首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Concentrations of six endocrine-disrupting compounds (EDCs), bisphenol A (BPA), estrone (E(1)), 17β-estradiol (E(2)), estriol (E(3)), 17α-ethynylestradiol (EE(2)) and diethylstilbestrol (DES), were assessed in influents, effluents and excess sludge in ten municipal wastewater treatment plants (WWTPs) in the Three Gorges Reservoir (TGR) area, Chongqing, China. Three types of activated sludge treatment processes, oxidation ditch (OD), reversed anaerobic-anoxic-oxic (rA(2)/O) technology and sequential batch reactor (SBR), were used in the surveyed WWTPs. These WWTPs were all combined landfill leachate-sewage treatment plants. All analytes were extracted by solid-phase extraction (SPE) in the dissolved phase and by accelerated solvent-based extraction (ASE) in sludge. Gas chromatography-mass spectrometry (GC-MS) was employed for the analysis of EDCs. Among these EDCs, BPA was the most frequently detected and abundant compound (100.0-10566.7 ng L(-1), 15.5-1210.7 ng L(-1) and 85.0-2470.4 ng g(-1) with respect to the influents, effluents and excess sludge samples). The greatest levels of steroidal estrogens in municipal influents were observed in E(3) which were all >100 ng L(-1), followed by E(1) (42.2-110.7 ng L(-1)) and E(2) (7.4-32.7 ng L(-1)), and in the effluents and sludge were E(1) > E(3) > E(2) which were all <31 ng L(-1) and 105 ng g(-1), respectively. Regarding synthetic estrogens, EE(2) was frequently detected in the influents, occurring below 50 ng L(-1), while DES was not detected at all. A high correlation coefficient was observed between the leachate-sludge ratio and concentrations of influent EDCs, and it was statistically significant (i.e., R > 0.65, P < 0.05), but removal efficiency of the EDCs did not show significant differences with OD, rA(2)/O and SBR processes. Furthermore, modification of treatment technology as well as operational parameters, such as hydraulic retention time (HRT), sludge retention time (SRT) and disinfection process (DP), were recommended to further eliminate the residual EDCs.  相似文献   

2.
对徐州市3家不同处理工艺污水厂进出水中的17α-乙炔基雌二醇(EE2)、雌三醇(E3)、雌二醇(E2)、雌酮(E1)、双酚A(BPA)等5种雌激素物质进行了分析,采用固相萃取技术对这些物质进行富集分离,使用LC-MS对目标物进行检测。结果表明,3座污水厂的雌激素(除BPA)平均进出水浓度较高,污水厂对EE2和BPA的去除效果较好,分别为84.89%和98.38%;但对E3、E2、E1去除效果不够理想。经对内分泌干扰物的雌激素活性及生态风险进行评价,建议徐州地区应优先控制EE2、E1和E3。  相似文献   

3.
The occurrence and removal of eight endocrine disrupting compounds (EDCs), including estrone (E(1)), 17β-estradiol (E(2)), estriol (E(3)), 17α-ethinylestradiol (EE(2)), diethylstilbestrol (DES), bisphenol A (BPA), nonylphenol (NP) and octylphenol (OP), and their estrogenicities were investigated in a sewage treatment plant in Harbin city, China. The EDCs were extracted from wastewater samples by solid phase extraction (SPE) method and analyzed with gas chromatography coupled with mass spectrometry (GC-MS). The average concentrations in the influents and effluents ranged from 6.3 (EE(2)) to 1725.8 ng L(-1) (NP) and from 相似文献   

