首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In any water quality-monitoring project there are several critical success factors that must be adequately addressed in order to ensure the implementation and realization of the monitoring objectives. Site selection is one of these critical success factors. The monitoring sites must be selected to comply with the monitoring and data quality objectives. In the real world, ideal monitoring setting conditions are difficult to achieve, and compromises must be made in order to locate the monitoring stations that best represent the environment to be monitored. Site-specific characteristics are all the environmental, logistical and management factors particular to the monitoring site, that could influence the fulfilment of the monitoring and data quality objectives. Therefore, during the site selection process, it is essential to properly consider and evaluate these site-specific characteristics. The SSC cycle was developed with this goal in mind, to assist the monitoring team to systematically address site-specific characteristics. The cycle is a methodology to organize the site-specific characteristics in different categories, and to ensure a comprehensive overview of these characteristics throughout the project life cycle.  相似文献   

2.
Synthetic pyrethroids have been detected in recent California surface water monitoring. Filtration is avoided during sample workup because pyrethroids are extremely hydrophobic, tending to sorb to most surfaces. The resultant analytical pyrethroid concentrations reflect both dissolved pyrethroid and pyrethroid associated with suspended sediment in the water column. Such “whole-water” analytical data are not directly comparable to aquatic acute toxicity effect concentrations measured in laboratory sediment-free water. Consequently, any potential aquatic toxicity risk is indeterminate. In this study a simple probabilistic model was developed to allow a screening-level assessment of pyrethroid whole-water monitoring data. The results suggest that water column toxicity of pyrethroids is possible in California's agriculturally-dominated tributaries, and indicate that additional monitoring to better characterize pyrethroid water-column concentrations are warranted. Model refinement will depend on future work that more firmly establishes the relationship between pyrethroid partitioning and bioavailability, and that addresses the potential influence of dissolved organic carbon on pyrethroid sorption and bioavailability.  相似文献   

3.
Rethinking human health impact assessment   总被引:1,自引:0,他引:1  
Most EIA programs around the world require the consideration of human health impacts. Yet relatively few EIA documents adequately address those impacts. This article examines how, why, and to what extent health impacts are analyzed in environmental impact assessments in the U.S. An empirical study of 42 environmental impact statements found that more than half contained no mention of health impacts. In the others, health impacts were analyzed narrowly, if at all, using risk assessment to quantify the carcinogenic potential of a single substance over a single generation. This analytic focus overlooks other significant morbidity and mortality risks, cumulative and intergenerational effects, and broader determinants of health. This article investigates these problems and provides recommendations to improve human health impact assessment, using strategic environmental assessment, qualitative health data, health outcomes in addition to cancer, and a precautionary approach to risk.  相似文献   

4.
5.
综述了欧盟水框架指令和水政策环境质量标准指令框架下,水环境优先污染物和优先危害物质的确定方法、程序和清单,以及地表水质量标准与生物体质量标准的制定方法及监测要求。提出,我国可借鉴欧盟水框架指令和水政策环境质量标准指令,明确水环境管理和污染物控制目标,制定优先污染物筛选评估技术规范及质量标准,持续评估确定地表水优先污染物,同时,建立潜在高风险物质监测监控制度,进一步完善地表水环境质量标准的指标体系,使得水环境的保护更加科学合理。  相似文献   

6.
The Timber, Fish, and Wildlife program (TFW) in Washington is a consensus approach to implementing reforms in forest practice regulations involving industrial timberland owners, state agencies, environmental groups, Indian tribes, and non-industrial forest landowners. A cooperative monitoring and research effort (CMER) has been included as a part of this program. Technical projects undertaken by CMER are overseen by a series of steering committees, one of which is the Water Quality Steering Committee. Projects currently being addressed by the Water Quality Steering Committee include: forestry impacts on water temperature, water quality impacts from forestry derived sediment, use of bio-indicators to assess the water quality impacts of forest practices, and the effect of forest chemical applications on water quality. A close link between the research efforts in TFW and the procedure for implementing regulatory change has greatly improved the responsiveness of the rule making process to new information. Results from the water temperature and forest chemical work is currently being incorporated into the forest practice regulations.  相似文献   

