首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aims of this study were to characterize soils from industrial sites by combining physicochemical, microbiological, and ecotoxicological parameters and to assess the suitability of these assays for evaluation of contaminated sites and ecological risk assessment. The soil samples were taken from long-term contaminated sites containing high amounts of heavy metals (sites 1 and 2) or petroleum hydrocarbons (site 3) located in the upper Silesia Industrial Region in southern Poland. Due to soil heterogeneity, large differences between all investigated parameters were measured. Microbiological properties revealed the presence of high numbers of viable hetrotrophic microorganisms. Soil enzyme activities were considerably reduced or could not be detected in contaminated soils. Activities involved in N turnover (N mineralization and nitrification) were significantly (P?<?0.05) higher in samples from the metal-contaminated sites than in samples from the hydrocarbon-contaminated site, whereas the opposite was observed for phosphatase activity. The Microtox test system appeared to be the most appropriate to detect toxicity and significant differences in toxicity between the three sites. The Ostracodtoxkit test was the most appropriate test system to detect toxicity in the hydrocarbon-contaminated soil samples. Correlation analysis between principal components (obtained from factor analysis) determined for physicochemical, microbiological, and ecotoxicological soil properties demonstrated the impact of total and water-extractable contents of heavy metals on toxicity.  相似文献   

2.
This study aimed to assess soil quality by chemical and ecotoxicological investigations and to check the correspondence between soil metal concentrations and ecotoxicity. For these purposes, surface soils collected at four adjacent roadside urban parks and at a former industrial area were characterized for C/N, organic matter content, texture, and pH. Cr, Cu, Ni and Pb, chosen among the most representative soil metal contaminants, were measured as total content and as available and water soluble fractions. In addition, the total concentrations of the investigated metals were used to calculate two chemical indices: the contamination and the potential ecological risk factors. The toxicity of the investigated soils was evaluated by an ecotoxicity test battery carried out on both soil samples (Vibrio fischeri, Heterocypris incongruens and Sinapis alba) and elutriates (Vibrio fischeri, Daphnia magna and Selenastrum capricornutum). The findings, both by the chemical and ecotoxicological approaches, would suggest that the soils with high metal contamination pose ecological risks. On the other hand, moderately metal contaminated soils did not exclude soil ecotoxicity. In fact, toxic effects were also highlighted in soils with low metal content, toxicity being affected by metal availability and soil characteristics. Moreover, the results suggest the importance of using a battery of tests to assess soil ecotoxicity.  相似文献   

3.
Residues of several organochlorine insecticides were monitored in the ground water from a rural area near Farrukhabad in the vicinity of the Ganga River in northern India for one year (1991–1992). Almost all the samples were found to be contaminated with residues of Hexachlorocyclohexane (HCH) and Dichloro-diphenyl-trichloroethane (DDT). Residues of Aldrin, endosulfan and heptachlor were also detected in a large number of samples. The concentrations of aldrin residues greatly exceeded the WHO guideline value for drinking water, concentrations of heptachlor and DDT residues also occasionally exceeded the specified limits. Migration of pollutants through ground water recharge with polluted Ganga River water and monsoon rains carrying undergraded residues downwards from the soil surface are throught to be important sources of insecticide contamination of ground water in the region.  相似文献   

4.
This study reports the concentration levels and distribution pattern of the persistent organochlorine pesticide (OCPs) residues in the water and bed-sediments of the Gomti River collected seasonally over a period of 2 years. The water and bed-sediment samples were collected from eight different sites and analyzed for aldrin, dieldrin, endrin, HCB, HCH isomers, DDT isomers/metabolites, endosulfan isomers (alpha and beta), endosulfan sulfate, heptachlor and its metabolites, alpha-chlordane, gamma-chlordane and methoxychlor. In the river water and sediments SigmaOCPs residues ranged between 2.16 and 567.49 ng l(-1) and 0.92 and 813.59 ng g(-1), respectively. The results, further, suggested that source of DDT contamination is from the aged and weathered agricultural soils with signature of recently used DDT in the river catchments. To assess any adverse effect of OCPs contamination on river's biological component, the threshold effect level (TEL) was used. The results revealed that bed-sediments of the Gomti River are contaminated with lindane, endrin, heptachlor epoxides and DDT, particularly at site-4 and may contribute to sediment toxicity in the freshwater ecosystem of the river.  相似文献   