4.
Concentrated animal feeding operations have been recognized as one of the most important contributors of natural estrogens which show significant endocrine-disrupting properties in aquatic environments. In this study, the concentrations of 17α-estradiol (17α-E2), 17β-estradiol (17β-E2), estrone (E1), and estriol (E3) in several matrices, including soils (surface and deep), sediments (surface and deep), and groundwaters, around a typical dairy farm were surveyed using gas chromatography/mass spectrometry. Of the two farmlands, surface and subsurface sediments in waste lagoon and along effluent drainage drench, the concentrations of 17α-E2, 17β-E2, and E1 ranged from below detection limit to the highest level of 6.60 μg/kg, except that E3 was not detectable. Three estrogens of 17α-E2, 17β-E2, and E1 with the concentrations of 3.18-31.61 ng/L were observed in two groundwater samples. The results clearly demonstrated the vertical migration and horizontal transport of estrogens in the investigated area. Within 750-m distance, it was observed the attenuation of 17α-E2, 17β-E2, and E1 along the effluent route and the horizontal migration of estrogens was less than 1,350 m in this survey.  相似文献   

5.
The Mondego River estuary demonstrates signs of pollution, but the levels of endocrine disrupting compounds (EDCs), such as the natural (17β-estradiol and estrone) and pharmaceutical (17α-ethynylestradiol) estrogens, xenoestrogenic industrial pollutants (4-octylphenol, 4-nonylphenol, and their mono- and diethoxylates and bisphenol A), phytoestrogens (formononetin, biochanin A, daidzein, and genistein), and sitosterol were either poorly or never measured in this area. Thus, to conclude about the influx of EDCs in this estuary, water samples were taken every 2 months, during 1 year (2010) in low tide, at eight sites distributed along the estuary. Water samples (1 L) were preconcentrated in the Oasis HLB cartridges and cleaned in silica cartridges before their analysis by GC-MS. In summer, potentially hazardous amounts of estrogens (≈26 ng L?1), alkylphenols (≈11.5 μg L?1), alkylphenolethoxylates (≈13 μg L?1), and phytoestrogens (≈5.6 μg L?1) were measured. These data suggest that changes in the hydrodynamics of the estuary coupled with the increase of water temperatures interfere with the amount of EDCs in the water. Complementary physicochemical parameters also point to high levels of anthropogenic pollution in this area. Globally, the estrogenic load, expressed in ethynylestradiol equivalents, attained 71.8 ng L?1 demonstrating that, all together, the measured EDCs pose important health risks for both biota and humans.  相似文献   

6.
This study presents the levels of endocrine disrupting chemicals (EDCs) accumulated by Paraprionospio sp. from the Yodo River mouth, Osaka Bay. Since high concentrations of nonylphenol (NP), bisphenol A (BP), octylphenol (OP), 17β-estradiol (E2), and estrone (E1) have been measured in sediment from Osaka Bay, some bioaccumulation could be expected particularly in benthic animals. EDCs were analysed in Paraprionospio sp., a dominant benthic species in Osaka Bay. The results showed that Paraprionospio sp. had accumulated varying concentrations (wet weight; w.w.) of NP at 1,460–4,410 ng/g; BP at 22.5–39.6 ng/g; OP at 18.9–45.4 ng/g; E2 at 0.89–4.35 ng/g; and E1 at 0.06–2.50 ng/g. Accumulation of NP and OP were highest among the samples gathered in summer (July 2008), while concentrations of BP, E2, and E1 did not much differs within 3 years. EDC levels in Paraprionospio sp. were apparently greater than those in sediments showing bioaccumulation.  相似文献   

