首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The Xiangjiang River (XR), the second largest tributary of the Yangtze River, is mainly located in Hunan province in south-central China. Nineteen surface sediment samples (the top 3-cm layer) collected from XR were analyzed to determine the concentrations, distribution, sources, and ecological risk of organochlorine pesticides (OCPs). The concentrations of OCPs were 3.0–29.8 ng/g (dry weight) with a mean of 12.6?±?7.7 ng/g. The widely detected compounds included HCHs, DDTs, HCB, and dieldrin. Overall, the dominant OCPs in the sediments were mainly composed of residual and degradation products, e.g., β-HCH with a mean of 42.2 % in HCHs and p,p′-DDE with a mean of 43.5 % in DDTs, implying that OCPs in the sediments had suffered from long-term aging without fresh inputs in XR. However, there was a high proportion of p,p′-DDT to DDTs in three sites, suggesting that there was use of technical DDT from their surrounding areas at present. The ratios of α-HCH/γ-HCH and p,p′-DDD?+?p,p′-DDE/DDTs increase from the upper reaches to the lower reaches of XR, suggesting sediments enriched with α-HCH and metabolites DDD and DDE during sediment transport process and could be attributed to the transformation of γ-HCH to α-HCH and DDT to DDE or DDD. The assessment of the ecological risk indicates that the OCPs in the sediments of XR have a moderate adverse biological effect on organisms.  相似文献   

2.
Organic contamination in the greenhouse soils from Beijing suburbs, China   总被引:1,自引:0,他引:1  
Selected persistent organic pollutants including HCHs, DDTs and PAHs together with PAEs were determined in the greenhouse soils from Beijing suburbs. The total concentrations were 11.64-29.80 ng g(-1) for HCHs, 18.04-101.33 ng g(-1) for DDTs, 1.34-3.15 microg g(-1) for PAEs and 1.92-7.84 microg g(-1) for PAHs, respectively. Predominance of beta-HCH in all samples was obviously observed, suggesting a lack of new HCHs sources. High concentrations of DDE and DDD in comparison to their parents in the samples indicated that most of the DDT had been transformed into its metabolites. The contamination of PAHs was relatively serious and the most abundant compounds were 4-, 5- and 6-ring unsubstituted PAHs. The profiles reflect the important effect of traffic on the PAHs remaining in greenhouse soils. Three phthalate esters (DIBP, DnBP and DEHP) accounted for more than 97% of the phthalates studied. Analysis of n-alkanes was also performed in order to trace the natural or anthropogenic sources of hydrocarbons. Characterization and identification of these compounds in greenhouse soil may help in development of strategies to be used in monitoring organic pollutants in this region.  相似文献   

3.
The residues of organochlorine pesticides (OCPs) in 19 surface sediments of Bohai Sea Bay were determined in this study. Total OCP concentration in surface sediment ranged from 9.01 to 18.04 ng/g dry weight, with a mean concentration of 12.50 ng/g. These findings are in the mid-range of pesticide concentrations compared to those reported in other regions worldwide. DDTs and HCHs were the predominant species. The α-HCH/β-HCH ratios and the predominant γ-HCH indicate that the technical HCH contamination was due mainly to historical usage, although there appeared to be a fresh input of lindane. The results from \(\left( {\mbox{DDD}\,\mbox{+}\,\mbox{DDE}} \right)\mbox{/}\sum {\mbox{DDTs}} \) and DDD/DDE calculations suggest that the usage of DDT in agricultural activities was not terminated, and the historical/fresh inputs of DDT in these areas could be more easily degraded into DDD under an anoxic condition. PCA implies that the recent usage of DDT could serve as important fresh input sources for OCPs.  相似文献   

