首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For two decades, the US Department of Agriculture, Forest Service, has been charged with implementing a nationwide field-based forest health monitoring effort. Given its extensive nature, the monitoring program has been gradually implemented across forest health indicators and inventoried states. Currently, the Forest Service??s Forest Inventory and Analysis program has initiated forest health inventories in all states, and most forest health indicators are being documented in terms of sampling protocols, data management structures, and estimation procedures. Field data from most sample years and indicators are available on-line with numerous analytical examples published both internally and externally. This investment in national forest health monitoring has begun to yield dividends by allowing evaluation of state/regional forest health issues (e.g., pollution and invasive pests) and contributing substantially to national/international reporting efforts (e.g., National Report on Sustainability and US EPA Annual Greenhouse Gas Estimates). With the emerging threat of climate change, full national implementation and remeasurement of a forest health inventory should allow for more robust assessment of forest communities that are undergoing unprecedented changes, aiding future land management and policy decisions.  相似文献   

2.
The US Forest Service’s Forest Inventory and Analysis (FIA) program collects information on trees in areas that meet its definition of forest. However, the inventory excludes trees in areas that do not meet this definition, such as those found in urban areas, in isolated patches, in areas with sparse or predominantly herbaceous vegetation, in narrow strips (e.g., shelterbelts), or in riparian areas. In the Great Plains States, little is known about the tree resource in these noninventoried, nonforest areas, and there is a great deal of concern about the potential impact of invasive pests, such as the emerald ash borer. To address this knowledge gap, FIA’s National Inventory and Monitoring Applications Center has partnered with state cooperators and others in a project called the Great Plains Initiative to design and implement an inventory of trees in nonforest areas. The goal of the inventory is to characterize the nonforest tree resource using methods compatible with those of FIA so a holistic understanding of the resource can be obtained by integrating the two surveys. The goal of this paper is to describe the process of designing and implementing the survey, including plot and sample design, and to present some example results from a reporting tool we developed.  相似文献   

3.
Canada's National Forest Inventory (CanFI) provides coarse-grained, aggregated information on a large number of forest attributes. Though reasonably well suited for summary reporting on national forest resources, the coarse spatial nature of this data limits its usefulness in modeling applications that require information on forest composition at finer spatial resolutions. An alternative source of information is the land cover classification produced by the Canadian Forest Service as part of its Earth Observation for Sustainable Development of Forests (EOSD) initiative. This product, which is derived from Landsat satellite imagery, provides relatively high resolution coverage, but only very general information on forest composition (such as conifer, mixedwood, and deciduous). Here we link the CanFI and EOSD products using a spatial randomization technique to distribute the forest composition information in CanFI to the forest cover classes in EOSD. The resultant geospatial coverages provide randomized predictions of forest composition, which incorporate the fine-scale spatial detail of the EOSD product and agree in general terms with the species composition summaries from the original CanFI estimates. We describe the approach and provide illustrative results for selected major commercial tree species in Canada.  相似文献   

4.
The Montreal Process was formed in 1994 to develop an internationally agreed upon set of criteria and indicators for the conservation and sustainable management of temperate and boreal forests. In response to this initiative, the Forest Inventory and Analysis (FIA) and Forest Health Monitoring (FHM) programs of the United States Department of Agriculture Forest Service have implemented soil measurements as part of a national monitoring program to address specific questions related to the conservation of soil and water resources. Integration of soil assessments into the national FIA program provides for systematic monitoring of soil properties across all forested regions of the U.S. using standardized collection, laboratory, and statistical procedures that are compatible with existing forest inventory data. The resulting information will provide quantitative benchmarks for regional, national, and international reporting on sustainable forest management and enhance our understanding of management effects on soil quality. This paper presents an overview of the FIA soil monitoring program, outlines the field and laboratory protocols as currently implemented, and provides examples of how these data may be used to assess indicators of sustainable management as defined by the Montreal Process.  相似文献   

