首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 49 毫秒
1.
Marine ecosystems worldwide are threatened by aquatic pollution; however, there is a paucity in data from the Caribbean region. As such, five heavy metals (arsenic, cadmium, copper, zinc, mercury) were measured in tissues of the scleractinian corals Porites furcata and Agaricia tenuifolia and in adjacent sediments in the Bocas del Toro Archipelago, Panama. Samples were collected from five reef sites along a gradient of distance from an international shipping port and were analysed using inductively coupled plasma optical emission spectrometry and atomic absorption spectrophotometry for mercury. Copper and zinc were the most abundant metals and ranged from 11 to 63 mg kg?1 and from 31 to 185 mg kg?1 in coral tissues, respectively. The highest concentration of each metal was measured in P. furcata tissues, with copper and mercury concentrations significantly higher in P. furcata than in A. tenuifolia at every site. These results suggest that P. furcata has a higher affinity for metal accumulation and storage than A. tenuifolia. With the exception of cadmium, metal concentrations in coral tissues were generally elevated at coral reefs in closer proximity to the port; however, this pattern was not observed in sediments. Hard coral cover was lowest at reefs in closest proximity to the port, suggesting that metal pollution from port-related activities is influencing hard coral abundance at nearby coral reefs.  相似文献   

2.
There are increasing concerns on heavy metal contaminant in soils and vegetables. In this study, we investigated heavy metal pollution in vegetables and the corresponding soils in the main vegetable production regions of Zhejiang province, China. A total of 97 vegetable samples and 202 agricultural soil samples were analyzed for the concentrations of Cd, Pb, As, Hg, and Cr. The average levels of Cd, Pb, and Cr in vegetable samples [Chinese cabbage (Brassica campestris spp. Pekinensis), pakchoi (Brassica chinensis L.), celery (Apium graveolens), tomato (Lycopersicon esculentum), cucumber (Colletotrichum lagenarium), cowpea (Vigna unguiculata), pumpkin (Cucurbita pepo L.), and eggplant (Solanum melongena)] were 0.020, 0.048, and 0.043 mg kg?1, respectively. The Pb and Cr concentrations in all vegetable samples were below the threshold levels of the Food Quality Standard (0.3 and 0.5 mg kg?1, respectively), except that two eggplant samples exceeded the threshold levels for Cd concentrations (0.05 mg kg?1). As and Hg contents in vegetables were below the detection level (0.005 and 0.002 mg kg?1, respectively). Soil pollution conditions were assessed in accordance with the Chinese Soil Quality Criterion (GB15618-1995, Grade II); 50 and 68 soil samples from the investigated area exceeded the maximum allowable contents for Cd and Hg, respectively. Simple correlation analysis revealed that there were significantly positive correlations between the metal concentrations in vegetables and the corresponding soils, especially for the leafy and stem vegetables such as pakchoi, cabbage, and celery. Bio-concentration factor values for Cd are higher than those for Pb and Cr, which indicates that Cd is more readily absorbed by vegetables than Pb and Cr. Therefore, more attention should be paid to the possible pollution of heavy metals in vegetables, especially Cd.  相似文献   

3.
The study was designed to investigate the content and distribution of selected heavy metals (As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Fe, Pb and Zn) in samples of fruticose macrolichen Usnea antarctica from James Ross Island. A special emphasis was devoted to mercury and its species (elemental mercury and methylmercury). It was found that mercury contents were relatively high (up to 2.73 mg kg?1 dry weight) compared to other parts of the Antarctic Peninsula region, while the concentrations of most other elements were within reported ranges. Mercury contents in lichens originating from the interior were higher than those from the coast, which is probably the result of local microclimate conditions. Similar trends were observed for Hg0 and MeHg+, whose contents were up to 0.14 and 0.098 mg kg?1 dry weight, respectively. While mercury did not show a significant correlation with any other element, the mutual correlation of some litophile elements probably refers to the influence on thalli of resuspended weathered material. The influence of habitat and environmental conditions could play an essential role in the bioaccumulation of contaminants rather than just the simple presence of sources. Thus, the study of the thalli of this species can bring a new perspective on the interpretation of contaminant accumulation in lichens of the polar region.  相似文献   