5.
This paper presents a study that aims at evaluating the leaching characteristics of petroleum contaminated soils as well as their application in hot mix asphalt concrete. Soil samples are environmentally characterized in terms of their total heavy metals and hydrocarbon compounds and leachability. The total petroleum hydrocarbon (TPH) present in the PCS before and after treatment was determined to be 6.8% and 5.3% by dry weight, indicating a reduction of 1% in the TPH of PCS due to the current treatment employed. Results of the total heavy metal analysis on soils indicate that the concentrations of heavy metals are lower when extraction of the soil samples is carried out using hexane in comparison to TCE. The results show that the clean soils present in the vicinity of contaminated sites contain heavy metals in the following decreasing order: nickel (Ni), followed by chromium (Cr), zinc (Zn), copper (Cu), lead (Pb), and vanadium (V). The current treatment practice employed for remediation of the contaminated soil reduces the concentrations of nickel and chromium, but increases the concentrations of all remaining heavy metals.  相似文献   

6.
The pot experiments were conducted to evaluate the effect of different concentrations of arsenic, chromium and zinc contaminated soils, amended with biosludge and biofertilizer on the growth of Jatropha curcas which is a biodiesel crop. The results further showed that biosludge alone and in combination with biofertilizer significantly improved the survival rates and enhanced the growth of the plant. With the amendments, the plant was able to grow and survive upto 500, 250 and 4,000 mg kg(-1) of As, Cr and Zn contaminated soils, respectively. The results also showed that zinc enhanced the growth of J. curcas more as compared to other metals contaminated soils. The heavy metal accumulation in plant increased with increasing concentrations of heavy metals in soil, where as a significant reduction in the metal uptake in plant was observed, when amended with biosludge and biofertilizer and biosludge alone. It seems that the organic matter present in the biosludge acted as metal chelator thereby reducing the toxicity of metals to the plant. Findings suggest that plantation of J. curcas may be promoted in metal contaminated soils, degraded soils or wasteland suitably after amending with organic waste.  相似文献   

7.
In recent years, awareness has risen that the total soil content of pollutants by itself does not suffice to fully assess the potential ecotoxicological risks involved. Chemical analysis will require to be complemented with biological assays in a multidisciplinary approach towards site specific ecological risk assessment (SS-ERA). This paper evaluates the potential use of the plants' antioxidant response to metal-induced oxidative stress to provide a sensitive biological assay in SS-ERA. To this end, plants of Phaseolus vulgaris were grown for two weeks on 15 soils varying in contamination level. Morphological parameters and enzymatic plant responses were measured upon harvest. Foliar concentrations of the (heavy) metals Al, Cu, Cd, Cr, Fe, Mn, Ni, Pb, Zn were also determined. Metal mobility in the soil was further assessed by determining soil solution and NH4OAc extractable levels. In general more significant correlations were observed between plant responses and foliar metal concentrations or exchangeable/soluble levels than between plant responses and the total soil content. The study demonstrates the potential use of the plants' antioxidant defence mechanisms to assess substrate phytotoxicity for application in SS-ERA protocols. However, the system, based on calculation of a soil Phytotoxicity Index (PI), will require adaptation and fine-tuning to meet the specific needs for this type of environmental monitoring. Large variation was observed in phytotoxicity classification based on the various test parameters. The thresholds for classification of the various morphological and enzymatic response parameters may require adaptation according to parameter stress sensitivity in order to decrease the observed variation. The use of partial PI's (leaves and roots separately) may in addition increase the sensitivity of the system since some metals show specific effects in one of both organs only. Loss of biological functionality of enzymes, as was observed for ICDH in one of the more strongly contaminated soils, may also be recognized as an additional stress symptom when assigning phytotoxicity classification, whereas the current system only considers increasing enzymatic capacities. Other easily distinguishable parameters, which could be added to the current indexation are: failure to germinate and the incapacity to develop roots in the toxic substrate.Additional research will be required to determine the possible application range of soil properties for this biological assay and to further improve its performance in SS-ERA.  相似文献   

