首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Low flow active sampling techniques collecting vapors and gases using thermally desorbable adsorbents are now feasible and desirable in many applications as they permit long integration times, the potential for miniaturized sampling configurations, and other advantages. At very low air flow rates (< 1 ml min(-1)), diffusive uptake on adsorbents in conventional sorbent tubes may equal or exceed the active (pumped) uptake rate, and even at low flow rates (1-4 ml min(-1)), diffusive uptake may significantly bias measurements. Thus, corrections to account for the diffusive flux or means to limit the diffusive uptake are needed in low flow applications. This paper presents (1) a theoretical analysis of the role of diffusive and advective uptake for several sampling geometries of tube-type samplers; (2) experimental confirmation using both laboratory and field studies; (3) estimates of the tortuosity and porosity of the glass wool packing used to retain the adsorbent, parameters needed to estimate diffusive fluxes in passive and active sampling; (4) a demonstration that orifice-equipped low flow active samplers can reduce diffusive uptake and improve precision, and (5) a model predicting the saturated adsorbent layer that helps to account for the gradual decline in uptake rates seen in passive sampling. Diffusive uptake will depend on the tube configuration and diffusion coefficient of the substance of interest, but for conventional sampling tubes (0.4-0.5 cm id, 1.5 cm air gap), sample flow rates should be maintained above 1 to 4 ml min(-1) to keep errors below 5%. Laboratory experiments showed close agreement with theoretical calculations, and the field study using 1 to 4 d sampling periods and 0.3 ml min(-1) flows demonstrated that the orifice-equipped samplers essentially eliminated diffusive uptake. No significant practical difficulties are encountered using orifices, e.g., pressure drop is minimal. Experimental estimates of tortuosity (0.79 +/- 0.02) and porosity (0.92 +/- 0.10) of the glass wool packing (0.3 cm length) represent relatively little resistance to diffusion; however, variation in the packing and adsorbent placement can degrade the precision achievable by passive samplers. Diffusion barriers, consisting most simply of an orifice, may be used to lower the diffusive uptake. A needle-type orifice permits flows below 0.1 ml min(-1) and is suitable for sampling periods as long as several weeks, and it provided greater precision than conventional open-ended sampling tubes (8% compared to 13%). Finally, the gradual decrease in diffusive fluxes often seen in passive sampling is attributed to additional resistance posed by a saturated adsorbent layer, in agreement with a simple model based on total VOCs and specific adsorptivity of the adsorbent.  相似文献   

2.
Mixing ratios of 15 carbonyls and BTEX (benzene, toluene, ethyl benzene, xylenes) were measured for the first time in ambient air of Kolkata, India at three sites from March to June 2006 and their photochemical reactivity was evaluated. Day and nighttime samples were collected on weekly basis. Formaldehyde was the most abundant carbonyl (mean concentration ranging between 14.07 microg m(-3) to 26.12 microg m(-3) over the three sites) followed by acetaldehyde (7.60-18.67 microg m(-3)) and acetone (4.43-10.34 microg m(-3)). Among the high molecular weight aldehydes, nonanal showed the highest concentration. Among the mono-aromatic VOCs, mean concentration of toluene (27.65-103.31 microg m(-3)) was maximum, closely followed by benzene (24.97-79.18 microg m(-3)). Mean formaldehyde to acetaldehyde (1.4) and acetaldehyde to propanal ratios (5.0) were typical of urban air. Based on their photochemical reactivity towards OH. radical, the concentrations of the VOCs were scaled to formaldehyde equivalent, which showed that the high molecular weight carbonyls and xylenes contribute significantly to the total OH-reactive mass of the VOCs. Due to the toxic effect of the VOCs studied, an assessment for both cancer risk and non-cancer hazard due to exposure to the population were calculated. Integrated life time cancer risk (ILTCR) due to four carcinogens (benzene, ethyl benzene, formaldehyde and acetaldehyde) and non-cancer hazard index for the VOCs at their prevailing level were estimated to be 1.42E-04 and 5.6 respectively.  相似文献   

