首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ecological mapping attempts to objectively and spatially delimit and represent the natural organization and structure of the landscape. It offers nested levels of resolution, based upon a regionalization process, and provides an ecological basis for planning activities that may impact upon the environment.The essential principles of ecological mapping, as applied by the Quebec Ministry of Environment and Wildlife, are summarized. A methodological mapping approach is proposed for the determination of significant land portions for forest management using an ecological map at a scale of 1:50 000. At this scale, two nested levels of perception are expressed: 1) the topographic complex, and 2) the topographic entity. The topographic entity can be further subdivided into working units based upon operational criteria oriented to forest management. Within each nested level from topographic complex to working unit, there is a corresponding increase in the amount of detailed information available. Ecological mapping undertaken at 1:50 000 scale can provide a reliable and robust tool for planning forest management activities. In most cases, major ecological variations can be expressed and mapped at this scale; however, a greater degree of generalization must be accepted in the planning process when working at this scale rather than at larger scales.  相似文献   

2.
Ecological monitoring and its associated research programshave often provided answers to various environmental management issues. In the face of changing environmental conditions, ecological monitoring provides decision-makers with reliable information as they grapple with maintaining a sustainable economy and healthy environment. The EcologicalMonitoring and Assessment Network (EMAN) is a national ecological monitoring network consisting of (1) about 100 casestudy sites across the country characterized by long-term multi-disciplinary environmental work conducted by a multitudeof agencies (142 partners and counting); (2) a variety of lesscomprehensive yet more extensive monitoring sites; (3) a network where core monitoring variables of ecosystem change aremeasured; and (4) geo-referenced environmental observations. Environment Canada is the co-ordinating partner for the network through the EMAN Co-ordinating Office. EMAN's mission is to focus a scientifically-sound, policy-relevant ecosystem monitoring and research network based on (a) stabilizing a network of case-study sites operated by a varietyof partners, and (b) developing a number of cooperative dispersedmonitoring initiatives in order to deliver unique and needed goods and services. These goods and services include: (1) an efficient and cost-effective early warning system which detects,describes and reports on changes in Canadian ecosystems at a national or ecozone scale; and (2) cross-disciplinary and cross-jurisdictional assessments of ecosystem status, trends and processes. The early warning system and assessments of ecosystem status, trends and processes provide Environment Canada and partner organizations with timely information thatfacilitates increasingly adaptive policies and priority setting. Canadians are also informed of changes and trends occurring in Canadian ecosystems and, as a result, are betterable to make decisions related to conservation and sustainability.  相似文献   

3.
Canada responded to the Global Biodiversity Convention by completing the Canadian Biodiversity Strategy in 1995. At the same time, Environment Canada also completed a national Science Assessment on Biodiversity. During this period, the Smithsonian Institution, in partnership with Parks and Environment Canada, initiated the implementation of a global biodiversity monitoring program in Canada. Under the auspices of the United Nations Man and the Biosphere Program, the SI/MAB monitoring protocols and plots have spread across Canada at an unprecedented rate. National champions in the science and educational sectors, working within an inter-disciplinary ecological framework, have guided the development, education, quality control and sharing of atmosphere-biodiversity observations electronically.Atmospheric-Biodiversity Networks and Networking have traditionally operated within separate mandates with little degree of integration. Air-Bio Networks were designed within an integrated framework to better understand the atmospheric stress on biodiversity and the adaptation actions, nationally and regionally. Detailed examples of the cumulative effects of climate change, stratospheric ozone depletion, acid deposition, ground-level ozone, suspended particulate matter and hazardous air pollutants on biodiversity will be discussed using a Southern Ontario case study. In addition, recommendations will be presented for future paired SI/MAB plots, linked networks and networking for adaptation within the context of climate, chemical and ecological gradients.  相似文献   

4.
Selected data on site, vegetation cover, and soil, including soil moisture regime (SMR), were collected from 2 167 field plots in northwestern Ontario, Canada. SMR provides an estimate of an averaged, annualized soil moisture supply throughout a complete vegetation cycle. SMR is based upon a relative scale that subjectively ranks sites from , 0, and 1 through 9 along a soil moisture continuum which relates to a dry to wet gradient. SMR may be generally correlated to tree growth, stand composition, degree of competition, nutrient availability and overall site quality.This paper reports on relationships between SMR and major tree species. Results highlight relationships between SMR class and the broad ecological ranges of several tree species. In northwestern Ontario, the determination of SMR can help resource managers to better understand the ecology of boreal sites.  相似文献   