7.
The important Portuguese Sado River estuary has never been investigated for the presence of potentially endocrine-disrupting chemicals (EDCs), such as natural estrogens (estradiol, estrone), pharmaceutical estrogens (17α-ethynylestradiol), phytoestrogens (daidzein, genistein and biochanin A), or industrial chemicals (4-octylphenol, 4-nonylphenol, and bisphenol A). Thus, the main objective of this study was to evaluate their presence at 13 sampling points distributed between both the industrial and the natural reserve areas of the estuary, zones 1 and 2, respectively. For that, water samples collected in summer and winter were processed by solid phase extraction and analyzed by high-performance liquid chromatography with photodiode array detection and gas chromatography–mass spectroscopy. Results showed that estrone, ethynylestradiol, all the aforementioned phytoestrogens as well as bisphenol A and 4-octylphenol were found in zone 1. In zone 2, neither estrogens nor 4-OP were found. However, in the same zone, daidzein (500 ng/L) and genistein (320 ng/L) attained their highest levels in summer, whereas biochanin A peaked in winter (170 ng/L). Furthermore, bisphenol A was also found in some areas of zone 2, but showed similar concentrations in both surveys (about 220 ng/L). This study demonstrated that the Sado River estuary had low EDCs levels, suggesting that the Sado’s high hydrodynamic activity may be involved in the dilution of local pollution. It was suggested that at the current levels of concentrations, all assayed EDCs are unlikely to individually cause endocrine disruption in local animals. However, under a continuous exposure scenario, an additive and/or synergistic action of the estrogenic chemicals load can not be excluded, and so, continuous monitoring is advisable.  相似文献   

8.
Hospital effluent and connected waste water treatment plant (WWTP) influent and effluent were sampled daily to determine the levels and inter-day variations of three naturally occurring steroid estrogens: estrone, 17β-estradiol, estriol, and synthetic 17α-ethinylestradiol. After solid phase extraction, interferences were removed with a silica gel clean-up step and the samples analysed using gas chromatography with mass selective detection (GC-MSD). The determined inter-day concentrations in hospital effluent were between 8.6 to 31.3 ng L(-1) for estrone, 相似文献   

9.
Steroid estrogens such as estrone (E1), 17β-estradiol (E2), estriol (E3), and 17α-ethynylestradiol (EE2) have been suspected to be the main contaminants, which can affect the endocrine system of animals. Many authors have investigated these chemicals in the domestic wastewater treatment plants (WTP). However, wastewater from industries producing steroid contraceptives has not got ample attention. From the environmental point of view, the four steroids are very significant because even very low concentrations (ng/L) can cause reproductive disturbances in human, livestock and wildlife. The main purpose of the present investigation was to develop an analytical method for the determination of the four steroid estrogens present in WTP of a pharmacy factory, mainly producing contraceptive medicine in Beijing, China. Analysis was performed by solid-phase extraction (SPE) system and liquid chromatography combined with tandem mass spectrometry (LC/MS/MS). The average recoveries from effluent samples ranged from 88% to 103% and the precision of the method ranged from 9% to 4%. Based on 0.5-L wastewater samples, the limit of quantification (LOQ) was determined at 0.7 ng/L for E1, 0.8 for E2, 0.9 ng/L for E3, and 0.5 ng/L for EE2 in influent, and 1.0 ng/L for E2 and EE2, and 2.0 ng/L for E1 and E3 in effluent. In the influent samples, average concentrations of 80, 85, 73 and 155 ng/L were determined for E1, E2, E3 and EE2, respectively, showing that they were removed in this WTP to the extent of 79, 73, 85 and 67%, respectively.  相似文献   

10.
Endocrine disrupting compounds (EDCs), represented by steroid hormones, organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), and bisphenol A have been determined in four sediment cores from the Gulf of Mexico, from New Orleans surface water (Lake Pontchartrain and Mississippi River), and from the influent and effluent of a New Orleans municipal sewage treatment plant. During the five-month monitoring of selected EDCs in the Mississippi River (MR) and Lake Pontchartrain (LP) in 2008, 21 of 29 OCPs in MR and 17 of 29 OCPs in LP were detected; bisphenol A was detected in all of the samples. Steroid hormones (estrone, 17β-estradiol and 17α-ethinylestradiol) were detected occasionally. Total EDC (OCPs + PCBs + steroid hormones + bisphenol A) concentrations in the two surface water samples were found to vary from 148 to 1112 ng L(-1). Strong correlation of the distribution of total OCPs, total PCBs and total EDCs between solid and water phases was found in LP, while moderate or no correlation existed in MR. OCPs, PCBs, steroid hormones, and bisphenol A were all detected in the ocean sediments, and total EDCs were measured in the range of 77 to 1796 ng g(-1) dry sediment weight. The EDCs were also found in untreated and treated municipal sewage samples with a removal efficiency of 83% for OCPs but no removal efficiency for 17α-ethinylestradiol.  相似文献   