3.
This study presents an evaluation of the extent of differences between measurements performed by O(3) and NO(2) diffusive samplers and by the reference methods for diffusive samplers commercially available. The tests were performed in an exposure chamber under extreme conditions of controlling factors and under field conditions. For NO(2), the results of the laboratory experiments showed that most of the diffusive samplers were affected by extreme exposure conditions. The agreement between the samplers and the reference method was better for the field tests than for the laboratory ones. The estimate of the uptake rate for the exposure conditions using a model equation improved the agreement between the diffusive samplers and the reference methods. The agreement between O(3) measured by the diffusive samplers and by the reference method was satisfactory for 1-week exposure. For 8-hour exposures, the diffusive samplers with high uptake rates quantified better the O(3) concentration than the samplers with low uptake rates. As for NO(2), the results of the O(3) field tests were in better agreement with the reference method than the ones of the laboratory tests. The field tests showed that the majority of diffusive samplers fulfils the 25% uncertainty requirement of the NO(2) European Directive and the 30% uncertainty requirement of the O(3) European Directive for 1-week exposure.  相似文献   

4.
The need to determine occupational exposure to bioaerosols has notably increased in the past decade, especially for microbiology-related workplaces and laboratories. Recently, two new cyclone-based personal bioaerosol samplers were developed by the National Institute for Occupational Safety and Health (NIOSH) in the USA and the Research Center for Toxicology and Hygienic Regulation of Biopreparations (RCT & HRB) in Russia to monitor bioaerosol exposure in the workplace. Here, a series of wind tunnel experiments were carried out to evaluate the physical sampling performance of these two samplers in moving air conditions, which could provide information for personal biological monitoring in a moving air environment. The experiments were conducted in a small wind tunnel facility using three wind speeds (0.5, 1.0 and 2.0 m s(-1)) and three sampling orientations (0°, 90°, and 180°) with respect to the wind direction. Monodispersed particles ranging from 0.5 to 10 μm were employed as the test aerosols. The evaluation of the physical sampling performance was focused on the aspiration efficiency and capture efficiency of the two samplers. The test results showed that the orientation-averaged aspiration efficiencies of the two samplers closely agreed with the American Conference of Governmental Industrial Hygienists (ACGIH) inhalable convention within the particle sizes used in the evaluation tests, and the effect of the wind speed on the aspiration efficiency was found negligible. The capture efficiencies of these two samplers ranged from 70% to 80%. These data offer important information on the insight into the physical sampling characteristics of the two test samplers.  相似文献   

5.
Solid-phase microextraction (SPME) was studied for the measurement of volatile organic compounds (VOCs) in indoor air. An adsorptive PDMS/Carboxen fibre was used and an analytical methodology was developed in order to overcome competitive adsorption. Kinetics and adsorption isotherms were investigated for different sample volumes and model compounds. In order to evaluate competitive adsorption on the fibre, these compounds were studied alone and in mixture. From the results obtained, the operating conditions allowing co-adsorption of the target compounds were determined: the air sample is enclosed in a 250 mL glass bulb where the SPME fibre is exposed until adsorption equilibrium. This procedure was combined with GC/MS analysis for the identification and quantification of VOCs in indoor air. The performances were determined by using a standard gas containing 10 VOCs representative of indoor environments (acetaldehyde, acetone, BTX, alpha-pinene, trichloroethylene, alkanes). The detection limits were determined in single ion monitoring mode and for a signal to noise ratio of 3. Except acetaldehyde (6 microg m(-3)), they are all below 0.5 microg m(-3). Calibration curves are linear up to 10 micromol m(-3) for all the compounds with good correlation coefficients (above 0.99). The reproducibility ranges from 6 to 12% according to the compound. The methodology was then applied to the comparison of the VOCs content in classrooms of two different schools.  相似文献   

