首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 171 毫秒
1.
城市道路交通噪声分布模拟研究   总被引:3,自引:0,他引:3  
通过对梅州市中心城区7条道路的噪声监测,分析了中心城区道路的噪声污染水平。采用道路交通噪声预测模型,以实测交通流数据对中心城区的噪声污染进行模拟和减噪措施评估。结果表明,采用限速措施和安装声屏障措施均有降低噪声污染的效果,为管理部门防治噪声污染提供了参考。  相似文献   

2.
浅析交通堵塞对成都市城区环境的影响   总被引:3,自引:0,他引:3  
本文论述了成都市交通稠密区、交通堵塞路段、交通高峰时段机动车尾气对大气环境造成的严重影响,同时分析了交通噪声的污染状况。  相似文献   

3.
重庆市道路交通噪声分布规律及控制措施研究   总被引:3,自引:2,他引:1  
监测重庆市主城区道路旁居民住宅不同楼层昼间交通噪声等效声级,并分析其垂直分布规律。结果表明,随测点与地面高差的增加,噪声呈先增加后减小的趋势。隔声效果监测结果表明,隔声屏在重庆典型山城的地理环境下隔声效果较差,隔声窗具有较好的隔声效果,且测点距离越近隔声效果越明显。  相似文献   

4.
The City of Amman, Jordan, has been subjected to persistent increase in road traffic due to overall increase in prosperity, fast development and expansion of economy, travel and tourism. This study investigates traffic noise pollution in Amman. Road traffic noise index L 10(1 h) was measured at 28 locations that cover most of the City of Amman. Noise measurements were carried out at these 28 locations two times a day for a period of one hour during the early morning and early evening rush hours, in the presence and absence of a barrier. The Calculation of Road Traffic Noise (CRTN) prediction model was employed to predict noise levels at the locations chosen for the study. Data required for the model include traffic volume, speed, percentage of heavy vehicles, road surface, gradient, obstructions, distance, noise path, intervening ground, effect of shielding, and angle of view. The results of the investigation showed that the minimum and the maximum noise levels are 46 dB(A) and 81 dB(A) during day-time and 58 dB(A) and 71 dB(A) during night-time. The measured noise level exceeded the 62 dB(A) acceptable limit at most of the locations. The CTRN prediction model was successful in predicting noise levels at most of the locations chosen for this investigation, with more accurate predictions for night-time measurements.  相似文献   

5.
介绍了EcoSys-P便携式质谱仪在无车日前后对交通干线环境空气中苯系物现场监测中的情况,同时该方法与经典的气相-质谱联机进行了对比试验,相对偏差≤25%,能够满足交通干线环境空气苯系物的现场监测要求.  相似文献   

6.
Evaluation and analysis of noise pollution levels have been carried out to determine the level of noise and its sources in Ilorin metropolis. Noise measurements have been done in the morning, at noon, in the evening, and at night to determine noise pollution all over the city. The selected areas of study are commercial centers, road junctions/busy roads, passenger loading parks, and high-density and low-density residential areas. The road junctions had the highest noise pollution levels, followed by commercial centers. The results of this study show that the noise levels in Ilorin metropolis exceeded allowed values at 30 of 42 measurements points. There is a significant difference (P?<?0.05) in the noise pollution levels and traffic noise index in all the locations. From the measured noise values, a map of noise pollution was developed for Ilorin. Many solutions proposed for noise abatement in the city are set out.  相似文献   

7.
与一般城市道路相比,城市高架复合道路通行能力大、行车速度高、车辆行驶状态复杂,交通噪声污染极为突出。选取深圳市典型的高架复合道路——春风高架和爱国高架进行实地监测,同时运用SoundPLAN软件模拟其噪声污染现状与安装声屏障后的降噪效果。根据监测模拟结果,从合理进行道路规划、装设声屏障和铺设低噪声路面等方面提出高架复合道路噪声污染控制的对策建议。  相似文献   

8.
通过对公路交通噪声特征,低噪声路面的特点、结构、降噪机理及国内外研究现状的分析,对宁杭高速二期工程低噪声路面与普通路面噪声监测结果进行对比分析,确认低噪声沥青路面具有比较明显的降噪效果,路肩处噪声可降低3~4 dB(A),路外15 m处可降低1.1~3.5 dB(A).  相似文献   

9.
兰州市汽车尾气污染状况调查   总被引:8,自引:0,他引:8  
通过对兰州市汽车尾气污染状况的调查与分析,认为兰州市街道空气污染较重,CO、NOx、SO2、TSP、Pb各项污染均超标,其污染程度与车流强度、时间、季节、路面宽度、风速及不同形式的交通路口相关。汽车尾气排放已成为兰州市空气污染的重要来源。  相似文献   

10.
The noise pollution is a major problem for the quality of life in urban areas. This study was conducted to compare the noise pollution levels at busy roads/road junctions, passengers loading parks, commercial, industrial and residential areas in Ilorin metropolis. A total number of 47-locations were selected within the metropolis. Statistical analysis shows significant difference (P < 0.05) in noise pollution levels between industrial areas and low density residential areas, industrial areas and high density areas, industrial areas and passengers loading parks, industrial areas and commercial areas, busy roads/road junctions and low density areas, passengers loading parks and commercial areas and commercial areas and low density areas. There is no significant difference (P > 0.05) in noise pollution levels between industrial areas and busy roads/road junctions, busy roads/road junctions and high density areas, busy roads/road junctions and passengers loading parks, busy roads/road junctions and commercial areas, passengers loading parks and high density areas, passengers loading parks and commercial areas and commercial areas and high density areas. The results show that Industrial areas have the highest noise pollution levels (110.2 dB(A)) followed by busy roads/Road junctions (91.5 dB(A)), Passengers loading parks (87.8 dB(A)) and Commercial areas (84.4 dB(A)). The noise pollution levels in Ilorin metropolis exceeded the recommended level by WHO at 34 of 47 measuring points. It can be concluded that the city is environmentally noise polluted and road traffic and industrial machineries are the major sources of it. Noting the noise emission standards, technical control measures, planning and promoting the citizens awareness about the high noise risk may help to relieve the noise problem in the metropolis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号