4.
The Fusaro Lagoon is a shallow lagoon, located in SW Italy, largely influenced in the last decades by several anthropic impacts. The study examined the pollution status of the lagoon, during year 2011–2012 at nine sampling stations with the aim to find out proper measurements of water lagoon restoration. Concentrations of heavy metals (HMs) (aluminium [Al], barium [Ba], cadmium [Cd], copper [Cu], iron [Fe], manganese [Mn], vanadium [V] and zinc [Zn]) were examined in water, sediments and specimens of the ascidian Ciona intestinalis sp. A. Low levels of dissolved oxygen concentration were detected at many stations, with mean values of 5.2–6.4 mg L?1. The redox potential of surface waters was also low, ?2.7 to 50.7 mV. Sediments possessed high organic matter content, 17.7–29.4 %. In sediments, the mean Zn level, 251.4 mg kg?1, was about sixfold higher than that recorded in year 2000 (38.5 mg kg?1) and considerably higher than that recorded in 2007 (191 mg kg?1). The mean levels of Cd were outstandingly high, with a mean value of 70.5 mg kg?1, about 30- and 50-fold higher than those determined in 2000 and 2007, respectively. Cadmium (Cd), Cu and nickel (Ni) appeared in excess with respect to most current guidelines, reaching significant pollution levels. C. intestinalis sp. A was detected only at few stations, with metals accumulated preferentially in the body in respect to the tunic, from 1.2 times for Zn (178 mg kg?1) to 4.0 times for V (304 mg kg?1). Data suggests the necessity of an immediate action of eco-compatible interventions for environmental restoration.  相似文献   

5.
A modified LC-MS method for the analysis of mepiquat residue in wheat, potato, and soil was developed and validated. A hydrophilic interaction liquid chromatographic column has been successfully used to retain and separate the mepiquat. Mepiquat residue dynamics and final residues in supervised field trials at Good Agricultural Practice (GAP) conditions in wheat, potato, and soil were studied. The limits of quantification for mepiquat in all samples were all 0.007 mg kg?1, which were lower than their maximum residue limits. At fortification levels of 0.04, 0.2, and 2 mg kg?1 in all samples, recoveries ranged from 77.5 to 116.4 % with relative standard deviations of 0.4–7.9 % (n?=?5). The dissipation half-lives (T 1/2) of mepiquat in soil (wheat), wheat plants, soil (potato), and potato plants were 4.5–6.3, 3.0–5.6, 2.2–4.6, and 2.4–3.2 days, respectively. The final residues of mepiquat were below 0.153 mg kg?1 in soil (wheat), 0.052–1.900 mg kg?1 in wheat, below 0.072 mg kg?1 in soil (potato), and below 1.173 mg kg?1 in potato at harvest time. Moreover, pesticide risk assessment for all the detected residues was conducted. A maximum 0.0012 % of acceptable daily intake (150 mg kg?1) for national estimated daily intake indicated low dietary risk of these products.  相似文献   

6.
This study was performed to investigate the metal concentrations in muscle, liver, gonad, and gill of gilthead seabream (Sparus aurata L., 1758), European seabass (Dicentrarchus labrax L., 1758), and keeled mullet (Liza carinata Valenciennes, 1836) from Yelkoma Lagoon, northeastern Mediterranean region. So, the levels of cadmium, cobalt, chromium, copper, iron, manganese, nickel, lead, and zinc in tissues of specimens from the lagoon were determined by inductively coupled plasma optical emission spectrometer. Concentrations of metals in muscles of the examined species ranged from 0.10 to 0.47 mg kg???1 for cadmium, 0.10 to 0.43 mg kg???1 for cobalt, 0.17 to 0.72 mg kg???1 for chromium, 0.62 to 1.03 mg kg???1 for copper, 28.9 to 52.3 mg kg???1 for iron, 0.75 to 0.96 mg kg???1 for manganese, 0.11 to 0.57 mg kg???1 for nickel, 0.19 to 0.47 mg kg???1 for lead, and 6.01 to 13.9 mg kg???1 for zinc, respectively. Additionally, metal concentrations in muscles of fish were assessed for human uses according to provisional tolerable weekly intake and provisional tolerable daily intake.  相似文献   