11.
Broad scale monitoring of estrogenic compounds was performed at 19 sampling points throughout the Yeongsan and Seomjin river basins and 5 wastewater treatment plants (WWTPs) adjacent to the Gwangju area, Korea, from December 2005 to August 2007. The concentrations of estrogenic compounds, including estrone (E1), 17β-estradiol (E2), 17α-ethynylestradiol (EE2), bisphenol-A, nonylphenol (NP) and 4-octylphenol (OP), in the samples was measured with gas chromatography/mass spectrometry (GC-MS). In addition, the estrogenic activities throughout the river were investigated using the E-screen assay. Of the six estrogenic chemicals, NP (114.6-336.1 ng L(-1)) and EE2 (0.23-1.90 ng L(-1)) were detected at the highest and lowest levels, respectively in both the river waters and the WWTP effluents. Bisphenol-A showed the largest concentration range, from 7.5 to 335 ng L(-1). The concentrations of E1, E2 and octylphenol ranges were 3.6-69.1, 1.2-10.7, and 2.2-16.9 ng L(-1), respectively. According to the calculated estradiol equivalent concentration (EEQ); however, no estrogenic contribution was observed due to the phenolic compounds in the river waters and effluents. E1 and E2 dominated in both the river water and effluent samples, with contributions to the calculated EEQ of over 79 and 77%, respectively. Conversely, EE2 was rarely detected in the river waters (21%) and effluents (0%). The largest contribution of EE2 to the calculated EEQ was 21% in the river water at S-7. The levels of E1, E2, and EE2 were remarkably decreased in the effluents, indicating that the 5 WWTPs did not contribute to the estrogenic effect of the receiving streams. Overall, the WWTPs did not contributed to the estrogenic activity of the receiving waters, but the livestock industry or wildlife may play an important role in the estrogenic contribution to river water.  相似文献   

12.
In spite of its outstanding ecological and touristic importance the Ria Formosa Lagoon shows signs of anthropogenic pollution. Nonetheless, until the present survey no studies had ever documented the measurement of natural and pharmaceutical estrogens (17β-estradiol, estrone, and 17α-ethynylestradiol), xenoestrogenic industrial pollutants (4-octylphenol, 4-nonylphenol, and their mono and diethoxylates and bisphenol A), phytoestrogens (formononetin, biochanin A, daidzein, genistein), and sitosterol in this area. The 17 compounds measured herein are known as endocrine disrupters (EDCs) and act over the endocrine system even in few amounts (ng L?1–μg L?1). Thus to conclude about the influx of EDCs in the lagoon, water samples were taken every 2 months, during 1 year (2010), in low tide at nine sites distributed along the coastline. Water samples (1 L) were preconcentrated in the Oasis HLB cartridges and cleaned in silica cartridges before their analysis by GC-MS. Data showed the ubiquitous presence of potentially hazardous amounts of estrogens (particularly of ethynylestradiol, up to 24.3 ng L?1), nonylphenol (up to 547 ng L?1), and sitosterol (up to 12,300 ng L?1), mainly in summer, suggesting that the increase of the local number of inhabitants (tourists), the rise of the water temperature (up to 26 °C), and the blooming of local flora may interfere with the water quality parameters. This makes the lagoon a potential model to study. Taking into account the data, it was concluded that there are conditions for the occurrence of endocrine disruption in aquatic animals, even in areas included in the natural park of the Formosa. Besides, both the high amounts of un-ionized ammonia (up to 0.3 mg L?1) and phosphates (up to 1.6 mg L?1) my pose risks for local fauna and humans.  相似文献   