5.
Many countries undertake a national forest inventory to enable statistically valid monitoring in support of national and international reporting of forest conditions and change. Canada’s National Forest Inventory (NFI) program is designed to operate on a 10-year remeasurement cycle, with an interim report produced at the 5-year mid-point. The NFI is a sample-based inventory, with approximately 18,850 2 ×2-km photo plots across the country, distributed on a 20×20-km grid of sample points; these photo plots are the primary data source for the NFI. Capacity to provide annual monitoring information is required to keep policy and decision makers apprised of current forest conditions. In this study, we implemented a multistage monitoring framework and used a Moderate Resolution Imaging Spectroradiometer (MODIS) change product to successfully identify 78% of the changes in forest cover area that were captured with a Landsat change detection approach. Of the NFI photo plots that were identified by both the Landsat and MODIS approaches as having changes in forest cover, the proportion of change area within the plots was similar (R 2?=?0.78). Approximately 70% of the Landsat-derived change events occupied less than 40% of a single MODIS pixel, and more than 90% of the change events of this size were successfully detected with the MODIS product. Finally, MODIS estimates of the proportion of forest cover change at the NFI photo plot level were comparable to change estimates for the ecoregions as a whole (R 2?=?0.95). High-temporal, low-spatial resolution imagery such as MODIS, in combination with other remotely sensed data sources, can provide information on disturbance events within a national forest inventory remeasurement cycle, thereby satisfying the interim information needs of policy and decision makers as well as the requirements of national and international reporting commitments.  相似文献   

6.
Forested watersheds of the Mid-Atlantic Region are an important economic resource. They are also critical for maintaining water quality, sustaining important ecological services, and providing habitat to many animal and plant species of conservation concern. These forests are vulnerable to disturbance and fragmentation from changing patterns of land use in the Mid-Atlantic Region, and from harvests of commercially mature and relatively inexpensive timber. The U.S. Department of Agriculture Forest Service (USDA-FS) Forest Inventory and Analysis (FIA) compiles data on forest condition by state and county. We have transformed these FIA data to a U.S. Geological Survey (USGS) 6-digithdrologic unit code (HUC 6) watershed base, and projected trends in timber growth, inventory, and harvest to 2025 using a timber economics forecasting model (SRTS). We consider forest sustainability from the perspective of timber production, and from the perspective of landscape stability important to conservation values. Simulation data is combined with FIA planted pine acreage data to form a more complete picture of forest extent, composition, and silvicultural practice. Early recognition of prevailing economic trends which encourage the fragmentation of mature forests due to increasing timber harvests may provide managers and policy makers with a planning tool to mitigate undesirable impacts.  相似文献   

7.
We show that the Annual Forest Inventory System (AFIS) being developed by the USDA Forest Service and tested in the state of Minnesota is no more costly than the periodic Minnesota forest inventory (12 year measurement cycle). Since very useful results could be generated with AFIS every 4 years in addition to the results from the periodic survey, a continuous inventory would be cost effective. Periodic surveys yield more precise estimates within the first few years of the full survey but afterwards the annual survey would be more precise. Where the changeover in precision occurs still needs to be determined. This cost-neutral advantage of AFIS is quite important to note since the USFS has decided to go to annualized inventories such as AFIS this year.  相似文献   

8.
9.
Criteria and Indicators of Sustainable Forest Management   总被引:2,自引:0,他引:2  
  相似文献   

10.
Different types of assessments of forest damage are conducted in Austria. Faced with forest dieback reports, a needle and leaf sampling programme and a terrestrial crown assessment have been started after 1983, in addition to the forest inventory. In order to obtain more comprehensive and detailed information for the analysis of cause-effect relationships, as many investigations concerning forest health status as possible were concentrated on permanent plots out of the grid of the Austrian National Forest Inventory. This new, long-term project, started in 1987, was called the Forest Damage Monitoring System. An overview of the investigations and assessments, as they have been conducted by the end of 1991, is given in this paper.  相似文献   

11.
In the frame of a process aiming at harmonizing National Forest Inventory (NFI) and ICP Forests Level I Forest Condition Monitoring (FCM) in Italy, we investigated (a) the long-term consistency between FCM sample points (a subsample of the first NFI, 1985, NFI_1) and recent forest area estimates (after the second NFI, 2005, NFI_2) and (b) the effect of tree selection method (tree-based or plot-based) on sample composition and defoliation statistics. The two investigations were carried out on 261 and 252 FCM sites, respectively. Results show that some individual forest categories (larch and stone pine, Norway spruce, other coniferous, beech, temperate oaks and cork oak forests) are over-represented and others (hornbeam and hophornbeam, other deciduous broadleaved and holm oak forests) are under-represented in the FCM sample. This is probably due to a change in forest cover, which has increased by 1,559,200 ha from 1985 to 2005. In case of shift from a tree-based to a plot-based selection method, 3,130 (46.7 %) of the original 6,703 sample trees will be abandoned, and 1,473 new trees will be selected. The balance between exclusion of former sample trees and inclusion of new ones will be particularly unfavourable for conifers (with only 16.4 % of excluded trees replaced by new ones) and less for deciduous broadleaves (with 63.5 % of excluded trees replaced). The total number of tree species surveyed will not be impacted, while the number of trees per species will, and the resulting (plot-based) sample composition will have a much larger frequency of deciduous broadleaved trees. The newly selected trees have—in general—smaller diameter at breast height (DBH) and defoliation scores. Given the larger rate of turnover, the deciduous broadleaved part of the sample will be more impacted. Our results suggest that both a revision of FCM network to account for forest area change and a plot-based approach to permit statistical inference and avoid bias in the tree sample composition in terms of DBH (and likely age and structure) are desirable in Italy. As the adoption of a plot-based approach will keep a large share of the trees formerly selected, direct tree-by-tree comparison will remain possible, thus limiting the impact on the time series comparability. In addition, the plot-based design will favour the integration with NFI_2.  相似文献   