7.
The Sava River is the biggest tributary to the Danube River. As a part of the 6th FW EU project, Sava River Basin: Sustainable Use, Management and Protection of Resources (SARIB), ecological status of sediments was investigated. In order to assess the geographical distribution in sediment contamination of the Sava River, inorganic and persistent organic pollutants were analyzed in sediments at 20 selected sampling sites along the Sava River from its spring to its outfall into the Danube River. For comparability of data to other river basins the sediment fraction below 63 μm was studied. Due to complexity of the work performed, the results are published separately (“Part I: Selected elements” and “Part II: Persistent organic pollutants”). In the present study, the extent of pollution was estimated by determination of the total element concentrations and by the identification of the most hazardous highly mobile element fractions and anthropogenic inputs of elements to sediments. To assess the mobile metal fraction extraction in 0.11 mol L???1, acetic acid was performed (first step of the Community Bureau of Reference extraction procedure), while anthropogenic inputs of elements were estimated on the basis of normalization to aluminum (Al) concentration. According to the Water Framework Directive, the following elements were investigated in sediments: cadmium (Cd), lead (Pb), nickel (Ni), and mercury (Hg). Furthermore, copper (Cu), zinc (Zn), chromium (Cr), arsenic (As), and phosphorous (P) were determined. The analyses of sediments demonstrated slightly elevated values for Hg, Cr, and Ni in industrially exposed sites (concentrations up to 0.6, 380, and 210 mg kg???1, respectively). However, the latter two elements exist in sparingly soluble forms and therefore do not represent an environmental burden. P concentrations were found in elevated concentrations at agricultural areas and big cities (up to 1,000 mg kg???1).  相似文献   

8.
The aim of the study was to investigate the transfer of toxic metals from honeybee workers (Apis mellifera L.) to bee honey in relation to the ecological state of the environment. The materials of the study consisted of samples of honeybee bodies and varietal honeys taken from the same apiary located in three areas: R1—urbanized (16), R2—ecologically clean (16) and R3—industrialized (15) of south-eastern Poland. The contents of 14 elements in all tested samples, including toxic metals (Cd, Pb, Hg, Al, Ni, Tl) as well as bioelements (K, Mg, Ca, Mn, Fe, Zn, Cu, Se), were analysed by the ICP-OES method with prior microwave mineralization. The concentrations of the majority of the studied elements, excluding aluminum and lead, were significantly higher in bee bodies than in honey samples (P?<?0.05). The pollution of bee bodies by toxic metals was dependent on the environmental cleanliness, and the most pollution was observed in the industrialized area. The bee body was the most effective barrier for Cd and Tl transfer to the honey, while the level of Ni was similar in both tested materials. The Al concentration was significantly higher in honey than bee bodies (14.81?±?24.69 and 6.51?±?5.83 mg kg?1, respectively), which suggests the possibility of secondary contamination of honey. The greatest sensitivity to heavy metal pollution was observed in honeydew honey compared to nectar honeys (P?<?0.05). It was proved for the first time that bees work as biofilters for toxic metals and prevent honey contamination.  相似文献   