5.
Several case histories illustrate national park air issues and responses in Canada. These examples include: acidification studies and establishment of a multiparticipant monitoring programme at Kejimkujik; studies of smoke at campgrounds in Jasper, La Mauricie and Forillon, its effect on health, and the management of visitors and firewood supply to mitigate these risks; and estimates of emissions from through-traffic in Yoho. From these cases and from reviews of the secondary literature, we can identify air issues that affect the maintenance of ecological integrity in national parks. These issues are: forest fires and smoke management; defining goals for ecosystem restoration; representation of natural regional conditions; visitor health and amenity; acidification; pesticides; eutrophication from airborne nitrates; permafrost melting; and UV-B. In June 1995, an International Air Issues Workshop brought together representatives from Canadian and U.S. national parks and other selected agencies. They ranked the air issues affecting national parks, producing quite an eclectic list. From the most to least serious issue, they are: acidification, toxics, visibility impairment, UV-B, smoke management, oil and gas development, fugitive dust, global warming, overflights, light pollution, noise and odour. Note that atmospheric change is only one among a group of stresses affecting national parks. Of 28 stresses recognized as significant for national parks in 1992, acid precipitation ranked 8th and climate change 23rd. Petrochemicals, 17th, pesticides, 18th and heavy metals, 21st, may be partly airborne. The 1995 workshop made several recommendations applicable to Parks Canada, from which those related to research and monitoring needs have been extracted. The air monitoring needed most by national parks is of suspended particulate and visibility. This is in response to human health and amenity concerns and international treaty obligations. The long-term protection of natural sites in national parks provides opportunities for other agencies to monitor ambient air quality and ecosystem responses, for example through the installation of under-canopy monitoring towers. The air research most needed in national parks is the modelling of natural landscapes and vegetation complexes in response to climate change. This follows from the primary purpose of each national park, to maintain the ecological integrity of an area selected to represent a natural region. The principal air research opportunities for other agencies in national parks are probably intensive instrumentation and sampling over several years to examine the air-vegetation-soil transfers of nutrients, pollutants and radiation.  相似文献   

6.
7.
This paper reports on a process for selecting a suite of indicators that, in combination, can be useful in assessing the ecological conditions of rangelands. Conceptual models that depict the structural and functional properties of ecological processes were used to show the linkages between ecological components and their importance in assessing the status and trends of ecological resources on a regional scale. Selection criteria were developed so that relationships could be assessed at different spatial scales using ground and aerial measurements. Parameters including responsiveness and sensitivity to change, quality assurance and control, temporal and spatial variability, cost-effectiveness and statistical design played an important role in determining how indicators were selected. A total of ten indicator categories were selected by a committee of scientists for evaluation in the program. A subset that included soil properties, vegetation composition and abundance, and spectral properties was selected for evaluation in a pilot test conducted in 1992 in the Colorado Plateau region of the southwestern United States. This work is part of a major effort being undertaken by the U.S. Environmental Protection Agency and its collaborators to assess the condition of rangelands (primarily comprised of arid, semi-arid and dry subhumid ecosystems) along with seven other ecosystem groups (forests, agricultural lands, wetlands, surface waters, landscapes, estuaries and Great Lakes) as part of a national Environmental Monitoring and Assessment Program (EMAP). The indicator selection process reported upon was developed to support EMAP's goal of providing long-term, policy-relevant research focusing on evaluating the ecological condition (or health) of regional and national resources.  相似文献   

8.
Large wildland fires are major disturbances that strongly influence the carbon cycling and vegetation dynamics of Canadian boreal ecosystems. Although large wildland fires have recently received much scrutiny in scientific study, it is still a challenge for researchers to predict large fire frequency and burned area. Here, we use monthly climate and elevation data to quantify the frequency of large fires using a Poisson model, and we calculate the probability of burned area exceeding a certain size using a compound Poisson process. We find that the Poisson model simulates large fire occurrence well during the fire season (May through August) using monthly climate, and the threshold probability calculated by the compound Poisson model agrees well with historical records. Threshold probabilities are significantly different among different Canadian ecozones, with the Boreal Shield ecozone always showing the highest probability. The fire prediction model described in this study and the derived information will facilitate future quantification of fire risks and help improve fire management in the region.  相似文献   