8.
Soil, rock and water samples were collected from India??s oldest coalfield Raniganj to investigate trace metal contamination from mining activity. Our data reveal that trace metal concentration in soil samples lies above the average world soil composition; especially, Cr, Cu, Ni and Zn concentrations exceed the maximum allowable concentration proposed by the European Commission for agricultural soils. In particular, Cr, Cu and Ni exceed the ecotoxicological limit, and Ni exceeds the typical value for cultivated soils. Mineral dissolution from overburden material and high adsorption capacity of laterite soil are responsible for the elevated concentrations. This is evident from enrichment factor (E f), geoaccumulation index (I geo) and metal pollution index values. Sediment quality guideline index indicates toxicity to local biota although enrichment index suggests no threat from consuming crops cultivated in the contaminated soil.  相似文献   

9.
The introduction of earthworms into soils contaminated with metals and metalloids has been suggested to aid restoration practices. Eisenia veneta (epigeic), Lumbricus terrestris (anecic) and Allolobophora chlorotica (endogeic) earthworms were cultivated in columns containing 900 g soil with 1130, 345, 113 and 131 mg kg(-1) of As, Cu, Pb and Zn, respectively, for up to 112 days, in parallel with earthworm-free columns. Leachate was produced by pouring water on the soil surface to saturate the soil and generate downflow. Ryegrass was grown on the top of columns to assess metal uptake into biota. Different ecological groups affected metals in the same way by increasing concentrations and free ion activities in leachate, but anecic L. terrestris had the greatest effect by increasing leachate concentrations of As by 267%, Cu by 393%, Pb by 190%, and Zn by 429% compared to earthworm-free columns. Ryegrass grown in earthworm-bearing soil accumulated more metal and the soil microbial community exhibited greater stress. Results are consistent with earthworm enhanced degradation of organic matter leading to release of organically bound elements. The degradation of organic matter also releases organic acids which decrease the soil pH. The earthworms do not appear to carry out a unique process, but increase the rate of a process that is already occurring. The impact of earthworms on metal mobility and availability should therefore be considered when inoculating earthworms into contaminated soils as new pathways to receptors may be created or the flow of metals and metalloids to receptors may be elevated.  相似文献   

10.
In the process of mining activity, many kinds of heavy metals enter into soils with dust, causing serious contamination to the environment. In this study, six soils were sampled from cropland at different distances from a lead/zinc mine in Heilongjiang Province, China. The total contents of lead and zinc in the vicinal cropland exceeded the third level of environmental quality standard for soil in China, which indicated that soils in this area were moderately contaminated. Bacterial community diversity and population were greatly decreased when the concentrations of lead and zinc were beyond 1,500 and 995 mg kg(-1), respectively, as analyzed by plate counting and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). The bands of DGGE patterns varied with the degree of contamination. The activities of soil urease, phosphatase, and dehydrogenase were negatively correlated with the concentrations of lead and zinc. The highest inhibitory effect of heavy metals on soil enzyme activities was observed in urease. It was noted that PCR-DGGE patterns combined with soil enzyme activity analysis can be indices for the soil quality assessment by heavy metal contamination.  相似文献   

11.
Multiple residues of organochlorine insecticides were monitored in Ganga river water in the district of Farrukhabad in northern Indian for one year (1991–1992). Almost all the samples were found to be contaminated with residues of HCH and DDT. Residues of aldrin, endosulfan and heptachlor were also detected in a larger number of samples. Alpha-HCH, pp-DDT and alpha-endosulfan were found to dominate over the other isomers of HCH, DDT and endosulfan, respectively. Enhanced percentage of beta-HCH suggests accumulation of this isomer in the aquatic environment. The average concentration of aldrin was more than that of dieldrin. Aldrin residues often exceeded the WHO guideline value for drinking water and the concentration of heptachlor occasionally exceeded the specified limits.  相似文献   