9.
Surface sediments collected from the Lagos Lagoon, Nigeria, and three adjoining rivers were analysed for their physicochemical properties and pseudo-total concentration of the potentially toxic metals (PTM) Cd, Cr, Cu, Pb and Zn. The concentration of the PTM varied seasonally and spatially. Odo-Iyaalaro was observed to be the most polluted river, with highest concentrations of 42.1 mg kg?1, 102 mg kg?1, 185 mg kg?1, 154 mg kg?1 and 1040 mg kg?1 of Cd, Cr, Cu, Pb and Zn, respectively, while Ibeshe River was the least contaminated, apart from a site affected by Cu from the textile industry. Some of the sediments were found to be above the consensus-based probable effect concentrations and Dutch sediment guideline for metals. Overall metal concentrations were similar to those reported for other tropical lagoon and estuarine systems affected by anthropogenic inputs as a result of rapid urbanisation. Due to the large number of samples, principal component analysis was used to examine relationships within the data set. Generally, sediments collected during the dry season were observed to have higher concentration of PTM than those collected during the rainy season. This means that PTM could accumulate over a prolonged period and then be released relatively rapidly, on an annual basis, into tropical lagoon systems.  相似文献   

10.
Proper assessment of soil cadmium (Cd) concentrations is essential to establish legislative limits. The present study aimed to assess background Cd concentrations in soils from the state of São Paulo, Brazil, and to correlate such concentrations with several soil attributes. The topsoil samples (n?=?191) were assessed for total Cd contents and for other metals using the USEPA 3051A method. The background concentration was determined according to the third quartile (75th). Principal component analysis, Spearman correlation, and multiple regressions between Cd contents and other soil attributes (pH, cation exchange capacity (CEC), clay content, sum of bases, organic matter, and total Fe, Al, Zn, and Pb levels) were performed. The mean Cd concentration of all 191 samples was 0.4 mg kg?1, and the background concentration was 0.5 mg kg?1. After the samples were grouped by parent material (rock origin) and soil type, the background Cd content varied, i.e., soils from igneous, metamorphic, and sedimentary rocks harbored 1.5, 0.4, and 0.2 mg kg?1 of Cd, respectively. The background Cd content in Oxisols (0.8 mg kg?1) was higher than in Ultisols (0.3 mg kg?1). Multiple regression demonstrated that Fe was primarily attributed to the natural Cd contents in the soils (R 2?=?0.79). Instead of a single Cd background concentration value representing all São Paulo soils, we propose that the concentrations should be specific for at least Oxisols and Ultisols, which are the primary soil types.  相似文献   

11.
In order to characterize environmental vanadium distribution, mobility, and bioaccumulation, a total of 55 soil samples and 36 plant samples were collected in four typical land-use districts in Panzhihua region, Southwestern China. Soil samples were analyzed with the modified Community Bureau of Reference (BCR) sequential extraction procedure, and the content of vanadium in soil and plant was determined by ICP-AES. The total content of vanadium was 208.1?C938.4 mg kg???1 in smelting area, 111.6?C591.2 mg kg???1 in mining area, 94.0?C183.6 mg kg???1 in urban park, and 71.7?C227.2 mg kg???1 in agricultural area, respectively, while the bio-available content of vanadium was characterized that the polluted areas (mining area 18.8?C83.6 mg kg???1, smelting area 41.7?C132.1 mg kg???1) and the unpolluted area (agricultural area 9.8?C26.4 mg kg???1, urban park 9.9?C25.2 mg kg???1). In addition, the contamination degree of vanadium in soil was smelting area > mining area > agricultural area ?? urban park. Moreover, the fraction of vanadium in each sequential extraction characterized that residual fraction > oxidizable fraction > reducible fraction > acid soluble fraction. The bioaccumulation of vanadium from soil to plant was weak to intermediate absorption. Therefore, some countermeasures such as soil monitoring and remediation should be to take in the sooner future, especially in mining and smelting area.  相似文献   