12.
This study deals with the future scope of REDD (Reduced Emissions from Deforestation and forest Degradation) and REDD+ regimes for measuring and monitoring the current state and dynamics of carbon stocks over time with integrated geospatial and field-based biomass inventory approach. Multi-temporal and multi-resolution geospatial synergic approach incorporating satellite sensors from moderate to high resolution with stratified random sampling design is used. The inventory process involves a continuous forest inventory to facilitate the quantification of possible CO2 reductions over time using statistical up-scaling procedures on various levels. The combined approach was applied on a regional scale taking Himachal Pradesh (India), as a case study, with a hierarchy of forest strata representing the forest structure found in India. Biophysical modeling implemented revealed power regression model as the best fit (R 2?=?0.82) to model the relationship between Normalized Difference Vegetation Index and biomass which was further implemented to calculate multi-temporal above ground biomass and carbon sequestration. The calculated value of net carbon sequestered by the forests totaled to 11.52 million tons (Mt) over the period of 20 years at the rate of 0.58 Mt per year since 1990 while CO2 equivalent reduced from the environment by the forests under study during 20 years comes to 42.26 Mt in the study area.  相似文献   

13.
Nonnative plants have tremendous ecological and economic impacts on plant communities globally, but comprehensive data on the distribution and ecological relationships of individual species is often scarce or nonexistent. The objective of this study was to assess the influence of vegetation type, climate, topography, and management history on the distribution and abundance of eight selected nonnative plant taxa in forests in western Oregon. These eight taxa were selected as being reliably detected by a multi-resource inventory of 1127 systematically-placed plots on nonfederal forest lands from 1995 to 1997 by the USFS Forest Inventory and Analysis (FIA) program. One or more of the eight nonnative taxa studied were found on 20% of the sampled subplots in the study area, but relatively few stands were dominated by them. Overall abundance of nonnative taxa was likely much greater, because few composites and graminoids were identified to species in this general-purpose inventory. Distribution of most taxa was more closely associated with low density of overstory trees than with climate. Nonnative taxa were significantly more abundant in stands that had been recently clearcut or thinned than in stands that had not. Frequencies of several taxa decreased with elevation, which may reflect proximity to source populations and intensive land use rather than any climatic constraints. Although the greatest potential for displacement of native forest species appears to be in early-successional communities, the potential for spread of some shade-tolerant evergreen shrubs also seems high.  相似文献   

14.
Comprehensive assessment of individual-tree crown condition by the US Department of Agriculture, Forest Service, Forest Inventory and Analysis (FIA) Program has its origins in the concerns about widespread forest decline in Europe and North America that developed in the late 1970s and early 1980s. Programs such as the US National Acid Precipitation Assessment Program, US National Vegetation Survey, Canadian Acid Rain National Early Warning System, and joint US–Canadian North American Sugar Maple Decline Project laid the groundwork for the development of the US Forest Service crown-condition indicator. The crown-condition assessment protocols were selected and refined through literature review, peer review, and field studies in several different forest types during the late 1980s and early 1990s. Between 1980 and 2011, 126 publications relating specifically to the crown-condition indicator were added to the literature. The majority of the articles were published by the US Department of Agriculture, Forest Service or other State or Federal government agency, and more than half were published after 2004.  相似文献   

15.
The negative effects of elevated concentrations of inorganic aluminium on aquatic organisms are well documented. Acid deposition is often cited as a main driver behind the mobilisation and speciation of aluminium in soils and surface waters. In the study, we tested the hypothesis that sulphur deposition is the main driver for elevated concentrations of inorganic aluminium in 114 base poor, boreal Swedish streams. However, the deposition of anthropogenic sulphate has decreased substantially since it peaked in the 1970s, and at the current deposition levels, we hypothesise that local site parameters play an important role in determining vulnerability to elevated concentrations of inorganic aluminium in boreal stream waters. Presented here are the results of a principal components analysis of stream water chemistry, acid deposition data and local site variables, including forest composition and stem volume. It is shown that the concentrations of both organic and inorganic aluminium are not explained by either historical or current acid deposition, but are instead explained by a combination of local site characteristics. Sites with elevated concentrations of inorganic aluminium were characterised by small catchments (<500 ha) dominated by mature stands of Norway spruce with high stem volume. Using data from the Swedish National Forest Inventory the area of productive forest land in Sweden with a higher vulnerability for elevated inorganic aluminium concentrations in forests streams is approximately 1.5 million hectares or 7% of the total productive forest area; this is higher in the south of Sweden (10%) and lower in the north (2%). A better understanding of the effects of natural processes and forest management in controlling aquatic inorganic aluminium concentrations is therefore important in future discussions about measures against surface water acidification.  相似文献   