6.
Diffusive sampling of Volatile Organic Compounds (VOCs) onto thermal desorption tubes, followed by gas chromatography, is an established technique for area or personal monitoring of typical workplace concentrations and there has been increasing interest in extending the application to environmental levels, particularly for benzene, toluene and xylene (BTX). Diffusive sampling rates for BTX on Chromosorb 106 and Carbograph-1 (a graphitised carbon) were measured over periods of 1-4 weeks in field validation experiments using ambient air and parallel pumped sampling (the reference method) at the HSL site in central Sheffield. The reference method was also used to investigate the possible bias of an open-path spectrophotometer (OPSIS) used by Sheffield City Council. A bias for BTX was suspected from results of a two-week initial exercise in which several diffusive samplers were placed close to the light path. In the full field validation of the diffusive samplers carried out subsequently, the significant bias of BTX concentrations reported by OPSIS were confirmed when compared with concurrent results from the reference method. OPSIS gave benzene and toluene values up to eight times higher than expected from the GC measurements. Xylene discrepancies were smaller, but in one 3-day peak episode, OPSIS demonstrated a negative correlation with GC.  相似文献   

7.
Continuous, intermittent and passive sampling of airborne VOCs   总被引:1,自引:0,他引:1  
Long sampling periods are often advantageous or required for measuring air quality and characterizing exposures. However, sampling periods exceeding 8 to 24 h using thermally desorbable adsorbent tube (TDT) samplers for the measurement of airborne volatile organic compounds (VOCs) face several challenges, including maintaining stable and low flow rates, and avoiding breakthrough of the adsorbent. These problems may be avoided using intermittent sampling; however, the literature contains few if any reports that have evaluated this technique in environmental, occupational or other applications. The purpose of this study is to evaluate continuous, intermittent and passive sampling methods using both laboratory and real-world tests. Laboratory tests compared continuous and intermittent (active) samplers in a controlled dynamic test gas generation system. Field tests used side-by-side active and passive samplers in an office, home workshop and four smokers' homes. All samples were analyzed for a wide range of VOCs by GC-MS. In most instances, intermittent sampling yielded better reproducibility (duplicate precision of 10 +/- 6%) than continuous low-flow sampling (18 +/- 5%), in part due to difficulty maintaining low flows. Concentrations obtained using intermittent sampling agreed with those for continuous sampling, with downward biases resulting primarily from errors in flow rate measurements. In the field, more VOC species were detected using active rather than passive sampling. Passive measurements were 12% lower than continuous measurements, a difference attributed to declining uptake rates at higher concentrations over the 3 to 4 d sampling period. Overall, most measurements obtained using the three sampling methods agreed within 20% for a wide range of concentrations (0.1 to 230 microg m(-3)). Both passive and intermittent sampling approaches are suitable for long sampling periods, but intermittent sampling provides greater flexibility with respect to sampling period, and permits the use of multi-bed adsorbents that can capture a wider range of VOCs.  相似文献   

8.
The Building Research Establishment (BRE) has been using diffusive samplers for the study of VOCs in indoor and outdoor air since 1989. The Perkin Elmer type sampler packed with Tenax TA adsorbent is used for the diffusive sampling of C6-C16 organic compounds. This method was applied in a major study of relationships between the environment and child health carried out during 1990-1993 in the Avon area of the UK. The present paper reports results of an investigation into the repeatability of the sampler in outdoor air and measurements of 6 aromatic hydrocarbons inside and outside a home over a 5 year period and inside and outside an office building over a 12 month period. Both the home and the office were located in Hertfordshire, England. Concentrations of VOCs recorded are similar to those found in the Avon area. Higher concentrations of each of the six compounds were recorded inside the home than outside, whilst greater amounts of benzene and toluene were found inside the office than outside. Seasonal variations in concentrations are observed and measurements recorded outdoors are similar to those recorded by other workers.  相似文献   