7.
A growing number of scientific studies in recent years have investigated disparate exposure to ecological hazards in American society. Working from an environmental justice perspective, this body of research consistently reveals that poor communities of color are most likely to bear a disproportionate burden of negative externalities. These studies utilize a wide range of research methodologies, including various indicators of ecological hazards (e.g., proximity to waste sites, industrial emissions, ambient air quality), but few, if any, utilize composite measures to approximate cumulative environmental impact. Consequently, the environmental justice (EJ) literature is characterized by a failure to effectively measure overall impact from an extensive range of ecological hazards. Limitations on available data make this a serious problem for present and future studies. We argue that cumulative measures of environmental impact can play an important role in furthering our understanding of environmental injustices in the United States. In this study of Massachusetts, we develop and implement such a cumulative measure of negative environmental impacts. By controlling for the density and severity of ecological hazardous sites and facilities within every community in the state, we demonstrate that exposure patterns take a generally linear distribution when analyzed by race and class. So, while our results reaffirm previous findings that low-income communities and communities of color bear significantly greater ecological burdens than predominantly White and more affluent communities, our findings also suggest that environmental injustices exist on a remarkably consistent continuum for nearly all communities. In other words, as the minority population and lower-income composition of a community increases, correspondingly, so does cumulative exposure to environmental hazards. In this respect, communities which are more racially mixed and of moderate income status that are not typically identified as meeting EJ criteria (in demographic terms) also face more significant ecological hazards. Thus, the strict bifurcation of communities into categories of Environmental Justice and Non-Environmental Justice is problematic, and poses a serious dilemma for policy makers, public health officials, and community activists. To overcome this challenge requires the adoption of a cumulative environmental justice impact assessment (CEJIA), which in addition to the demographic characteristics of a community, also takes into account the total environmental burden and related health impacts upon residents. Furthermore, through the adoption of the precautionary principle, source reduction, and alternative forms of “cleaner” production, environmental justice advocates must work for policies which reduce the environmental threat for the full range of communities, as well as their own.  相似文献   

8.
累积影响监测系统初步设计   总被引:3,自引:0,他引:3  
累积影响监测和适应性管理是减少和改善累积影响评价不确定性的重要途径之一。文章初步探讨了累积影响监测的概念,提出了累积影响监测系统的设计原则,从内容、时空范围、监测指标、监测结果的表达、实施机构、实施程序等多方面对累积影响监测系统进行了初步探讨。  相似文献   

9.
Metals have been central to the development of human civilisation from the Bronze Age to modern times, although in the past, metal mining and smelting have been the cause of serious environmental pollution with the potential to harm human health. Despite problems from artisanal mining in some developing countries, modern mining to Western standards now uses the best available mining technology combined with environmental monitoring, mitigation and remediation measures to limit emissions to the environment. This paper develops risk screening and prioritisation methods previously used for contaminated land on military and civilian sites and engineering systems for the analysis and prioritisation of chemical risks from modern metal mining operations. It uses hierarchical holographic modelling and multi-criteria decision making to analyse and prioritise the risks from potentially hazardous inorganic chemical substances released by mining operations. A case study of an active platinum group metals mine in South Africa is used to demonstrate the potential of the method. This risk-based methodology for identifying, filtering and ranking mining-related environmental and human health risks can be used to identify exposure media of greatest concern to inform risk management. It also provides a practical decision-making tool for mine acquisition and helps to communicate risk to all members of mining operation teams.  相似文献   

10.
The establishment of high quality long-term monitoring programmes is essential if the implementation of the Water Framework Directive (WFD) is to be effective. It is recognised that monitoring can be very expensive and so guidance is needed to establish cost-effective, risk-based and targeted groundwater monitoring across Europe that enables WFD objectives to be met. In this context, the Groundwater Working Group (WGC) of the Common Implementation Strategy (CIS) of the WFD has developed recommendations aiming to implement consistent groundwater monitoring across Europe. This has been published on the internet in the form of a non-legally binding guidance document, which provides useful elements for the development and maintenance of networks at high standards and thereby provide the necessary information to assess (ground)water status, identify trends in pollutant concentrations, support establishment and assessment of programmes of measures and the effective targeting of economic resources. This paper presents this guidance document.  相似文献   