12.
This study describes application of chemometric multi-way modeling approach to analyze the dataset pertaining to soils of industrial area with a view to assess the soil/sub-soil contamination, accumulation pathways and mobility of contaminants in the soil profiles. The three-way (sampling depths, chemical variables, sampling sites) dataset on heavy metals in soil samples collected from three different sites in an industrial area, up to a depth of 60 m each was analyzed using three-way Tucker3 model validated for stability and goodness of fit. A two component Tucker3 model, explaining 66.6% of data variance, allowed interpretation of the data information in all the three modes. The interpretation of core elements revealing interactions among the components of different modes (depth, variables, sites) allowed inferring more realistic information about the contamination pattern of soils both along the horizontal and vertical coordinates, contamination pathways, and mobility of contaminants through soil profiles, as compared to the traditional data analysis techniques. It concluded that soils at site-1 and site-2 are relatively more contaminated with heavy metals of both the natural as well as anthropogenic origins, as compared to the soil of site-3. Moreover, the accumulation pathways of metals for upper shallow layers and deeper layers of soils in the area were differentiated. The information generated would be helpful in developing strategies for remediation of the contaminated soils for reducing the subsequent risk of ground-water contamination in the study region.  相似文献   

13.
The aim of this study was to characterize soils contaminated by different levels of heavy metals and hydrocarbons (Madonna Dell'Acqua, Pisa, Italy). The soils were chemically and biochemically analysed by measuring the standard chemical properties and some enzyme activities related to microbial activity (dehydrogenase activity) and the soil carbon cycle (total and extracellular beta-glucosidase activities). The metabolic capacities of soil microorganisms to degrade hydrocarbons through catechol 2,3-dioxygenase were also described. The microbial diversity of contaminated and uncontaminated soils was estimated by denaturing gradient gel electrophoresis (DGGE) of amplified 16S rDNA sequences. The PCR/single-strand conformation polymorphism (PCR/SSCP) method was used to estimate the genetic diversity of PAH-degrading genes in both contaminated and uncontaminated soils. A greater bacterial diversity and lower catechol 2,3-dioxygenase activity was detected in unpolluted soils. The complexity of the microbial community (Shannon and Simpson indices) as well as the dehydrogenase soil activity negatively correlated with contamination levels. The greatest PAH-degrading gene diversity and the most intense catechol 2,3-dioxygenase activity were found in the soils with the highest levels of hydrocarbons. Heavy metals and hydrocarbon pollution has caused a genetic and metabolic alteration in microbial communities, corresponding to a reduction in microbial activity. A multi-technique approach combining traditional biochemical methods with molecular-based techniques, along with some methodological improvements, may represent an important tool to expand our knowledge of the role of microbial diversity in contaminated soil.  相似文献   

14.
The aim of the study was to investigate influence of an industrialized environment on the accumulation of heavy metals in agricultural soils. Seventy soil samples collected from surface layers (0-20 cm) and horizons of five selected pedons in the vicinity area of petrochemical complex in Guangzhou, China were analyzed for Zn, Cu, Pb, Cd, Hg and As concentrations, the horizontal and vertical variation of these metals were studied and geographic information system (GIS)-based mapping techniques were applied to generate spatial distribution maps. The mean concentrations of these heavy metals in the topsoils did not exceed the maximum allowable concentrations in agricultural soil of China with the exception of Hg. Significant differences between land-use types showed that Cu, Pb, Cd, Hg and As concentrations in topsoils were strongly influenced by agricultural practices and soil management. Within a radius of 1,300 m there were no marked decreasing trends for these element concentrations (except for Zn) with the increase of distance from the complex boundary, which reflected little influence of petroleum air emission on soil heavy metal accumulation. Concentrations of Zn, Cu, Pb, Cd, Hg and As in the five pedons, particularly in cultivated vegetable field and orchard, decreased with soil depth, indicating these elements mainly originated from anthropogenic sources. GIS mapping was a useful tool for evaluating spatial variability of heavy metals in the affected soil. The spatial distribution maps allowed the identification of hot-spot areas with high metal concentration. Effective measures should be taken to avoid or minimize heavy metal further contamination of soils and to remediate the contaminated areas in order to prevent pollutants affecting human health through agricultural products.  相似文献   