4.
Concentrations of hexachlorobenzene (HCB), alpha-, beta- and gamma-hexachlorocyclohexane (HCH) isomers, 6 o,p'-and p,p'-isomers of DDT and 28 PCB congeners have been measured in eleven soil samples and one lichen collected on the Eastern coast of Antarctica from 5 Russian stations. For samples with low concentrations of PCBs (range 0.20-0.41 ng g(-1) dry weight) and pesticides (0.86-4.69 ng g(-1) and 0.11-1.22 ng g(-1) dry weight for HCHs and DDTs, respectively), atmospheric long-range transport from Africa, South America or Australia was suggested as the sole source of contamination. The profile of PCB congeners was dominated by the more volatile tri-, tetra- and penta-PCBs congeners, thus supporting long-range transport hypothesis. Four samples contained moderate levels of PCBs (range 1.98-6.94 ng g(-1) dry weight) and variable concentrations of pesticides (gamma-HCH, p,p'-DDT and o,p'-DDT being the main contaminants). For samples with high concentrations of PCBs (range 90.26-157.45 ng g(-1)) and high concentrations of pesticides, the presence of high molecular weight PCB congeners such as: 153, 180, 187, 170 etc, strongly suggest a local source (biotic) of PCBs rather than atmospheric transport. It is likely that on a local scale, biotic focussing of pollutants, due to bird activities (nesting and excrement) can cause high contamination levels and become more significant than contaminant input via abiotic pathways.  相似文献   

5.
利用GC-ECD方法测定了珠江三角洲城市群及高海拔地区表层土壤中的有机氯农药。有机氯农药变幅为2.4~78.7 ng/g,平均15.9 ng/g。最高值出现在江门。总HCHs变幅为ND~19.2 ng/g,平均2.91 ng/g, 最高值出现在佛山。总DDTs变幅为ND~74.6 ng/g,平均值为9.91 ng/g。最高值出现在东莞。六氯苯在佛山较高。灭蚁灵在深圳的污染较其它地区严重。总体来说,HCHs污染程度较低,但部分地区有林丹的使用;有些采样点DDTs的污染程度超过了国家土壤环境质量标准的一级自然背景值,且有些区域可能有非三氯杀螨醇的DDTs外源输入。  相似文献   

6.
To determine the incidence of organochlorine pesticides (OCPs) in soil in a rapid urbanization region, soil samples from various land use types in Shenzhen were collected in winter, 2007. The concentration of dichlorodiphenyltrichloroethanes (DDTs) and hexachlorocyclohexanes (HCHs) ranged from non-detected to 149 ng g(-1) and 19 to 88 ng g(-1), respectively. The highest levels of OCPs were observed in soil from traffic and industry areas, reflecting that intensive human disturbance make the soil pollution accumulation more disperse. HCHs and DDTs profiles revealed that the sources were associated mainly with lindane and technical DDTs, respectively, while HCHs in the soil of Shenzhen might originate from both recent and historical sources. The loss of OCPs by soil erosion will enter surface runoff and impose impact on the water environment. Non-dietary exposure estimation indicates that children were the most sensitive group. The average daily exposure to OCPs for males was more serious than for females. Non-dietary exposure to DDTs and HCHs in residential blocks of Shenzhen were far below the acceptable daily intake recommended by the Food and Agriculture Organization/World Health Organization.  相似文献   

7.
Characteristics and transport of organochlorine pesticides (OCPs) in urban multiple environments, including air, dust, rain, canopy throughfall, and runoff water, are explored in this study. Hexachlorocyclohexanes (HCHs) dominated in both air and rain water, and dichlorodiphenyltrichloroethane (DDT) related substances showed a higher affinity to dust. Relatively high concentrations of DDT and dichlorodiphenyldichloroethylene (DDE) in air, rain and dust imply that technical DDT in the environment has been degrading, and there may be unknown local or regional emission sources that contain DDTs in the study area. Source identification showed that DDTs in Beijing urban environments with a fresh signature may originate from the atmospheric transport from remote areas. The ratio of α-/γ-HCH in dust, rain, canopy throughfall and runoff were close to 1, indicating the possible use of lindane. OCPs in runoff were transported from various sources including rain, dust, and canopy throughfall. In runoff, DDTs and hexachlorobenzene (HCB) were mainly transported from dust, and HCHs were mainly from rain and canopy throughfall.  相似文献   