11.
Air pollution monitoring programs aim to monitor pollutants and their probable adverse effects at various locations over concerned area. Either sensitivity of receptors/location or concentration of pollutants is used for prioritizing the monitoring locations. The exposure-based approach prioritizes the monitoring locations based on population density and/or location sensitivity. The hazard-based approach prioritizes the monitoring locations using intensity (concentrations) of air pollutants at various locations. Exposure and hazard-based approaches focus on frequency (probability of occurrence) and potential hazard (consequence of damage), respectively. Adverse effects should be measured only if receptors are exposed to these air pollutants. The existing methods of monitoring location prioritization do not consider both factors (hazard and exposure) at a time. Towards this, a risk-based approach has been proposed which combines both factors: exposure frequency (probability of occurrence/exposure) and potential hazard (consequence).This paper discusses the use of fuzzy synthetic evaluation technique in risk computation and prioritization of air pollution monitoring locations. To demonstrate the application, common air pollutants like CO, NOx, PM10 and SOx are used as hazard parameters. Fuzzy evaluation matrices for hazard parameters are established for different locations in the area. Similarly, fuzzy evaluation matrices for exposure parameters: population density, location and population sensitivity are also developed. Subsequently, fuzzy risk is determined at these locations using fuzzy compositional rules. Finally, these locations are prioritized based on defuzzified risk (crisp value of risk, defined as risk score) and the five most important monitoring locations are identified (out of 35 potential locations). These locations differ from the existing monitoring locations.  相似文献   

12.
Nahanni National Park Reserve is located at southwestern NWT-Yukon border. One of the first UNESCO World Heritage sites, Nahanni lies within Taiga Cordillera and Taiga Shield Ecozones. Base and precious metal mining occurred upstream of Nahanni prior to park establishment. Nahanni waters, sediments, fish, and caribou have naturally elevated metals levels. Baseline water, sediment and fish tissue quality data were collected and analyzed throughout Nahanni during 1988–91 and 1992–97. These two programs characterized how aquatic quality variables are naturally varying in space and time, affected by geology, stream flow, seasonality, and extreme meteorological and geological events. Possible anthropogenic causes of aquatic quality change were examined. Measured values were compared to existing Guidelines and site-specific objectives were established.  相似文献   

13.
Cumulative impact assessment (CIA) is the process of systematically assessing a proposed action's cumulative environmental effects in the context of past, present, and future actions, regardless of who undertakes such actions. Previous studies have examined CIA efforts at the federal level but little is known about how states assess the cumulative impacts of nonfederal projects. By examining state environmental review statutes, administrative rules, agency-prepared materials, and a national survey of the administrators of state environmental review programs, this study identifies the legal and administrative frameworks for CIA. It examines current CIA practice, discusses the relationship between CIA policy and its implementation, and explores the opportunities for improvement. The results of the study show that twenty-nine state environmental review programs across twenty-six states required the assessment of cumulative environmental impacts. More than half of these programs have adopted specific procedures for implementing their policies. Some programs assessed cumulative impacts using a standard review document, and others have created their own documentations incorporated into applications for state permits or funding. The majority of programs have adopted various scales, baselines, significance criteria, and coordination practices in their CIA processes. Mixed methods were generally used for data collection and analysis; qualitative methods were more prevalent than quantitative methods. The results also suggest that a program with comprehensive and consistent environmental review policies and procedures does not always imply extensive CIA requirements and practices. Finally, this study discusses the potential for improving existing CIA processes and promoting CIA efforts in states without established environmental review programs.  相似文献   