15.
The abilities of sorghum (Sorghum bicolor L.) and oat (Avena sativa L.) to take up heavy metals from soils amended with ethylenediaminetetraacetic acid (EDTA) were assessed under greenhouse conditions. Both plants were grown in two soils contaminated with heavy metals (Gujranwala—silty loam and Pacca—clay loam). The soils were treated with 0, 0.625, 1.25, and 2.5 mM EDTA kg?1 soil applied at both 45 and 60 days after sowing (DAS); the experiment was terminated at 75 DAS. Addition of EDTA significantly increased concentrations of Cd, Cr, and Pb in roots and shoots, and bio-concentration factors and phytoextraction rates were also increased. Post-harvest soil analysis showed that soluble fractions of metals were also increased significantly. The increase in Cd was ≈ 3-fold and Pb was ≈ 15-fold at the highest addition of EDTA in Gujranwala soil; in the Pacca soil, the increase was less. Similarly, other phytoremediation factors, such as metal translocation, bio-concentration factor, and phytoextraction, efficiency were also maximum when soils were treated with 2.5 mM EDTA kg?1 soil. The study demonstrated that sorghum was better than oat for phytoremediation.  相似文献   

16.
In the present study we quantified the residues of organophosphorus (e.g. ethion and chlorpyrifos), organochlorine (e.g. heptachlor, dicofol, alpha-endosulfan, beta-endosulfan, endosulfan sulfate) and synthetic pyrethroid (e.g. cypermethrin and deltamethrin) pesticides in made tea, fresh tea leaves, soils and water bodies from selected tea gardens in the Dooars and Hill regions of West Bengal, India during April and November, 2006. The organophosphorus (OP) pesticide residues were detected in 100% substrate samples of made tea, fresh tea leaves and soil in the Dooars region. In the Hill region, 20% to 40% of the substrate samples contained residues of organophosphorus (OP) pesticides. The organochlorine (OC) pesticide residues were detected in 33% to 100% of the substrate samples, excluding the water bodies in the Dooars region and 0% to 40% in the Hill region. The estimated mean totals of studied pesticides were higher in fresh tea leaves than in made tea and soils. The synthetic pyrethroid (SP) pesticide residues could not be detected in the soils of both the regions and in the water bodies of the Dooars. Sixteen percent and 20% of the made tea samples exceeded the MRL level of chlorpyrifos in Dooars and Hill regions respectively. The residues of heptachlor exceeded the MRL in 33% (April) and 100% (November) in the Dooars and 40% (April) and 20% (November) in the Hill region. Based on the study it was revealed that the residues of banned items like heptachlor and chlorpyrifos in made tea may pose health hazards to the consumers.  相似文献   

17.
Mixtures of polycyclic aromatic hydrocarbons (PAHs) and heavy metals are of major concern in contaminated soil. Biodegradation of PAHs in metal-contaminated soils is complicated because metals are toxic and cannot be degraded by biological processes. This investigation considered the effects of Zn and Cu (50, 100, 500 and 1,000 mg/kg) on 14C-phenanthrene biodegradation in soil over 60-day contact time. The presence of Zn at all concentrations and low concentrations of Cu (50 and 100 mg/kg) had no significant effect (p?>?0.05) on the development of phenanthrene catabolism; however, at higher Cu concentrations, the development of phenanthrene catabolism and bacterial cell numbers were significantly reduced (p?<?0.05). This suggests that Cu is more toxic than Zn to soil microbial PAH catabolic activity. Metal/PAH-contaminated soils represent one of the most difficult remedial challenges and insights into PAH biodegradation in the presence of metals is necessary in order to assess the potential for bioremediation.  相似文献   