9.
A diffusive sampling method for the determination of gaseous acetic and formic acids, using a radial symmetry diffusive sampler, has been optimised for a 7-day exposure time in this study. Sampling rate determinations were performed on data obtained from a dynamic exposure chamber, simulating the indoor conditions of an empty, closed, room, at room temperature and minimal wind speed. Analysis has been performed by means of ion chromatography. The sampling rates for formic acid concentrations of 128 microg m(-3) and 1248 microg m(-3) were determined to be 91.2 +/- 3.9 ml min(-1) and 111.6 +/- 2.8 ml min(-1), respectively. The acetic acid sampling rate was independent of the concentration in the range 160 microg m(-3)-1564 microg m(-3), and amounted to 97.3 +/- 3.1 ml min(-1). Experimentally determined sampling rates showed deviations of 3% for acetic acid, and 3-21% for formic acid, in relation to theoretically derived values. The blank values were as low as 1.69 +/- 0.07 microg for formic acid and 1.21 +/- 0.14 microg for acetic acid, and detection limits lower than 0.5 microg m(-3) could be achieved, which is an improvement of 98-99% compared to previously validated diffusive sampling methods. This study describes the first step of an extended validation program in which the applicability of these types of samplers for the measurement of organic acids will be validated and optimised for the environmental conditions typical for museum showcases.  相似文献   

10.
The effect of different sampling exposure times and ambient air pollutant concentrations on the performance of Radiello? samplers for analysis of volatile organic compounds (VOCs) is evaluated. Quadruplicate samples of Radiello? passive tubes were taken for 3, 4, 7 and 14 days. Samples were taken indoors during February and March 2010 and outdoors during July 2010 in La Canonja (Tarragona, Spain). The analysis was performed by automatic thermal desorption (ATD) coupled with capillary gas chromatography (GC)/mass spectrometry detection (MS). The results show significant differences (t-test, p < 0.05) between the amounts of VOCs obtained from the sum of two short sampling periods and a single equivalent longer sampling period for 65% of all the data. 17% of the results show significantly larger amounts of pollutant in the sum of two short sampling periods. Back diffusion due to changes in concentrations together with saturation and competitive effects between the compounds during longer sampling periods could be responsible for these differences. The other 48% of the results that are different show significantly larger amounts in the single equivalent longer sampling period. The remaining 35% of the results do not show significant differences. Although significant differences are observed in the amount of several VOCs collected over two shorter sampling intervals compared to the amount collected during a single equivalent longer sampling period, the ratios obtained are very close to unity (between 0.7 and 1.2 in 75% of cases). We conclude that Radiello? passive samplers are useful tools if their limitations are taken into account and the manufacturer's recommendations are followed.  相似文献   

11.
Two types of passive sampler were developed for the long-term monitoring of semivolatile organic compounds (SOCs) in air. They consist of poly(dimethylsiloxane) (PDMS)-coated stir bars (type A) or silicone tubing (type B), acting as a solid receiving medium, enclosed in a heat-sealed low-density polyethylene (LDPE) membrane. These samplers combine the advantages of integrative passive sampling with those of analysing accumulated analytes by thermodesorption-GC-MS, whilst avoiding the use of solvents and expensive sample preparation and cleanup steps. The performance of these samplers was investigated for the integrative sampling of SOCs, including alpha- and gamma-hexachlorocyclohexanes, hexachlorobenzene, 2,4,4'-trichlorobiphenyl, 2,2',5,5'-tetrachlorobiphenyl and fluoranthene, in laboratory exposure experiments under controlled conditions. For both types of sampler, the uptake of all the analytes investigated was linear over an exposure period of 15 days. The sampling rates calculated ranged from 70 to 320 ml h(-1) (sampler A) and 630 to 4300 ml h(-1) (sampler B). The passive samplers are able to detect low time-weighted average air concentrations in the pg m(-3) range. The small, robust and inexpensive sampling devices were tested successfully for the long-term air monitoring of semivolatile organic pollutants in a polluted area over an exposure period of up to 28 days.  相似文献   