14.
Pipeline crossing construction alters river and stream channels, hence may have detrimental effects on aquatic ecosystems. This review examines the effects of crossing construction on fish and fish habitat in rivers and streams, and recommends an approach to monitoring and assessment of impacts associated with these activities. Pipeline crossing construction is shown to not only compromise the integrity of the physical and chemical nature of fish habitat, but also to affect biological habitat (e.g., benthic invertebrates and invertebrate drift), and fish behavior and physiology. Indicators of effect include: water quality (total suspended solids TSS), physical habitat (substrate particle size, channel morphology), benthic invertebrate community structure and drift (abundance, species composition, diversity, standing crop), and fish behavior and physiology (hierarchy, feeding, respiration rate, loss of equilibrium, blood hematocrit and leukocrit levels, heart rate and stroke volume). The Before-After-Control-Impact (BACI) approach, which is often applied in Environmental Effects Monitoring (EEM), is recommended as a basis for impact assessment, as is consideration of site-specific sensitivities, assessment of significance, and cumulative effects.  相似文献   

15.
Offshore geologic storage of carbon dioxide (CO2), known as offshore carbon capture and sequestration (CCS), has been under active investigation as a safe, effective mitigation option for reducing CO2 levels from anthropogenic fossil fuel burning and climate change. Along with increasing trends in implementation plans and related logistics on offshore CCS, thorough risk assessment (i.e. environmental impact monitoring) needs to be conducted to evaluate potential risks, such as CO2 gas leakage at injection sites. Gas leaks from offshore CCS may affect the physiology of marine organisms and disrupt certain ecosystem functions, thereby posing an environmental risk. Here, we synthesize current knowledge on environmental impact monitoring of offshore CCS with an emphasis on biological aspects and provide suggestions for better practice. Based on our critical review of preexisting literatures, this paper: 1) discusses key variables sensitive to or indicative of gas leakage by summarizing physico-chemical and ecological variables measured from previous monitoring cruises on offshore CCS; 2) lists ecosystem and organism responses to a similar environmental condition to CO2 leakage and associated impacts, such as ocean acidification and hypercapnia, to predict how they serve as responsive indicators of short- and long-term gas exposure, and 3) discusses the designs of the artificial gas release experiments in fields and the best model simulation to produce realistic leakage scenarios in marine ecosystems. Based on our analysis, we suggest that proper incorporation of biological aspects will provide successful and robust long-term monitoring strategies with earlier detection of gas leakage, thus reducing the risks associated with offshore CCS.  相似文献   

16.
The National Environmental Policy Act (NEPA) of 1969 and the Council on Environmental Quality (CEQ) regulations in the United States require federal agencies to apply an environmental impact assessment (EIA) in decision-making related to their actions. One aspect requires an examination of direct, indirect and cumulative impacts (CIs). Historically, cumulative impact assessment (CIA) has been given limited attention in EIA and resultant environmental impact statements (EISs), not because of its lack of importance, but owing to limitations in methodologies and procedures, including documentation consistency. The objectives of this study were to identify deficiencies in the documentation of CIs and CIA in EISs and to formulate appropriate recommendations (potential solutions) related to such deficiencies. The study involved the systematic review of 33 EISs (11 each from the U.S. Department of Agriculture: Forest Service, the U.S. Army Corps of Engineers, and the U.S. Department of Transportation: Federal Highway Administration). The results indicate that improvements have been made in documentation practices since 1990; however, inconsistencies and inadequacies still exist. Therefore, the following recommendations were developed: (1) CIs should be reported in a separate part of the “Environmental Consequences” section, and they should be addressed for each pertinent environmental resource; (2) a summary of CIs should be included; (3) any CIs considered not significant should be mentioned plus the reason(s) for their non-significance; (4) spatial and temporal boundaries addressed within the CIA process should be defined for pertinent environmental resources; and (5) utilized guidelines and methodologies should be described.  相似文献   

17.
太湖饮用水源地水环境健康风险评价   总被引:5,自引:3,他引:2  
介绍了水环境健康风险评价方法,并根据太湖饮用水源地水环境质量监测数据,对4个饮用水源地通过饮水途径引起的水环境健康风险进行了评价。结果表明,2005~2009年,4个饮用水源地水环境健康个人年风险多数超过国际辐射防护委员会(ICRP)推荐的标准,主要风险因子为化学致癌物六价铬和砷;化学致癌物对人体健康危害个人年风险度远高于非化学致癌物;化学致癌物所致健康危害的个人年风险呈波动降低变化,非化学致癌物所致健康危害的个人年风险基本保持稳定。  相似文献   