8.
As facile “environmental media”, the outdoor dust may reflect the changes of contaminants in environment more promptly. In the present study, selected organochlorine contaminants (OCs) include hexachlorocyclohexanes (HCHs), dichlorodiphenyltrichloroethanes (DDTs), hexachlorobenzene (HCB), and pentachlorobenzene (PeCB) were detected in 20 outdoor dust samples collected from Xinxiang City. The concentrations of ΣHCHs, ΣDDTs, HCB, and PeCB in dust were in the range of 0.18–5.05 ng/g dry weight, 0.44–13.50 ng/g dry weight, 0.13–51.61 ng/g dry weight and ND-0.74 ng/g dry weight, respectively. Long-range transport, historical use, and recent impact of impure pesticides might be the main sources of OCs in the outdoor dust. The results of this study indicated that impure pesticide application maybe an important source of DDTs and HCB in the environment.  相似文献   

9.
A multimedia sampling of ambient air, wet deposition, surface water, sediment, soil and biota has been performed at Kosetice background observatory in the southern Czech Republic since 1988. An integrated monitoring approach was applied to assess the current state, anthropogenic impacts, and possible future changes of terrestrial and freshwater environments. Average PCB concentrations in the individual matrices calculated from ten years of sampling on multiple sites varied between 2 ng g(-1) in sediment and 7 ng g(-1) in soil or moss. DDT concentrations were lower in moss and needles (2 ng g(-1) and 4 ng g(-1), respectively) than in sediment (11 ng g(-1)) and soil (20 ng g(-1)), while the HCH level was higher in moss and needles (5 ng g(-1) and 6 ng g(-1), respectively) than in soil or sediment (1 ng g(-1) and 2 ng g(-1), respectively). The highest average level of PAHs was found in soil (600 ng g(-1)), while it was lower in needles (230 ng g(-1)), moss (210 ng g(-1)) or sediment (210 ng g(-1)). Time related trends of concentration levels of persistent organic pollutants in all matrices were investigated. Moss and needle trend patterns resembled those of the ambient air, showing a slight concentration decrease of all compounds, except for hexachlorobenzene. The soil, water and sediment concentrations showed a similar decrease of PAHs, PCBs, and HCHs, but there was no clear trend for DDTs and HCB.  相似文献   

10.
Concentrations of organochlorine pesticides (OCPs; dichlorodiphenyltrichloroethanes (DDTs), hexachlorocyclohexanes (HCHs), hexachlorobenzene (HCB)) were investigated in 105 soil samples collected in vicinity of the chemical industrial parks in Tianjin, China. OCP concentrations significantly varied in the study area, high HCH and DDT levels were found close to the chemical industrial parks. The intensity of agricultural activity and distance from the potential OCP emitters have important influences on the OCP residue distributions. Principal component analysis indicates that HCH pollution is a mix of historical technical HCH and current lindane pollution and DDT pollution input is only due to technical DDT sources. The significant correlations of OCP compounds reveal that HCHs, DDTs and HCB could have some similar sources of origin.  相似文献   

11.
The spatial variability and temporal trend in concentrations of the organochlorine pesticides (OCPs), hexachlorocyclohexane (HCH) and dichlorodiphenyltrichloroethane (DDT), in soils and agricultural corps were investigated on an intensive horticulture area in Hohhot, North-West China, from 2008 to 2011. The most frequently found and abundant pesticides were the metabolites of DDT (p,p′-DDE, p,p′-DDT, o,p′-DDT and p,p′-DDD). Total DDT concentrations ranged from ND (not detectable) to 507.41 ng/g and were higher than the concentration of total HCHs measured for the range of 4.84–281.44 ng/g. There were significantly positive correlations between the ∑DDT and ∑HCH concentrations (r 2>0.74) in soils, but no significant correlation was found between the concentrations of OCPs in soils and clay content while a relatively strong correlation was found between total OCP concentrations and total organic carbon (TOC). β-HCH was the main isomer of HCHs, and was detected in all samples; the maximum proportion of β-HCH compared to ∑HCHs (mean value 54%) was found, suggesting its persistence. The α/γ-HCH ratio was between 0.89 and 5.39, which signified the combined influence of technical HCHs and lindane. Low p,p′-DDE/p,p′-DDT in N1, N3 and N9 were found, reflecting the fresh input of DDTs, while the relatively high o,p′-DDT/p,p′-DDT ratios indicated the agricultural application of dicofol. Ratios of DDT/(DDE+DDD) in soils do not indicate recent inputs of DDT into Hohhot farmland soil environment. Seasonal variations of OCPs featured higher concentrations in autumn and lower concentrations in spring. This was likely associated with their temperature-driven re-volatilization and application of dicofol in late spring.  相似文献   