16.
17.
In Canada, acid rain is the generic term encompassing all forms of air pollution — wet and dry deposition, gaseous pollutant concentrations, and airborne particulates. It was because these pollutants, alone or in combination, may directly or indirectly affect the heath of Canada's forests, that in 1984, the Canadian Forestry Service initiated a national forest monitoring program (Acid Rain National Early Warning System or ARNEWS).Research studies on pollutant effects of the past 15–20 years have demonstrated that it is not possible to define specific symptoms of acid rain or mixtures of pollutants on native tree species or specific responses of the forest ecosystem. Consequently, ARNEWS monitored incipient acid rain effects by determining the forest's state of health rather than by concentrating on specific pollutant responses.The detection system entails experienced insect and disease survey forest rangers assessing both specific plots and the forest as a whole for extraordinary forest damage. The techniques used include mensurational and symptomatological measurements as well as evaluation of stands for damage from natural and anthropogenic causes. Critical also to the system was the capability of the Canadian Forestry Service to support the detection system with research staff who could carry out studies to explain any abnormalities in forest condition detected during the annual surveys. The ultimate outcome of the monitoring system if unexplained forest damage is detected is a research project on possible causes.Contribution from Fourth World Wilderness Congress — Acid Rain Symposium, Denver (Estes Park), Colorado, September 11–18, 1987.  相似文献   

18.
We evaluated the quality of data being collected for the Japanese National Forest Inventory (NFI). The inventory program commenced in 1999 but has not incorporated a quality assurance (QA) program; we sought to determine what effect this was having on the quality of data being collected. Forty-eight plots in four prefectures were measured by operational field teams and then remeasured by a control team that made careful and unhurried measurements. The paired data were evaluated, including diameter, total height, tree count, species richness, and topographic condition. Compared to the control team, all field teams of each prefecture tended to significantly underestimate all of the continuous variables. Most variables had larger variability in the inventory data than has been reported in the published literature. The findings of consistent bias and large variation in the field team measurements call for urgent implementation of a quality assurance program (extensive field training and regular remeasurement) in the Japanese NFI to improve data quality, and this conclusion could be applied to the inventory system of any country that does not include a QA program.  相似文献   

19.
A demonstration project in Oregon examined the feasibility of combining Federal environmental monitoring surveys. An integrated approach should remove duplication of effort and reduce the possibility of providing apparently conflicting information to policy makers and the public. Data collection teams made photo interpretation measurements and on-site soil/vegetation/animal observations at locations that were selected from the Forest Inventory and Analysis (FIA), National Forest System (NFS) Region 6, and National Resource Inventory (NRI) surveys in a six-county area in Northern Oregon. The project demonstrated the feasibility of conducting a combined FIA/NFS/NRI survey and suggests an approach that will preserve the utility of the critical historical information from these surveys. We suggest a framework for estimating the extent of forest and range land that explains FIA/NRI differences and provides a common basis for both surveys. We suggest indicator and protocol criteria that will allow consistent national and regional estimates over all vegetation types, and stress the importance of including measurement repeatability in the design of the combined survey.  相似文献   

20.
Urban areas are continuously expanding today, extending their influence on an increasingly large proportion of woods and trees located in or nearby urban and urbanizing areas, the so-called urban forests. Although these forests have the potential for significantly improving the quality the urban environment and the well-being of the urban population, data to quantify the extent and characteristics of urban forests are still lacking or fragmentary on a large scale. In this regard, an expansion of the domain of multipurpose forest inventories like National Forest Inventories (NFIs) towards urban forests would be required. To this end, it would be convenient to exploit the same sampling scheme applied in NFIs to assess the basic features of urban forests. This paper considers approximately unbiased estimators of abundance and coverage of urban forests, together with estimators of the corresponding variances, which can be achieved from the first phase of most large-scale forest inventories. A simulation study is carried out in order to check the performance of the considered estimators under various situations involving the spatial distribution of the urban forests over the study area. An application is worked out on the data from the Italian NFI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号