18.
While wind energy remains a preferred source of renewable energy, understanding the full spectrum of impacts are vital to balance climate-related benefits against their costs to biodiversity. Environmental impact assessments often fail to assess cumulative effects at larger spatial scales. In this respect, life cycle assessments are better suited, but have to date mainly focused on greenhouse gas emissions and energy accounting. Here, we adapt a recent global life-cycle impact assessment (LCA) methodology to evaluate collision, disturbance and habitat loss impacts of onshore wind energy development on bird species richness in Norway. The advantage of a local model for Norway is that it enables employing species distribution models to more accurately estimate the potential distribution area of species. This facilitates more realistic site- and species-specific assessments of potential impacts within a local scale but excludes habitat ranges outside Norway. Furthermore, a new characterization factor was developed for potential barrier effects. Larger onshore wind-power plants overall had greater site-specific potentially disappeared fractions (PDF) of species, while smaller plants were less efficiently located with greater impacts per GWh. Overall, Norwegian wind-power plants were sited least efficiently (PDF/GWh) regarding indirect habitat loss (2.186 × 10−9) and disturbance (1.219 × 10−9), followed by direct habitat loss (0.932 × 10−9), and finally collisions (0.040 × 10−9) and barriers (0.310 × 10−9). Vulnerability differed among bird groups with seabirds, raptors and waterfowl emerging as the most impacted groups (e.g. 5.143 × 10−9, 3.409 × 10−9 and 3.139 × 10−9 PDF/GWh for disturbance, respectively); highlighting the sympatric distribution of their habitats and the majority of Norway's onshore wind-power plants. Current practice has not succeeded in avoiding sites with higher impacts for birds, fuelling conflicts surrounding environmental concerns of onshore wind energy development in Norway. Operative LCA models can help decision-makers assessing localized life-cycle environmental impacts to support environmental-friendly wind energy production in specific regions.  相似文献   

19.
The management of swine manure is becoming an important environmental issue in Chile. One option for the final disposal of manure is to use it as a biofertilizer, but this practice could impact the surrounding environment. To assess the potential environmental impacts of the use of swine manure as a biofertilizer, we propose a method to identify zones of environmental risk through indices. The method considers two processes: nutrient runoff and solute leaching, and uses available information about soils, crops and management practices (irrigation, fertilization, and rotation). We applied the method to qualitatively assess the environmental risk associated with the use of swine manure as a biofertilizer in an 8,000-pig farm located in Central Chile. Results showed that the farm has a moderate environmental risk, but some specific locations have high environmental risks, especially those associated with impacts on areas surrounding water resources. This information could assist the definition of better farm-level management practices, as well as the preservation of riparian vegetation acting as buffer strips. The main advantage of our approach is that it combines qualitative and quantitative information, including particular situations or field features based on expert knowledge. The method is flexible, simple, and can be easily extended or adapted to other processes.  相似文献   

20.
As a subset of environmental monitoring, fish sampling programs have been an important part of assessing the potential impacts of water withdrawals and effluent discharges on fish populations for many years. New environmental regulations often require that adverse environmental impacts to fish populations be minimized. Without long-term field data, population evaluations may incorrectly indicate adverse impacts where none exist or no impact where one is likely to occur. Several electric utility companies have funded the Ohio River Ecological Research Program, which has been in existence for over 40 years and consists of fish, habitat, and water quality studies at multiple power plant sites on the mainstem Ohio River. Sampling includes seasonal night-time electrofishing and daytime beach seining at three upstream and three downstream locations near each plant. The long-term nature of the program allows for the establishment of aquatic community indices to support evaluations of technology performance, the collaborative development of compliance metrics, and the assessment of fish population trends. Studies have concluded that the Ohio River fish community has improved in response to better water quality and that power plant fish entrainment and impingement and thermal discharges have had little or no measureable impact. Through collaboration and the use of long-term data, $6.3 million in monitoring costs have been saved during recent fish impingement studies. The ability to access a multiyear fish abundance database, with its associated data on age, growth, and fecundity, improves the quality of such evaluations and reduces the need for extensive field sampling at individual locations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号