9.
Atmospheric Change and Biodiversity in the Arctic   总被引:2,自引:0,他引:2  
The Canadian Arctic is characterized by a high variation in landform types and there are complex interactions between land, water and the atmosphere which dramatically affect the distribution of biota. Biodiversity depends upon the intensity, predictability and scale of these interactions. Observations, as well as predictions of large-scale climate models which include ocean circulation, reveal an anomalous cooling of northeastern Canada in recent decades, in contrast to the overall significant increase in average annual temperature in the Northern Hemisphere. Predictions from models are necessary to forecast the change in the treeline in the 21st century which may lead to a major loss of tundra. The rate of change in vegetation in response to climate change is poorly understood. The treeline in central Canada, for example, is showing infilling with trees, and in some locations, northerly movement of the boundary. The presence of sea ice in Hudson Bay and other coastal areas is a major factor affecting interactions between the marine and terrestrial ecosystems. Loss of ice and therefore hunting of seals by polar bears will reduce bear and arctic fox populations within the region. In turn, this is likely to have significant effects on their herbivorous prey populations and forage plants. Further, the undersurface of sea ice is a major site for the growth of algae and marine invertebrates which in turn act as food for the marine food web. A rise in sea-level may flood coastal saltmarsh communities leading to changes in plant assemblages and a decline in foraging by geese and other consumers. The anomalous cooling in the eastern Arctic, primarily in late winter and early spring, has interrupted northern migration of breeding populations of geese and ducks and led to increased damage to vegetation in southern arctic saltmarshes as a result of foraging. It is likely that there has been a significant loss of invertebrates in those areas where the vegetation has been destroyed. Warming will have major effects on permafrost distribution and on ground-ice resulting in a major destabilization of slopes and slumping of soil, and disruption of tundra plant communities. Disruption of peat and moss surfaces lead to loss of insulation, an increase in active-layer depth and changes in drainage and plant assemblages. Increases of UV-B radiation will strongly affect vulnerable populations of both plants and animals. The indigenous peoples will face major changes in life style, edibility of food and health standards, if there is a significant warming trend. The great need is for information which is sensitive to the changes and will assist in developing an understanding of the complex interactions of the arctic biota, human populations and the physical environment.  相似文献   

10.
In this research, the improved Terrestrial Ecosystem Regional (TECO-R) model was adapted to steppe ecosystems and then utilized to simulate the soil organic carbon pool in the period from 1989 to 2011 (excluding 1994, 2002, 2009, and 2010) for a typical steppe in Xilingol League of Inner Mongolia in China. The improved TECO-R model is an ecological model in combination of remote sensing data, which allows the spatial scale for the analysis of soil organic carbon which is not limited to vegetation or soil type. The spatial and temporal resolution advantages of remote sensing image can be well utilized in this model. The results indicate that in addition to an accurate simulation of the soil carbon pool of a steppe ecosystem, the vegetation aboveground carbon pool, grazing intensity of herbivores, mowing coefficient, litter carbon pool, root carbon pools of different vegetation layers, root-shoot ratio, actual residence time of different carbon pools, and allocation coefficients of different carbon pools in corresponding years are also available from the TECO-R model. Some of the above data are difficult to obtain through macro-observation but can be simulated with the TECO-R model by combining the model with input data; this is very important for a correct understanding of the feedback relationships between the steppe ecosystem’s carbon cycle and climate change (e.g., global warming) and human activities such as grazing.  相似文献   

11.
Ecosystem classifications map an area into relatively homogenous units for environmental research, monitoring, and management. However, their effectiveness is rarely tested. Here, three classifications are (1) defined and characterized for Canada along summertime productivity (moderate-resolution imaging spectrometer fraction of absorbed photosynthetically active radiation) and wintertime snow conditions (special sensor microwave/imager snow water equivalent), independently and in combination, and (2) comparatively evaluated to determine the ability of each classification to represent the spatial and environmental patterns of alternative schemes, including the Canadian ecozone framework. All classifications depicted similar patterns across Canada, but detailed class distributions differed. Class spatial characteristics varied with environmental conditions within classifications, but were comparable between classifications. There was moderate correspondence between classifications. The strongest association was between productivity classes and ecozones. The classification along both productivity and snow balanced these two sets of variables, yielding intermediate levels of association in all pairwise comparisons. Despite relatively low spatial agreement between classifications, they successfully captured patterns of the environmental conditions underlying alternate schemes (e.g., snow classes explained variation in productivity and vice versa). The performance of ecosystem classifications and the relevance of their input variables depend on the environmental patterns and processes used for applications and evaluation. Productivity or snow regimes, as constructed here, may be desirable when summarizing patterns controlled by summer- or wintertime conditions, respectively, or of climate change responses. General purpose ecosystem classifications should include both sets of drivers. Classifications should be carefully, quantitatively, and comparatively evaluated relative to a particular application prior to their implementation as monitoring and assessment frameworks.  相似文献   