12.
Tube type samplers with two different adsorbents, Chromosorb 106 and Tenax TA, were evaluated by laboratory experiments and field tests for simultaneous diffusive sampling of alpha-pinene, beta-pinene and delta 3-carene and subsequent thermal desorption-gas chromatographic analysis. No statistically significant effects of exposure time, concentrations of monoterpenes or relative humidity were found for samplers with Chromosorb 106 when running a factorial design, with the exception of the adsorption of delta 3-carene, for which some weak effects were noted. Samplers with Tenax TA were affected by the sampling time as well as the concentration for all terpenes, with a strong interaction effect between these two factors. The terpenes showed good storage stability on both adsorbents. No effect of back-diffusion was noted when using Chromosorb 106, while Tenax TA showed some back-diffusion effects. The uptake rates, in ml min-1, for the terpenes on Chromosorb 106 were 0.36 for alpha-pinene, 0.36 for beta-pinene and 0.40 for delta 3-carene. The corresponding average values on Tenax TA were 0.30 for alpha-pinene, 0.32 for beta-pinene and 0.38 for delta 3-carene. The field validation proved that diffusive sampling on Chromosorb 106 agreed well with pumped sampling on charcoal for stationary samples, while the personal samples indicated a discrepancy of 25% between Chromosorb 106 and charcoal samples. Tenax TA generally gave lower results than Chromosorb 106 in all field samples. Samplers packed with Chromosorb 106 could be used to monitor terpene levels in workplaces such as sawmills. The major advantages with this method are the sampling procedure, which is simple to perform compared to other techniques, the easily automated analysis procedure and the possibility to reuse the samplers.  相似文献   

13.
Inhalable sampler efficiency depends on the aerodynamic size of the airborne particles to be sampled and the wind speed. The aim of this study was to compare the behaviour of three personal inhalable samplers for welding fumes generated by Manual Metal Arc (MMA) and Metal Active Gas (MAG) processes. The selected samplers were the ones available in Spain when the study began: IOM, PGP-GSP 3.5 (GSP) and Button. Sampling was carried out in a welding training center that provided a homogeneous workplace environment. The static sampling assembly used allowed the placement of 12 samplers and 2 cascade impactors simultaneously. 183 samples were collected throughout 2009 and 2010. The range of welding fumes' mass concentrations was from 2 mg m(-3) to 5 mg m(-3). The pooled variation coefficients for the three inhalable samplers were less than or equal to 3.0%. Welding particle size distribution was characterized by a bimodal log-normal distribution, with MMADs of 0.7 μm and 8.2 μm. For these welding aerosols, the Button and the GSP samplers showed a similar performance (P = 0.598). The mean mass concentration ratio was 1.00 ± 0.01. The IOM sampler showed a different performance (P < 0.001). The mean mass concentration ratios were 0.90 ± 0.01 for Button/IOM and 0.92 ± 0.02 for GSP/IOM. This information is useful to consider the measurements accomplished by the IOM, GSP or Button samplers together, in order to assess the exposure at workplaces over time or to study exposure levels in a specific industrial activity, as welding operations.  相似文献   

14.
于2016年对宜兴市大气挥发性有机物(VOCs)和臭氧(O_3)的变化特征进行了分析。结果表明,宜兴市O3年均值为62.92μg/m~3,其中冬季值最低(31.19μg/m~3),夏季值最高(94.96μg/m~3)。φ(VOCs)为(11.00~42.45)×10~(-9),其中丙酮(12.7%)、乙酸乙酯(8.8%)和丙烯(3.3%)等在VOCs中占比位于前3位。各站点φ(甲苯)/φ(苯)2,全年的φ(甲苯)/φ(苯)φ(乙苯)/φ(苯)φ(间、对二甲苯)/φ(苯)。指出VOCs主要来源为有机溶剂和道路交通,并受到一定的外来输送影响。各站点φ(VOCs)/φ(NOx)为0.94~2.44,O3处于VOCs敏感区。  相似文献   