18.
Accumulation of metals in soil at elevated concentrations causes risks to the environmental quality and human health for more than one hundred million people globally. The rate of metal release and the alteration of metal distribution in soil phases after soil washing with a sulfosuccinamate surfactant solution (Aerosol 22) were evaluated for four contaminated soils. Furthermore, a sequential extraction scheme was carried out using selective extractants (HAcO, NH(2)OH·HCl, H(2)O(2) + NH(4)AcO) to evaluate which metal species are extracted by A22 and the alteration in metal distribution upon surfactant-washing. Efficiency of A22 to remove metals varied among soils. The washing treatment released up to 50% of Cd, 40% of Cu, 20% of Pb and 12% of Zn, mainly from the soluble and reducible soil fractions, therefore, greatly reducing the fraction of metals readily available in soil. Metal speciation analysis for the solutions collected upon soil washing with Aerosol 22 further confirmed these results. Copper and lead in solution were mostly present as soluble complexes, while Cd and Zn were present as free ions. Besides, redistribution of metals in soil was observed upon washing. The ratios of Zn strongly retained in the soil matrix and Cd complexed with organic ligands increased. Lead was mobilized to more weakly retained forms, which indicates a high bioavailability of the remaining Pb in soil after washing. Comprehensive knowledge on chemical forms of metals present in soil allows a feasible assessment of the environmental impact of metals for a given scenario, as well as possible alteration of environmental conditions, and a valuable prediction for potential leaching and groundwater contamination.  相似文献   

19.
The pollution of soil is a source of danger to the health of people, even to those living in cities. The anthropogenic pollution caused by heavy industries enters plants then goes through the food chain and ultimately endangers human health. In the context, the knowledge of the regional variability, the background values and anthropogenic vs. natural origin of potentially harmful elements in soils is of critical importance to assess human impact. The present study was undertaken on soil contamination in Surat, Gujarat (India). The aims of the study were: i) to determine extent and distribution of heavy metals (Ba, Cu, Cr, Co, Ni, Sr, V and Zn) ii) to find out the large scale variability, iii) to delineate the source as geogenic or anthropogenic based on the distribution maps and correlation of metals in soils. Soil samples were collected from the industrial area of Surat from top 10 cm layer of the soil. These samples were analysed for heavy metals by using Philips PW 2440 X-ray fluorescence spectrometer. The data reveal that soils in the area are significantly contaminated, showing higher levels of toxic elements than normal distribution. The heavy metal loads of the soils in the study area are 471.7 mg/kg for Ba, 137.5 mg/kg for Cu, 305.2 mg/kg for Cr, 51.3 mg/kg for Co, 79.0 mg/kg for Ni, 317.9 mg/kg for Sr, 380.6 mg/kg for V and 139.0 mg/kg for Zn. The higher concentrations of these toxic metals in soils need to be monitored regularly for heavy metal enrichment.  相似文献   

20.
The condition factor and blood variables, including erythrocyte lipid peroxidation (LPO) and the activity of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), in two ecologically distinct fish species (Astyanax fasciatus and Pimelodus maculatus) were evaluated at five sites in the Furnas Hydroelectric Power Station reservoir (Brazil) to assess water quality. Aldrin/dieldrin, endosulfan, heptachlor epoxide, and metolachlor were detected at different concentrations in four of the sites. Condition factor was not directly affected by such contaminants. A negative correlation between hematocrit and heptachlor was detected in P. maculatus. Positive correlations between red blood cells and heptachlor as well as an interactive effect of metolachlor and aldrin/dieldrin were detected in A. fasciatus. The erythrocytes of both species collected from the contaminated sites showed high levels of LPO, an increase in SOD and GPx activities and a decrease in CAT activity. Although the leukocyte number and the differential percentage of leukocytes varied among the sites, the hematological variables, the LPO levels, and the antioxidant enzyme activities could be used to assess water quality, regardless of the differences in the responses of the fish species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号