12.
通过统计分析及空间插值等方法,使用气象和遥感数据,分析2001—2021年黑龙江省林区主要植被生长季的气候条件及植被生态质量变化特征。结果表明:2001—2021年黑龙江省林区生长季降水量、平均气温和日照时数分别呈增加、增加和减少趋势。在水分、热量整体逐步增加的背景下,气候条件有利于改善植被生态质量。2021年生长季大部分林区植被生态质量为优和良等级;与多年平均比较,85%以上的林区呈偏好趋势,尤其是中部、东南部部分林区呈很好趋势。植被生态质量指数平均每10 a增大43,99%以上的林区呈提高趋势,特别是北部、东南部及中部部分林区改善明显。  相似文献   

13.
若尔盖湿地是黄河上游重要的水源涵养地,在涵养水源、调节径流和维持生物多样性等方面具有重要作用,是流域乃至国家生态安全的关键地区.近年来,由于全球气候变化和人类不合理的开发活动导致若尔盖湿地生态退化加剧,威胁区域和流域生态安全.在若尔盖湿地生态退化趋势与生态安全理论框架研究的基础上,对若尔盖湿地生态安全监测的主要内容进行...  相似文献   

14.
Both the net primary productivity (NPP) and the normalized difference vegetation index (NDVI) are commonly used as indicators to characterize vegetation vigor, and NDVI has been used as a surrogate estimator of NPP in some cases. To evaluate the reliability of such surrogation, here we examined the quantitative difference between NPP and NDVI in their outcomes of vegetation vigor assessment at a landscape scale. Using Landsat ETM+ data and a process model, the Boreal Ecosystem Productivity Simulator, NPP distribution was mapped at a resolution of 90 m, and total NDVI during the growing season was calculated in Heihe River Basin, Northwest China in 2002. The results from a comparison between the NPP and NDVI classification maps show that there existed a substantial difference in terms of both area and spatial distribution between the assessment outcomes of these two indicators, despite that they are strongly correlated. The degree of difference can be influenced by assessment schemes, as well as the type of vegetation and ecozone. Overall, NDVI is not a good surrogate of NPP as the indicators of vegetation vigor assessment in the study area. Nonetheless, NDVI could serve as a fairish surrogate indicator under the condition that the target region has low vegetation cover and the assessment has relatively coarse classification schemes (i.e., the class number is small). It is suggested that the use of NPP and NDVI should be carefully selected in landscape assessment. Their differences need to be further evaluated across geographic areas and biomes.  相似文献   

15.
The objective of this study was to test the hypothesis that environmental regulators of riparian zone soil denitrification potential differ according to spatial scale within a watershed; consequently, a second objective was to provide spatial strategies for conserving and restoring the purification function of runoff in riparian ecosystems. The results show that soil denitrification in riparian zones was more heterogeneous at the profile scale than at the cross-section and landscape scales. At the profile scale, biogeochemical factors (including soil total organic carbon, total nitrogen, and nitrate–nitrogen) were the major direct regulators of the spatial distribution of soil denitrification enzyme activity (DEA). At the cross-section scale, factors included distance from river bank and vegetation density, while landscape-scale factors, including topographic index, elevation, and land use types, indirectly regulated the spatial distribution of DEA. At the profile scale, soil DEA was greatest in the upper soil layers. At the cross-section scale, maximum soil DEA occurred in the mid-part of the riparian zone. At the landscape scale, soil DEA showed an increasing trend towards downstream sites, except for those in urbanized areas.  相似文献   

16.
Five local ecological types based on vegetative communities and two landscape types based on groups of communities, were identified by integrating landform, soil, and vegetation components using multivariate techniques. Elevation and several topographic and soil variables were highly correlated with types of both scales. Landscape ecological types based only on landform and soil variables without vegetation did not correspond with types developed using vegetation. Models developed from these relationships could allow classification and mapping of extensive areas using geographic information systems.  相似文献   

17.
Fire risk evaluation using multicriteria analysis—a case study   总被引:2,自引:0,他引:2  
Forest fires are one of the major causes of ecological disturbance and environmental concerns in tropical deciduous forests of south India. In this study, we use fuzzy set theory integrated with decision-making algorithm in a Geographic Information Systems (GIS) framework to map forest fire risk. Fuzzy set theory implements classes or groupings of data with boundaries that are not sharply defined (i.e., fuzzy) and consists of a rule base, membership functions, and an inference procedure. We used satellite remote sensing datasets in conjunction with topographic, vegetation, climate, and socioeconomic datasets to infer the causative factors of fires. Spatial-level data on these biophysical and socioeconomic parameters have been aggregated at the district level and have been organized in a GIS framework. A participatory multicriteria decision-making approach involving Analytical Hierarchy Process has been designed to arrive at a decision matrix that identified the important causative factors of fires. These expert judgments were then integrated using spatial fuzzy decision-making algorithm to map the forest fire risk. Results from this study were quite useful in identifying potential “hotspots” of fire risk, where forest fire protection measures can be taken in advance. Further, this study also demonstrates the potential of multicriteria analysis integrated with GIS as an effective tool in assessing “where and when” forest fires will most likely occur.  相似文献   