15.
Monitoring of the workplace concentration of 3-methoxybutyl acetate (MBA), which is used in printer's ink and thinner for screen-printing and as an organic solvent to dissolve various resins, is important for health reasons. An active and a diffusive sampling method, using a gas chromatograph equipped with a flame ionization detector, were developed for the determination of MBA in workplace air. For the active sampling method using an activated charcoal tube, the overall desorption efficiency was 101%, the overall recovery was 104%, and the recovery after 8 days of storage in a refrigerator was more than 90%. For the diffusive sampling method using the 3M 3500 organic vapor monitor, the MBA sampling rate was 19.89 cm(3) min(-1). The linear range was from 0.01 to 96.00 microg ml(-1), with a correlation coefficient of 0.999, and the detection limits of the active and diffusive samplers were 0.04 and 0.07 microg sample(-1), respectively. The geometric mean of stationary sampling and personal sampling in a screen-printing factory were 12.61 and 16.52 ppm, respectively, indicating that both methods can be used to measure MBA in workplace air.  相似文献   

16.
The development of convenient and competitive devices and methods for monitoring of organic pollutants in the aquatic environment is of increasing interest. An integrative passive sampling system has been developed which consists of a solid poly(dimethylsiloxane) (PDMS) material (tube or rod), acting as hydrophobic organic receiving phase, enclosed in a water-filled or an air-filled low-density polyethylene (LDPE) membrane tubing. These samplers enable the direct analysis of the pollutants accumulated during exposure in the receiving phase by thermodesorption-GC/MS, avoiding expensive sample preparation and cleanups. The capabilities of these sampling devices were studied for the sampling of 20 persistent organic pollutants (chlorobenzenes, hexachlorocyclohexanes, p,p'-DDE, PAHs, and PCBs) in laboratory exposure experiments. For the three sampler designs investigated the uptake of all target analytes was integrative over exposure periods up to 9 days (except PCB 101). The determined sampling rates range from 4 to 1340 microl h(-1) for the water-filled samplers and from 20 to 6360 microl h(-1) for the air-filled ones, respectively. The sampling rate of the analytes is dependent on their molecular weight, partition between water and sampler media (PDMS, polyethylene, water, air) and also of the sampler design. The passive samplers enable the estimation of time-weighted average (TWA) concentration of water pollutants in the lower ng l(-1) to pg l(-1) range.  相似文献   

17.
Dissipation of fentrazamide in soil and water under flooded (anaerobic) conditions was studied. Fentrazamide was applied to soil at 100 g ha(-1). Soil was extracted with 0.1 N HCl?:?acetone (1?:?1 v/v) followed by partition and cleanup with silica SPE. Separation was achieved in an ODS-II column with a mobile phase of acetonitrile?:?water (70?:?30 v/v) and detection at 214 nm. Recovery of fentrazamide varied from 75.2-90.4% and 89.9-97.8% in soil and water, respectively. Fentrazamide dissipated rapidly and fentrazamide residues were not detected after 100 and 35 days of application in soil and water, respectively. Half life in soil and water was 9.06 and 3.66 days, respectively. Dissipation followed monophasic first order kinetics pattern. No fentrazamide was detected in soil, rice grain and rice straw at harvest of crop. Calibration curves for quantification were linear and relative standard deviation (RSD) was 1.78%. LOD for instrument was 0.002 μg mL(-1) and LOQ for methods were 0.005 μg g(-1) for soil and water.  相似文献   