12.
Top predators like the Neotropical otter, Lontra longicaudis annectens, are usually considered good bioindicators of habitat quality. In this study, we evaluated heavy metal contamination (Hgtot, Pb, Cd) in the riverine habitat, prey (crustaceans and fish), and otter feces in two Ramsar wetlands with contrasting upstream contamination discharges: Río Blanco and Río Caño Grande in Veracruz, Mexico, during the dry, the wet, and the nortes seasons. Most comparisons revealed no differences between sites while seasonal differences were repeatedly detected for all of the compartments. Higher concentrations of Pb during the dry season and of Cd during the wet season in otter feces mirrored differences detected in the most seasonally consumed prey. Compared with fecal methylmercury values reported for the European otter (0.25–0.75 mg kg?1) in unprotected areas, the Hgtot levels that we measured were lower (0.02–0.17 mg kg?1). However, Pb (117.87 mg kg?1) and Cd (9.14 mg kg?1) concentrations were higher (Pb, 38.15 mg kg?1 and Cd, 4.72 mg kg?1) in the two Ramsar wetlands. Protected areas may shelter species, but those with water-linked diets may suffer the effect of chemicals used upstream.  相似文献   

13.
Japanese stingfish (Sebastiscus marmoratus) and Bambooleaf wrasse (Pseudolabrus japonicas) are monitored annually for mercury pollution in Minamata Bay, Japan. The average total mercury concentration in the muscle of these two species in Minamata Bay was 0.36 mg?kg?1 wet weight and 0.20 kg?1 wet weigh, respectively, between 2008 and 2010. This is higher than levels elsewhere in Japan (0.125 mg?kg?1 wet weight and 0.038 mg?kg?1 wet weight, respectively). The FDA (2001) and EPA (2004) suggested that a proportion of mercury accumulated in fish is derived from seawater. We reared young red sea bream (Pagrus major) over a 2-year period in Minamata Bay and Nagashima (control) to evaluate the uptake of mercury from seawater and dietary sources. Fish were fed a synthesized diet that did not contain mercury. There was no difference in mercury accumulation in the muscle of red sea bream between Minamata Bay and Nagashima. Thus, our results suggest that the majority of mercury accumulated in fish muscle is not from seawater.  相似文献   

14.
Located in Central South China, Hunan province is rich in mineral resources. To study the influence of mining on Cd pollution to local agricultural eco-system, the paddy soils and rice grain of Y county in northern Hunan province were intensively monitored. The results were as follows: (1) Total Cd (T-Cd) content in the soils of the county ranges from 0.13 to 6.02 mg kg?1, with a mean of 0.64 mg kg?1, of which 57.5 % exceed the allowable limit specified by the China Soil Environmental Quality Standards. T-Cd in the soils varies largely, with the coefficient of variation reaching 146.4 %. The spatial distribution of T-Cd in the soils quite matches with that of mining and industries. The content of HCl-extractable Cd (HCl-Cd) in the soils ranges from 0.02 to 2.17 mg kg?1, with a mean of 0.24 mg kg?1. A significant positive correlation exists between T-Cd and HCl-Cd in the soils (r?=?0.770, ρ?<?0.01). (2) Cd content in the rice produced in Y county ranges from 0.01 to 2.77 mg kg?1, with a mean of 0.46 mg kg?1. The rate of rice with Cd exceeding the allowable limit specified by the Chinese Grain Security Standards reaches 59.6 %; that with Cd exceeding 1 mg kg?1, called as “Cd rice,” reaches 11.1 %. (3) Cd content in the rice of Y county is positively significantly correlated with HCl-Cd (r?=?0.177, ρ?<?0.05) but not significantly with T-Cd in the soils (r?=?0.091, ρ?>?0.05), which suggests that the amount of Cd accumulating in the rice is more affected by its availability in the soils, rather than the total content. (4) The dietary intake of Cd via rice consumption in Y county is estimated to be 179.9 μg day?1 person?1 on average, which is far beyond the allowable limit specified by FAO/WHO and the target hazard quotients of Cd much higher than 1, suggesting the high risk on human health from Cd exposure.  相似文献   