12.
The residues of 13 organochlorine pesticides (OCPs) in surface water and HCHs and DDTs in suspended particulate matter (SPM) from rivers and lakes in Yangtze River catchment of Wuhan, China, were investigated. The concentration of total OCPs in surface water varied from 1.01 to 46.49 ng l−1 (mean 10.55 ng l−1). The levels of total HCHs (ΣHCH) and total DDTs (ΣDDT) in surface water were in the range of 0.55–28.07 ng l−1 and lower than detection limit to 16.71 ng l−1, respectively, which was lower than Chinese standards on the whole. For OCPs residues in SPM, the mean levels varying from 0.20 to 34.72 ng l−1 and 0.46 to 2.72 ng l−1 for ΣHCH and ΣDDT, respectively, which ranked the relatively higher levels among Chinese studied rivers. Results from this investigation showed that previous excessive usage of technical OCPs was the main reason for the residues of HCHs and DDTs both in surface water and SPM, although some new sources were likely to occurred in the region. Apart from the OCPs in SPM originated from upstream in flood season, one of the important sources of OCP residues both in water and SPM in Yangtze River was supposed to be the inputs of its tributaries. Additionally, in situ water-SPM phase distributions of OCPs indicated that HCHs tended totransport with water as well as DDTs was prone to combine with SPM in Yangtze River catchment of Wuhan.  相似文献   

13.
Persistent organic pollutants (POPs) such as organochlorine (OCl) insecticides and polychlorinated biphenyls (PCB), together with the new generation of organophosphorus (OP) insecticides, are of global concern, due to their widespread occurrence, persistence, bioaccumulation and hormone disruption potential. This paper represents an attempt to study the source and transportation of such pollutants in estuarine and coastal environments as an integrated ecosystem, by determining the levels of 18 OCl insecticides, 21 PCB congeners, and 17 OP insecticides in the Pearl River Estuary and South China Sea. The total concentrations varied from 126-1198 ng l(-1) for OCl insecticides, 33.38-1064 ng l(-1) for PCB congeners, and 4.44-6356 ng l(-1) for OP insecticides in the Pearl River Estuary. In comparison, their levels in the South China Sea were significantly lower, varying from 57.09-202 ng l(-1) for OCl insecticides, 21.72-144 ng l(-1) for PCBs, and 1.27-122 ng l(-1) for OP insecticides, respectively. The predominance of beta-HCH in HCHs, and DDE in DDTs in all water samples was clearly observed, suggesting beta-HCH and DDE's resistance to further degradation. The PCBs were dominated by those with 3-6 chlorines. The distribution characteristic of OP insecticides shows that five compounds (methamidophos, dimethoate, malathion, dichlorvos and omethoate) accounted for 56% and 72% of the total OP insecticide concentration. The relationship between pollutant concentrations and salinity in the estuary showed that they were all removed during the mixing process, therefore behaving non-conservatively.  相似文献   

14.
The analyses of environmentally persistent pollutants like polychlorinated biphenyls (PCBs), hexachlorocyclohexane (HCH) isomers, and dichlorodiphenyltrichloroethane (DDT) and its metabolites in surficial sediment samples collected from 17 locations along with the coast of the Red Sea in Egypt were carried out using gas chromatography–mass spectrometry. Several potential organic contaminants from agricultural (e.g., DDT and its breakdown products, lindane, endrin, dieldrin, and endosulfan) and industrial (PCBs) sources were measured. The levels of 20 organochlorine pesticides (OCPs) and ten PCB congeners in sediment collected from 17 stations along ~1,200 km were investigated. Concentrations of PCBs, HCHs, DDTs, and cyclodienes ranged from 0.40 to 6.17, 0.01 to 0.09, n.d. to 0.46, and 0.08 to 0.90 ppb dry weight. Two statistical programs were applied on the data (principal component analysis, PCA, and cluster analysis, CA), and it was concluded that it is impossible to predict the distribution patterns of the OCPs in a contaminated area. Risk assessment of the organochlorines contaminated in the sediments of the studied area was investigated.  相似文献   