18.
Passive sampling devices accumulate chemicals continuously from water and can provide time weighted average (TWA) concentrations of pollutants over the exposure period. Hence, they offer a number of advantages over other conventional monitoring techniques such as spot or grab sampling. The diffusive gradient in thin film (DGT) and the Chemcatcher passive samplers can be used to provide TWA concentrations of labile metals, but the approaches to their calibration differ. DGT uses diffusion coefficients of metals in the hydrogel layer, whereas Chemcatcher uses metal specific uptake rates, with both sets of values obtained under controlled laboratory conditions with constant aqueous metal concentrations. However, little is known of how such samplers respond to fluctuating concentrations. We evaluated the responsiveness of these two passive sampling devices to rapidly changing concentrations of Cd, Cu, Ni, Pb and Zn in natural freshwater, over a relatively short deployment time. Maximum metal concentrations in water were varied between 70 and 140 microg L(-1). Experiments were carried out in a tank with a rotating carousel system and filled with Meuse river water, allowing a degree of control over experimental conditions while using natural river water. Fluctuating concentrations were obtained by stepwise addition of standard solutions of the metals. The reliability and accuracy of the TWA concentrations measured by the samplers were assessed by comparison with concentrations of the metals in spot samples of water taken regularly over the deployment period. The spot samples of water were either unfiltered (total), filtered (0.45 microm) or ultrafiltered (5 kDa). Predictive speciation modelling using the visual MINTEQ programme was also undertaken. There was reasonable agreement between the TWA concentrations of Cd and Ni obtained with Chemcatcher and DGT and the total Cd and Ni concentrations measured in repeated unfiltered spot samples. For elements (i.e. Cu, Pb, Zn) that associate to a significant degree with suspended solids, colloids or dissolved organic carbon, or form complexes with large organic ligands, optimum agreement was with the filtered or ultrafiltered fractions and with the predicted inorganic and inorganic-fulvic acid associated fractions. While Chemcatcher-based TWA concentration ranges for Cu and Zn were in best agreement with the total filtered fraction, there was lack of agreement for Pb. The combined use of DGT devices with open pore (OP) and restricted pore (RP) gels allowed the labile fraction of metal associated with large organic ligands or DOC to be differentiated and quantified, since this is available to DGT OP but unable to diffuse into the DGT RP. This evaluation of the two sampling devices clearly demonstrated their ability to react reliably to transient peaks in concentration of metal pollutants in water and indicated where future efforts are needed to improve calibration data. Such samplers may prove valuable in responding to the monitoring requirements of the European Union's Water Framework Directive.  相似文献   

19.
Diffusive sampling of a mixture of 42 volatile organic compounds (VOCs) in humidified, purified air onto the solid adsorbent Carbopack X was evaluated under controlled laboratory conditions. The evaluation included variations in sample air temperature, relative humidity and ozone concentration. Linearity of samples with loading was examined both for a constant concentration with time varied up to 24 h and for different concentrations over 24 h. Reverse diffusion and its increase with accumulation of sample were determined for all compounds. Tubes were examined for blank levels, change of blanks with storage time, and variability of blanks. Method detection limits were determined based on seven replicate samples. Based on this evaluation, 27 VOCs were selected for quantitative monitoring in the concentration range from approximately 0.1 to 4 ppbv. Comparison results of active and diffusive samples taken over 24 h and under the same simulated ambient conditions at a constant 2 ppbv were interpreted to estimate the effective diffusive sampling rates (ml min(-1)) and their uncertainties and to calculate the corresponding diffusive uptake rates (ng ppmv(-1) min(-1)).  相似文献   

20.
2020年4—9月通过离线采样研究了盐城市城区大气中的挥发性有机物(VOCs)浓度水平及组成特征、臭氧生成潜势、二次有机气溶胶生成潜势以及毒性效应等多效应评估和来源贡献。结果表明:盐城市城区VOCs平均体积浓度为35.09×10-9,盐塘湖公园站点浓度最高;盐城市VOCs主要组分为含氧有机物(OVOCs)和烷烃。通过挥发性有机物多效应评估发现,关键物种为乙醛、对二乙苯、丙酮、甲苯和间/对二甲苯等。采样期间对VOCs浓度的主要贡献来源为二次生成、工业排放和交通排放。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号