15.
This study is a continuation of our preceding research identifying suitable environmental samples for the tracing of atmospheric pollution in industrial areas. Three additional types of environmental samples were used to characterise contamination sources in the industrial area of Ostrava city, Czech Republic. The region is known for its extensive metallurgical and mining activities. Fingerprinting of stable Pb isotopes was applied to distinguish individual sources of anthropogenic Pb. A wide range of 206Pb/207Pb ratios was observed in the investigated samples: 206Pb/207Pb = 1.168–1.198 in mosses; 206Pb/207Pb = 1.167–1.215 in soils and 206Pb/207Pb = 1.158–1.184 in tree cores. Black and brown coal combustion, as well as metallurgical activities, is the two main sources of pollution in the area. Fossil fuel burning in industry and households seems to be a stronger source of Pb emissions than from the metallurgical industry. Concentration analyses of tree rings showed that a significant increase in As concentrations occurred between 1999 and 2016 (from 0.38 mg kg?1 to 13.8 mg kg?1). This shift corresponds to the use of brown coal from Bílina, Czech Republic, with an increased As concentration. The burning of low-quality fuels in households remains a problem in the area, as small ground sources have a greater influence on the air quality than do industrial sources.  相似文献   

16.
Phosphorus (P) sorption by sediments may play a vital role in buffering P concentration in the overlying water column. To characterize P sorption–desorption in the river bed sediments, 17 bed sediment samples collected from Abshineh river, in a semi arid region, Hamedan, western Iran were studied through a batch experiment and related to sediment composition. The sorbed fraction ranged from 4.4% to 5.4% and from 38.5% to 86.0% of sorption maxima when 20 and 1,500 mg P kg?1, respectively, was added to the sediment samples. Phosphorus sorption curves were well fitted to the Langmuir model. Zero equilibrium P concentration ranged from 0.10 to 0.51 mg P l?1 and varied with sediment characteristics. Phosphorus desorption differed strongly among the studied bed sediments and ranged from 10.8% to 80.2% when 1,500 mg P kg?1 was added. The results of the geochemical modelling indicated that even under low P addition (2 mg l?1), the solutions are mainly saturated with respect to hydroxyapatite and ß-tricalcium phosphate minerals and undersaturated with respect to other Ca and Mg minerals, whereas under higher P addition (150 mg l?1), most Ca–P solid phases, except the most soluble mineral (brushite), will likely precipitate. A Langmuir sorption maximum was positively correlated with carbonate calcium. Estimated P retention capacity of the bed sediments are generally lower and zero equilibrium P concentration values higher in upstream sites than at the downstream sites, suggesting that sediments in upstream and downstream may act as source and sink of P, respectively.  相似文献   

17.
Total and methylmercury concentrations were assessed in muscle and liver of 141 fish samples from the northern part of the Persian Gulf. All fish samples belonged to five different species: grunt, flathead, greasy grouper, tiger-tooth croaker, and silver pomfret. In addition, Hg and methylmercury were analyzed in scalp hair of 19 fishermen living in the same coastal stations of the Persian Gulf and consuming several fish meals a week. Total mercury concentrations in fish muscle and liver ranged from 0.01 to 1.35 μg g???1 w.w. and from 0.02 to 1.30 μg g???1 w.w., respectively. In fish muscle, 3% of the Hg concentrations were higher than 0.5 μg g???1 w.w., which corresponds to the maximum acceptable WHO level, while 9% were in the range of polluted fish (between 0.3 and 0.5 μg g???1 w.w.). The highest mercury concentrations in fish muscle were observed in flathead fish at Abadan (average of 0.68 μ g g???1 w.w.). Methylmercury fractions in fish muscle and liver amount to 34–99% (median 64%) and 24–70% (median 43%), respectively. The mean total Hg concentration in the fishermen’s scalp hair amounted to 2.9 ± 2.2 μ g g???1, with 68% in the form of methylmercury. Ninety-five percent of the Hg levels in the fishermen’s hair were below 10 μ g g???1, which is the WHO warning limit. In addition, relationships between the mercury levels in hair, on the one hand, and exposure-related factors such as Hg levels in specific fish species, regional differences, and number of fish meals, on the other hand, are discussed. It appears that a significant correlation for example exists between Hg levels human hair and fish muscle or human hair and age and that mean mercury levels in fish muscle and human hair decreased from western (Abadan) to eastern (Abbas port) coastal sites.  相似文献   