18.
Reforestation with black locust (Robinia pseudoacacia) is considered a successful technique that is often used for the reclamation of open-cast mine areas. An alternative reclamation technique could be the natural regeneration of vegetation with spontaneous grass species. In this study, we compared the concentrations of chemical and biochemical variables in soil samples taken under black locust canopy to those from sites covered by spontaneous grass vegetation (control samples) in a time sequence of spoil deposition (0–10 years), in order to assess which of the two reclamation techniques yields higher soil quality. Soil quality refers here to the ability of soils to function ecologically. This has a special interest since the main question for the restored soils is their capacity to perform a range of ecological functions under stress or disturbance. Furthermore, we aimed at identifying the effect of vegetation type on soil ecological succession. The effect of vegetation type on primary succession becomes apparent after 2 years of reclamation. R. pseudoacacia as a nitrogen-fixing plant enriched soil with organic and inorganic nitrogen and organic matter to a greater extent than the natural grasses. It also increased the amount of soil microbial biomass and the activity of alkaline phosphatase. However, the fact that black locust failed to enhance dehydrogenase activity and actually decreased the activity of urease, activities that represent specialized niche functions and therefore, are more vulnerable to stress or disturbance, suggests that the development of an indigenous grass community in combination with organic supplements might often be more appropriate for the reclamation of similar kinds of mine areas.  相似文献   

19.
A multi-level pesticide assessment methodology has been developed to permit regulatory personnel to undertake a variety of assessments on the potential for pesticide used in agricultural areas to contaminate the groundwater regime at an increasingly detailed geographical scale of investigation. A multi-level approach accounts for a variety of assessment objectives and detail required in the assessment, the restrictions on the availability and accuracy of data, the time available to undertake the assessment, and the expertise of the decision maker. The level 1: regional scale is designed to prioritize districts having a potentially high risk for groundwater contamination from the application of a specific pesticide for a particular crop. The level 2: local scale is used to identify critical areas for groundwater contamination, at a soil polygon scale, within a district. A level 3: soil profile scale allows the user to evaluate specific factors influencing pesticide leaching and persistence, and to determine the extent and timing of leaching, through the simulation of the migration of a pesticide within a soil profile. Because of the scale of investigation, limited amount of data required, and qualitative nature of the assessment results, the level 1 and level 2 assessment are designed primarily for quick and broad guidance related to management practices. A level 3 assessment is more complex, requires considerably more data and expertise on the part of the user, and hence is designed to verify the potential for contamination identified during the level 1 or 2 assessment. The system combines environmental modelling, geographical information systems, extensive databases, data management systems, expert systems, and pesticide assessment models, to form an environmental information system for assessing the potential for pesticides to contaminate groundwater.  相似文献   

20.
Visitor’s access to understorey vegetation in park forest stands results in the impoverishment of plant species composition and a reduction in habitat quality. The phenomenon of biotic homogenisation is typical in urban landscapes, but it can proceed differently depending on the scale, a detail that has not been observed in previous studies. This research was carried out in seven Warsaw parks (both public and restricted access). Thirty-four forested areas were randomly selected, some subjected to strong visitors’ pressure and some within restricted access areas, free of such impacts. The latter category included woodlands growing in old forest and secondary habitats. Public access to the study areas contributed to the disappearance of some forest species and their replacement by cosmopolitan non-forest species, leading to loss of floristic biodiversity in areas of high ecological importance at the city scale. Some human-induced factors, including soil compaction and changes in soil pH, moisture and capillary volume, were found to cause habitat changes that favoured native non-forest plants. Despite changes in species composition, the taxonomic similarity of understorey vegetation in both categories—public access and restricted access—was comparable. In a distance gradient of measurements taken around selected individual trees, there was found to be significant variation (in light, soil pH and compaction) affecting the quality and quantity of understorey vegetation (including rare species). In conclusion, the protection of rare forest species could be achieved by limiting access to forested areas, particularly in old forest fragments, and we highly recommend its consideration in the proposal of future park restoration plans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号