15.
贵州遵义地区土壤中有机氯农药残留调查   总被引:6,自引:2,他引:4       下载免费PDF全文
于2008年3月-5月对遵义地区土壤中有机氯农药残留进行了调查。结果表明,15种有机氯农药在所有样品中都有不同程度的检出。HCHs、DDTs类物质的检出率分别为90.7%、45.7%。∑HCH残留量为未检出~12.7μg/kg,平均值为1.6μg/kg;2DDT残留量为未检出-239.7μg/kg,平均值为2.8μg/kg;总有机氯杀虫剂平均残留量为4.51μg/kg,同国内其他地区相比,其残留水平偏低。  相似文献   

16.
The concentrations of three frequently detected organochlorine pesticides (OCPs) and one degradation product, p,p'-DDT, p,p'-DDD, dieldrin, and p,p'-DDE were determined in recently collected (2005-2006) and archived (1986-1989) surficial sediments and sediment cores from Long Island Sound (LIS). The concentration of dieldrin ranged from 0.05 to 5.27 ng g(-1) dry weight in the surficial sediments, and from 0.05 to 11.7 ng g(-1) dry weight in the sediment cores. Total DDXs (the sum of p,p'-DDE, p,p'-DDD and p,p'-DDT) concentrations ranged from 1.31 to 33.2 ng g(-1) in surficial sediments and 1.11 to 66.4 ng g(-1) in sediment cores. The results indicate that the three OCPs and DDE were still widely present in LIS surficial sediments two decades after the use of these pesticides in the United States was banned. In addition, the surficial concentrations did not decrease significantly when compared to the concentrations in archived samples collected two decades ago. Sediments in the western part of LIS were more contaminated (with concentrations in some western sites being still above probable effect levels) than those in the eastern part, probably as a result of the net westward sediment transport in LIS. The three OCPs and DDE were detected at all depths (down to ~50 cm) in the sediment cores, and concentration profiles indicated a depositional sedimentary environment with significant sediment mixing. Such mixing may redistribute OCPs deposited earlier (deeper in sediment bed) to the sediment surface and lead to enhanced persistence of OCP concentrations in surficial sediments.  相似文献   

17.
The concentration levels, source, and inventories of polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) in 55 surface vegetable soils in the watershed of the Pearl River Delta (PRD) were analyzed and compared with those of the surface sediments in the Pearl River Estuary (PRE) and northern South China Sea (SCS). The 16 priority PAHs on US EPA list range from 58 to 3,077 microg/kg (average: 315 microg/kg). The concentrations of DDTs and HCHs range from 3.58 to 831 microg/kg (average: 82.1 microg/kg) and from 0.19 to 42.3 microg/kg (average: 4.42 microg/kg). The ratios of DDT/ (DDD+DDE) are higher than 2 in majority of the soil samples, suggesting that DDT contamination still exists. The PAH ratios suggest that the source of PAHs is petroleum, and combustion of fossil fuel, biomass, and coal. The average concentrations of PAHs and the linear regression slope between PAHs and TOC for the soils and the sediments are quite similar. It was estimated that the soil mass inventories at 0-20 cm depth are 1,292 metric tons for PAHs and 356 metric tons for OCPs in the studied region. The average PAHs inventory per unit area for the soil samples investigated in PRD is about 0.86 time that of surface sediments in the Pearl River Estuary, and about 2.43 times that of surface sediments in the northern South China Sea. PAHs in the soils in PRD have similar source to those of the surface sediments in PRE. All of those may suggest that PAHs in PRE and SCS are probably mainly inputted from the soils in PRD via soil erosion and river transport.  相似文献   