18.
The Department of Energy’s Savannah River Site is a former nuclear weapon material production and current research facility located in South Carolina, USA. Wastewater discharges from a fuel and nuclear reactor target manufacturing facility released depleted and natural U, as well as other metals into the Tims Branch-Steed Pond water system. We investigated the current dynamics of this system for the purposes of environmental monitoring and assessment by examining metal concentrations, bioavailability, and trophic transfer of contaminants in seven ponds. Biofilm, detritus, and Anuran and Anisopteran larvae were collected and analyzed for stable isotopes (δ 15N, δ 13C) and contaminants of potential concern (COPC) with a focus on Ni, U, and Hg, to examine metal mobility. Highest levels of Ni and U were found in biofilms U (147 and 332 mg kg?1 DW, respectively), while highest Hg levels were found in tadpoles (1.1 mg kg?1 DW). We found intraspecific biomagnification of COPCs as expressed through stable isotope analysis. Biofilms were the best indicators for contamination and Anuran larvae with the digestive tract removed were the best indicators of the specific bioavailability of the focal metals. Monitoring data showed that baseline δ 15N values differed between ponds, but within a pond, values were stable throughout tadpole Gosner stage, strengthening the case to use this species for monitoring purposes. It is likely that there still is risk to ecosystem integrity as COPC metals are being assimilated into lower trophic organisms and even low levels of this mixture has shown to produce deleterious effects to some wildlife species.  相似文献   

19.
Some wetland plant species are adapted to growing in the areas of higher metal concentrations. Use of such vegetation in remediation of soil and water contaminated with heavy metals is a promising cost-effective alternative to the more established treatment methods. Throughout the year, composite industrial effluents bringing various kinds of heavy metals contaminate our study site, the East Calcutta Wetlands, a Ramsar site at the eastern fringe of Kolkata city (formerly Calcutta), India. In the present study, possible measures for remediation of contaminated soil and water (with elements namely, Ca, Cr, Cu, Pb, Zn, Mn, and Fe) of the ecosystem had been investigated. Ten common regional wetland plant species were selected to study their efficiency and diversity in metal uptake and accumulation. Results showed that Bermuda grass (Cynodon dactylon) had the highest total Cr concentration (6,601 ± 33 mg kg???1 dw). The extent of accumulation of various elements in ten common wetland plants of the study sites was: Pb (4.4?C57 mg kg???1 dw), Cu (6.2?C39 mg kg???1 dw), Zn (59?C364 mg kg???1 dw), Mn (87?C376 mg kg???1 dw), Fe (188?C8,625 mg kg???1 dw), Ca (969?C3,756 mg kg???1 dw), and Cr (27?C660 mg kg???1 dw) indicating an uptake gradient of elements by plants as Ca>Fe>Mn>Cr>Zn>Cu>Pb. The present study indicates the importance of identification and efficiency of metal uptake and accumulation capabilities by plants in relation to their applications in remediation of a contaminated East Calcutta Wetland ecosystem.  相似文献   

20.
The metabolic degradation and persistence of imidacloprid in paddy field soil were investigated following two applications of imidacloprid at 20 and 80 g a.i. ha?1 at an interval of 10 days. The soil samples were collected at various time intervals. The limit of quantification for the analysis of imidacloprid and its metabolites was obtained at the concentration of 0.01 mg kg?1. The initial deposits of total imidacloprid were found to be 0.44 and 1.61 mg kg?1 following second applications. These residues could not be detected after 60 and 90 days following second applications of imidacloprid at lower and higher dosages, respectively. In soil, urea metabolite was found to be the maximum, followed by olefine, nitrosimine, 6-chloronicotinic acid, 5-hydroxy and nitroguanidine. The half-life values (t 1/2) of imidacloprid were worked out to be 12.04 and 11.14 days, respectively, when applied at lower and higher doses, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号