13.
Concern over steroid estrogens has increased rapidly in recent years due to their adverse health effects. Effluent discharge from wastewater treatment plants (WWTPs) is the main pollutant source for environmental water. To understand the pollutant level and fate of steroid estrogens in WWTPs, the occurrence of estrone (E1), 17-β-estradiol (E2), estriol (E3), and 17-β-ethinylestradiol (EE2) was investigated in the Gaobeidian WWTP in Beijing, China. Water samples from influent as well as effluent from second sedimentation tanks and advanced treatment processes were taken monthly during 2006 to 2007. In influent, steroid estrogen concentrations varied from 11.6 to 1.1?×?10(2)?ng/l, 3.7 to 1.4?×?10(2)?ng/l, no detection (nd) to 7.6×10(2)?ng/l and nd to 3.3?×?10(2)?ng/l for E1, E2, E3, and EE2, respectively. Compared with documented values, the higher steroid estrogen concentrations in the WWTP influent may be due to higher population density, higher birthrate, less dilution, and different sampling time. Results revealed that a municipal WWTP with an activated sludge system incorporating anaerobic, anoxic, and aerobic processes could eliminate natural and synthetic estrogens effectively. The mean elimination efficiencies were 83.2%, 96.4%, 98.8%, and 93.0% for E1, E2, E3, and EE2, respectively. The major removal mechanism for natural estrogens and synthetic estrogen EE2 were biodegradation and sorption on the basis of mass balance in water, suspension particles, and sludge. In the WWTP effluent, however, the highest concentrations of E1, E2, E3, and EE2 attained were 74.2, 3.9, 5.1, and 4.6?ng/l, respectively. This is concerning as residual steroid estrogens in WWTP effluent could lead to pollution of the receiving water. Advanced flocculation treatment was applied in the WWTP and transformed the residual estrogen conjugates to free species, which were reduced further by filtration with removal shifting from 32% to 57% for natural estrogen, although no EE2 was removed.  相似文献   

14.
In this study, a method for the simultaneous determination of two steroid hormones, 17β-estradiol (E2) and estriol (E3), and a hormone mimicking polycarbonate, bisphenol-A (BPA), was developed and validated. This was thereafter used for the determination of the levels of the hormones in surface water collected around some livestock farms. The sensitivity of the method allowed the LODs and LOQs of the hormones and mimic hormone in the range 1.14–2.510 and 3.42–7.53 μg/L, respectively. The results revealed wide variability in the concentrations of E2 and E3, while BPA was not detected at any of the sampling stations. The concentration of E3 ranged between <1.14 and 45.5 μg/L (N = 120) in station 2 water. The highest concentration of E2 (15.7 μg/L, N = 80) was observed in water from station 1. The varied concentrations may be connected with the nature and sources of release, inconsistencies in analyte distribution due to dynamics of water flow pattern and the physical/chemical properties of the receiving water bodies.  相似文献   

15.
A passive sampler (the polar organic chemical integrative sampler; POCIS) was assessed for its ability to sample natural estrogens (17β-estradiol, E2; estrone, E1 and estriol, E3) and the synthetic estrogen (17α-ethynylestradiol, EE2) in the outlet of a sewage treatment works over several weeks. The performance of the POCIS was investigated and optimised in the laboratory before field deployment with high recoveries (66-99%) were achieved for all estrogens. Moreover, it was shown that POCIS does not exhibit any preferential selectivity towards any of the target compounds. The sampling rates of E1, E2 and E3 were 0.018 ± 0.009, 0.025 ± 0.014 and 0.033 ± 0.019 L d(-1), respectively. Following field deployments of 28 days in the discharge of a sewage works, POCIS was shown to enhance the sensitivity of estrogen detection, especially for E3, and provide time-weighted average (TWA) concentrations of E1, E2 and E3, ranging from undetectable to 12 ng L(-1) upstream of the outflow of a sewage treatment works, 13 to 91 ng L(-1) at the outflow and 8 to 39 ng L(-1) downstream of the outflow. This revealed that E1, E2 and E3 are not completely removed during sewage treatment, with concentrations most likely being maintained by contributions from conjugated estrogen analogues. Grab water samples showed considerable variation in the concentrations of estrogens over a longer period (6 months). The results confirm that POCIS is an effective and non-discriminatory method for the detection of low concentrations of estrogens in the aquatic environment.  相似文献   

