15 to 774 ng L(-1). Caffeine was measured at concentrations up to 42 560 ng L(-1). Due to the high contamination of WWTP effluents, the receiving river was also polluted. The most abundant PPCPs measured in the Somes were caffeine, galaxolide, carbamazepine and triclosan. They were present at all the 15 sampling sites along the Somes, the concentrations ranging from 10 to 400 ng L(-1). The concentrations in the effluents of the different wastewater treatment plants (WWTPs) varied considerably and the differences are due to different elimination efficiencies of the studied PPCPs during sewage treatment. Only one of 5 WWTPs studied, the WWTP in Cluj-Napoca, was working properly, and therefore technical measures have to be taken for upgrading the WWTPs and reducing the environmental load of micropollutants. This study is the first overview of PPCPs along on Romanian part of river Somes.  相似文献   

17.
Concentration levels of six natural and anthropogenic origin steroid estrogens, namely, diethylstilbestrol (DES), estrone (E1), estradiol (E2), estriol (E3), ethinylestradiol (EE2), and estradiol-17-valerate (Ev), from different effluents in Beijing were assessed. Sampling sites include two wastewater treatment plants (WWTPs), a chemical plant, a hospital, a pharmaceutical factory, a hennery, and a fish pool. In general, concentrations of estrogens in the effluents varied from no detection (nd) to 11.1 ng/l, 0.7 to 1.2 × 103 ng/l, nd to 67.4 ng/l, nd to 4.1 × 103 ng/l, nd to 1.2 × 103 ng/l, and nd to 11.2 ng/l for DES, E1, E2, EE2, E3, and Ev, respectively. The concentration levels of steroid estrogens from different effluents decreased in the order of pharmaceutical factory and WWTP inlets > hospital > hennery > chemical factory > fish pool. This study indicated that natural estrogens E1, E2, and E3 and synthetic estrogen EE2 are the dominant steroid estrogens found in the different Beijing effluents. For source identification, an indicator (hE = E3/(E1 + E2 + E3)) was used to trace human estrogen excretion. Accordingly, hE in effluents from the hospital and WWTP inlets exceeded 0.4, while much smaller values were obtained for the other effluents. Human excretions were the major contributor of natural estrogens in municipal wastewater. Estimation results demonstrated that direct discharge was the major contributor of steroid estrogen pollution in receiving waters.  相似文献   

18.
为了研究生物急性监测方法对监测典型化工污水处理厂废水的适用性,选择2家常州市典型的化工园区污水处理厂("常A"和"常B"),进行了发光细菌、藻类、大型溞和斑马鱼卵4种不同层次受试生物的急性毒性检测。研究表明,发光细菌急性毒性、藻类叶绿素荧光毒性在2个污水处理厂中均被检测到,发光细菌急性毒性通常进水大于出水,但在投放大量氧化消毒剂时,出水表现出剧毒。藻类叶绿素荧光毒性最高值出现在常B进水中。大型溞和斑马鱼卵急性毒性仅在常B进出水样中有检出,受纳河道下游水样虽未表现出急性毒性,但可观察到斑马鱼卵各类发育畸形。4种生物急性毒性检测方法中,发光细菌适用范围最广,藻类、大型溞和斑马鱼卵急性毒性方法可根据监测目的和工业园区特点相应选择。实验结论可为化工污水处理厂尾水排放过程中生物毒性监测的常态化提供方法选择,为管理部门制定排放标准提供依据。  相似文献   

19.
Bioassay using cultured human cell lines was applied to an effluent of a wastewater treatment plant (WWTP) in Sapporo to assess their toxicity, and in order to investigate the fate of toxicity in the WWTP, bioassay of the water samples from several points in WWTP (influent, effluent, return flow from thickener, from dewatering process and from incineration process) was performed. We also applied bioassay to the mixture of the activated sludge from the investigated plant and artificial sewage. These results showed that the toxicity of the effluent was more intensive than the influent, and organic matter released from activated sludge bacteria during their decay process contributed to the increase of toxicity in the effluent.  相似文献   

20.
New environmental standards for protecting aquatic organisms for zinc (e.g., 0.03 mg/L) in surface waters were set in Japan in 2003. Although wastewater effluent might be one of the major pathways of zinc to public water bodies in Japan, current status of concentration of zinc in wastewater effluent was not clear due to higher detection limits (e.g., 0.5 mg/L) than the level required by the new regulations. This study aims at assessing current status of zinc in wastewater effluent in Japan to revise wastewater effluent standards for protecting aquatic organisms. Survey of zinc in wastewater treatment plants (WWTPs) was carried out in Japan in 2005, setting the detection limits at least 0.01 mg/L. The results of the survey suggested the difficulty to remove zinc (especially dissolved zinc) with conventional activated sludge treatment if concentration of zinc in influent was relatively low. And it was suggested that high concentration of dissolved zinc might be derived from some industries discharging high concentration of zinc. The concentration of zinc in wastewater influent without industrial discharges was about 0.1 mg/L which might be lower than that in wastewater from industries discharging high concentration of zinc. Finally, effluent standards for point sources including WWTPs to public water bodies were set at 2 mg/L in 2006. Based on the results of the survey that it was difficult to remove dissolved zinc discharged from industries at WWTPs, the effluent standards from industries to sewerage were set at the same value of the effluent standards from WWTPs to public water bodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号