18.
A detailed investigation on the contamination with chlorinated hydrocarbons and organophosphorous pesticides of the coastal lagoon system of Chinandega district, Nicaragua, allowed the identification of contaminant sources and lagoon areas currently more contaminated. The discharge of rivers into the lagoons is the main transport pathway of pesticide residues; whereas atmospheric depositions are likely to be the main pathway for the introduction of PCBs into the lagoons. Analysis of water samples indicates widespread contamination with soluble organophosphorous compounds, such as dichlorvos, up to 410 ng L(-1), diazinon, up to 150 ng L(-1), and chlorpyrifos, up to 83 ng L(-1). Analyses of suspended matter for low solubility organochlorine (OC) compounds revealed very high concentrations of toxaphene, up to 17,450 ng g(-1) dry weight (dw), total DDTs up to 478 ng g(-1), Aroclor 1254, up to 119 ng g(-1) (dw), and lower concentrations for other compounds. Lagoon sediments contain high concentrations also of toxaphene, from 7.9 to 6,900 ng g(-1) (dw), and DDTs, from 1.5 to 321 ng g(-1) (dw), and lower concentrations of chlorpyrifos, hexachlorocyclohexanes, chlordane and other residues. Concentrations of OCs in soft tissues of clams are statistically correlated with the concentrations of the same compounds in bottom sediments, indicating that sediments are a source of contaminants to biota. In some areas of the lagoon system, concentration of residues in sediments are far above recommended threshold guideline values for protection of aquatic life, and may cause acute and chronic toxic effects on more sensitive aquatic species. Despite the ban on the use of toxaphene and DDT, residues of these compounds are still entering the lagoons due to erosion of, and leaching from, agriculture soils in the region. Measures for protection of the lagoon ecosystem are discussed.  相似文献   

19.
The levels of hexachlorocyclohexane (HCH) and dichloro-diphenyl-trichloroethane (DDT) in the water, suspended particulate matter (SPM), and sediments from Lake Small Baiyangdian were measured by gas chromatograph with a 63Ni microelectron capture detector. The residual levels of the total HCHs in the water, SPM, and sediments were 1.59?±?2.24 ng L?1, 25.42?±?1.72 ng g?1 dw (dry weight), and 0.86?±?1.44 ng g?1 dw, respectively. DDTs were not detected in the water samples. The concentrations of total DDTs were 158.79?±?1.67 ng g?1 dw in SPM and 0.46?±?1.97 ng g?1 dw in the sediments. Compared to other areas in China and abroad, the levels of residual HCH and DDT were relatively low in the water and sediments, but they were moderate to high in the SPM. Organic carbon partition coefficient values for HCH in this study were higher than previously published values and may reflect new input in this area. The residual HCHs in this area could be derived from a mixture of technical HCH and lindane because ongoing lindane use may be occurring. DDT in the majority of the study area was primarily attributed to historical discharge, but some regions may be receiving new input. The ecological risks of γ-HCH in the water were very low according to species sensitivity distribution models. The concentrations of HCH and DDT in the sediments from the study area did not exceed the sediment quality guidelines, which indicate little risk for benthic organisms.  相似文献   

20.
The concentration of 12 organochlorine pesticides (OCPs) were measured in water, sediment, aquatic plant, and animal (shrimp and fish) of Nansi Lake by gas chromatography equipped with an electron capture detector. The total OCPs concentrations were 65.31–100.31 ng L?1 in water, 2.9–6.91 ng g?1 dry weight (dw) in sediments, 1.29–6.42 ng g?1 dw in aquatic plants and 7.57–17.22 ng g?1 dw in animals. The OCPs composition profiles showed that heptachlor compounds was also the predominant OCPs contaminants in addition to hexachlorocyclohexanes (HCHs) and dichlorodiphenyltrichloroethanes (DDTs) in Nansi Lake. According to the source of HCHs and DDTs in sediment samples, there was no new input and the HCHs pollution mainly came from the use of Lindane in Nansi Lake. Bioaccumulation of OCPs in aquatic biota indicated that DDTs and heptachlor compounds had a strong accumulation, followed by HCHs and drins. The accumulation abilities of fish for OCPs were higher than those of plants and shrimps. The OCPs biota-sediment accumulation factor values of Channa argus was the highest in fish samples, followed by Carassius auratus, and Cyprinus caspio. Risk assessment of sediment showed that heptachlor epoxide had a higher occurrence possibility of adverse ecological effects to benthic species. Based on the calculation of acceptable daily intake and hazard ratio, HCHs in fish and shrimps from Nansi Lake had a lifetime cancer risk of greater than one per million. The risk assessment of water, sediment, and fish indicated the water environment of Nansi Lake is at a safe level at present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号