16.
Concentration levels of six natural and anthropogenic origin steroid estrogens, namely, diethylstilbestrol (DES), estrone (E1), estradiol (E2), estriol (E3), ethinylestradiol (EE2), and estradiol-17-valerate (Ev), from different effluents in Beijing were assessed. Sampling sites include two wastewater treatment plants (WWTPs), a chemical plant, a hospital, a pharmaceutical factory, a hennery, and a fish pool. In general, concentrations of estrogens in the effluents varied from no detection (nd) to 11.1 ng/l, 0.7 to 1.2 × 103 ng/l, nd to 67.4 ng/l, nd to 4.1 × 103 ng/l, nd to 1.2 × 103 ng/l, and nd to 11.2 ng/l for DES, E1, E2, EE2, E3, and Ev, respectively. The concentration levels of steroid estrogens from different effluents decreased in the order of pharmaceutical factory and WWTP inlets > hospital > hennery > chemical factory > fish pool. This study indicated that natural estrogens E1, E2, and E3 and synthetic estrogen EE2 are the dominant steroid estrogens found in the different Beijing effluents. For source identification, an indicator (hE = E3/(E1 + E2 + E3)) was used to trace human estrogen excretion. Accordingly, hE in effluents from the hospital and WWTP inlets exceeded 0.4, while much smaller values were obtained for the other effluents. Human excretions were the major contributor of natural estrogens in municipal wastewater. Estimation results demonstrated that direct discharge was the major contributor of steroid estrogen pollution in receiving waters.  相似文献   

17.
The Mira River is a Portuguese water body widely known for its wilderness and is advertised as one of the less polluted European rivers. On this presumption, the levels of endocrine-disrupting compounds (EDCs) in Mira waters were never measured. However, because environmentalists have claimed that the Mira could be moderately polluted, a range of 17 EDCs were measured not only at the estuary but also along the river. The targeted EDCs included natural and pharmaceutical oestrogens (17β-oestradiol, oestrone and 17α-ethynylestradiol), industrial/household pollutants (octylphenols, nonylphenols and their monoethoxylates and diethoxylates and bisphenol A), phytoestrogens (formononetin, biochanin A, daidzein, genistein) and the phytosterol sitosterol (SITO). For this propose, waters from six sampling sites were taken every 2 months, over a 1-year period (2011), and analysed by gas chromatography–mass spectrometry. Unexpectedly high levels of oestrogens and of industrial/household pollutants were measured at all sampling sites, including those located inside natural protected areas. Indeed, the annual average sum of EDCs was ≈57 ng/L for oestrogens and ≈1.3 μg/L for industrial/household chemicals. In contrast, the global average levels of phytoestrogens (≈140 ng/L) and of SITO (≈295 ng/L) were lower than those reported worldwide. The EDC concentrations were normalised for ethynylestradiol equivalents (EE2eq). In view of these, the oestrogenic load of the Mira River attained ≈47 ng/L EE2eq. In addition, phosphates were above legal limits at both spring and summer (>1 mg/L). Overall, data show EDCs at toxicant relevant levels in the Mira and stress the need to monitor rivers that are allegedly less polluted.  相似文献   

18.
A comprehensive monitoring survey for polycyclic aromatic hydrocarbons (PAHs) and phenolic endocrine disrupting chemicals (EDCs) utilizing mussels as sentinel organisms was conducted in South and Southeast Asia as a part of the Asian Mussel Watch project. Green mussel (Perna viridis) samples collected from a total of 48 locations in India, Indonesia, Singapore, Malaysia, Thailand, Cambodia, Vietnam, and the Philippines during 1994–1999 were analyzed for PAHs, EDCs including nonylphenol (NP), octylphenol (OP) and bisphenol A (BPA), and linear alkylbenzenes (LABs) as molecular markers for sewage. Concentrations of NP ranged from 18 to 643 ng/g-dry tissue. The highest levels of NP in Malaysia, Singapore, the Philippines, and Indonesia were comparable to those observed in Tokyo Bay. Elevated concentrations of EDCs were not observed in Vietnam and Cambodia, probably due to the lower extent of industrialization in these regions. No consistent relationship between concentrations of phenolic EDCs and LABs were found, suggesting that sewage is not a major source of EDCs. Concentrations of PAHs ranged from 11 to 1,133 ng/g-dry, which were categorized as “low to moderate” levels of pollution. The ratio of methylphenanthrenes to phenanthrene (MP/P ratio) was >1.0 in 20 out of 25 locations, indicating extensive input of petrogenic PAHs. This study provides a bench-mark for data on the distribution of anthropogenic contaminants in this region, which is essential in evaluating temporal and spatial variation and effect of future regulatory measures.  相似文献   

19.
Physical, chemical and microbiological efficiencies of Sewage Treatment Plants (STPs) located in Delhi's watershed in context of different treatment technologies employed in these plants have been determined. There were in all seventeen STPs treating domestic wastewater which were studied over a period of 12 months. These STPs were based on Conventional Activated sludge process (ASP), Extended aeration (Ex. Aeration), physical, chemical and biological removal treatment (BIOFORE) and oxidation pond treatment process. Results suggests that except "Mehrauli" STP which was based on Extended aeration process and "Oxidation pond", effluents from all other STPs exceeded FC standard of 10(3) MPN/100 ml for unrestricted irrigation criteria set by National river conservation directorate (NRCD). Actual integrated efficiency (IE(a)) of each STP was evaluated and compared with the standard integrated efficiency (IE(s)) based upon physical, biological and microbiological removal efficiencies depending upon influent sewage characteristics. The best results were obtained for STPs employing extended aeration, BIOFORE and oxidation pond treatment process thus can be safely used for irrigation purposes.  相似文献   

20.
Estrogenic activity risks in the Pearl River system (Liuxi River, Zhujiang River and Shijing River) in South China were assessed by combined chemical analysis and recombinant yeast estrogen screen (YES) bioassay for surface waters and sediments collected in both dry and wet seasons. The xenoestrogens 4-tert-octylphenol, 4-nonylphenol and bisphenol A were detected at almost every sampling site at concentrations of several ng L(-1) (ng g(-1)) to tens of μg L(-1) (μg g(-1)) in surface waters (and sediments). The estrogens estrone and 17β-estradiol were also detected in most of the samples with concentrations from several ng L(-1) (ng g(-1)) to tens of ng L(-1) (ng g(-1)) in surface waters (and sediments). However, synthetic estrogens diethylstilbestrol and 17α-ethinylestradiol were only detected at a few sites. The 17β-estradiol equivalents (EEQ) screened by the YES bioassay were in the range of 0.23-324 ng L(-1) in surface waters and from not detected to 101 ng g(-1) in sediments. Shijing River displayed one to two orders of magnitude higher levels for both measured chemical concentrations and estrogenic activities than the Zhujiang River and the Liuxi River. A risk assessment for the surface waters showed high risks for the downstream reaches of the Liuxi River and the upstream to midstream reaches of the Zhujiang River and the Shijing River. Higher estrogenic risks were observed in the wet season than in the dry season for surface waters, probably due to the input of runoff and direct overflow of small urban streams during heavy rain events. Only small variations in estrogenic risk were found for the sediments between the two seasons, suggesting that sediments are a sink for these estrogenic compounds in the rivers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号