首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report and analyze data on the PM10 fraction of airborne particles measured at five recording stations in the Brussels region from October 2002 till September 2003. These stations are representative of the various activity sectors of the Brussels urban area. The objective was the determination of the origin of the PM10 particles (particles up to 10 μm) that are recorded in that region in order to follow the EU directives concerning tolerance level of airborne particles concentration. In order to evaluate the impacts of local and external factors that inject solid particles in the atmosphere of Brussels we compared concentration data from working and not working (holidays) periods. Moreover, we also compared concentrations from periods of agricultural activity and rest in the Brabant provinces surrounding the Brussels region for various crop types. The results lead to the conclusion that the impact or urban traffic is rather limited while that of the agricultural activities is important. Moreover, there appears a clear-cut distinction between different types of crops.  相似文献   

2.
Libby, Montana is the only PM2.5 nonattainment area in the western United States with the exceptions of parts of southern California. During January through March 2005, a particulate matter (PM) sampling program was conducted within Libby’s elementary and middle schools to establish baseline indoor PM concentrations before a wood stove change-out program is implemented over the next several years. As part of this program, indoor concentrations of PM mass, organic carbon (OC), and elemental carbon (EC) in five different size fractions (>2.5, 1.0–2.5, 0.5–1.0, 0.25–0.5, and <0.25 μm) were measured. Total measured PM mass concentrations were much higher inside the elementary school, with particle size fraction (>2.5, 0.5–1.0, 0.25–0.5, and <0.25 μm) concentrations between 2 and 5 times higher when compared to the middle school. The 1.0–2.5 μm fraction had the largest difference between the two sites, with elementary school concentrations nearly 10 times higher than the middle school values. The carbon component for the schools’ indoor PM was found to be predominantly composed of OC. Measured total OC and EC concentrations, as well as concentrations within individual size fractions, were an average of two to five times higher at the elementary school when compared to the middle school. For the ultrafine fraction (<0.25), EC concentrations were similar between each of the schools. Despite the differences in concentrations between the schools at the various fraction levels, the OC/EC ratio was determined to be similar.  相似文献   

3.
The objective of this study was to determine if there is an exposure gradient in particulate matter concentrations for people living near interstate highways, and to determine how far from the highway the gradient extends. Air samples were collected in a residential area of Greater Cincinnati in the vicinity of two major highways. The measurements were conducted at different distances from the highways by using ultrafine particle counters (measurement range: 0.02-1 microm), optical particle counters (0.3-20 microm), and PM2.5 Harvard Impactors (0.02-2.5 microm). The collected PM2.5 samples were analyzed for mass concentration, for elemental and organic carbon, and for elemental concentrations. The results show that the aerosol concentration gradient was most clearly seen in the particle number concentration measured by the ultrafine particle counters. The concentration of ultrafine particles decreased to half between the sampling points located at 50 m and 150 m downwind from the highway. Additionally, elemental analysis revealed a gradient in sulfur concentrations up to 400 m from the highway in a residential area that does not have major nearby industrial sources. This gradient was qualitatively attributed to the sulfate particle emissions from diesel engine exhausts, and was supported by the concentration data on several key elements indicative of traffic sources (road dust and diesel exhaust). As different particulate components gave different profiles of the diesel exposure gradient, these results indicate that no single element or component of diesel exhaust can be used as a surrogate for diesel exposure, but more comprehensive signature analysis is needed. This characterization is crucial especially when the exposure data are to be used in epidemiological studies.  相似文献   

4.
The objective of the study is to investigate seasonal and spatial variations of PM10 (particulate matter with aerodynamic diameter less than or equal to 10 μm) and TSP (total suspended particulate matter) of an Indian Metropolis with high pollution and population density from November 2003 to November 2004. Ambient concentration measurements of PM10 and TSP were carried out at two monitoring sites of an urban region of Kolkata. Monitoring sites have been selected based on the dominant activities of the area. Meteorological parameters such as wind speed, wind direction, rainfall, temperature and relative humidity were also collected simultaneously during the sampling period from Indian Meteorological Department, Kolkata. The 24 h average concentrations of PM10 and TSP were found in the range 68.2–280.6 μg/m3 and 139.3–580.3 μg/m3 for residential (Kasba) area, while 62.4–401.2 μg/m3 and 125.7–732.1 μg/m3 for industrial (Cossipore) area, respectively. Winter concentrations of particulate pollutants were higher than other seasons, irrespective of the monitoring sites. It indicates a longer residence time of particulates in the atmosphere during winter due to low winds and low mixing height. Spread of air pollution sources and non-uniform mixing conditions in an urban area often result in spatial variation of pollutant concentrations. The higher particulate pollution at industrial area may be attributed due to resuspension of road dust, soil dust, automobile traffic and nearby industrial emissions. Particle size analysis result shows that PM10 is about 52% of TSP at residential area and 54% at industrial area.  相似文献   

5.
The Oswaldo Cruz Foundation Campus (FIOCRUZ), in a suburban region of the city of Rio de Janeiro, was selected as a case study to assess the pollution released from vehicle and industrial facilities in Basin III, the most polluted area of the city. Concentrations of particulate matter (PM10) and trace metals in airborne particles were determined in an intensive field campaign. The samplings were performed every six days for 24 h periods, using a PM10 high volume sampler, from September 2004 to August 2005. PM10 mass concentrations were determined gravimetrically and the metals by ICP-OES. For PM10, the arithmetic mean for the period is 169 ± 42 μg m−3 which is 3.4 times the national recommended standard of 50 μg m−3. Additionally, 51% of the samplings exceeded the recommended 24 h limit of 150 μg m−3. Ca, Mg, Fe, Zn and Al were the metals that presented the higher concentrations. The correlation matrix gave two main clusters and three significant principal components (PC). Both PC1 and PC2 are associated to crustal, vehicular and industrial emissions while PC3 is mainly associated to geological material. Enrichment factors for Zn, Cu, Cd and Pb indicate that for these elements, anthropic sources prevail over natural inputs. PM10 levels showed a good correlation with hospital admissions for respiratory diseases in children and elderly people.  相似文献   

6.
Ambient particles vary greatly in their ability to affect visibility, climate and human health. The fine fraction of aerosol is responsible for greater and wider effects on human health; thus, investigation of this fraction is very important. Continuous measurements of PM2.5 (particulate matter below 2.5 μm in size) concentrations at the Preila monitoring station started in 2003. During a period of 2 years, the episodes of high daily and semi-hourly concentrations of PM2.5 were measured. These episodes did not depend on the season or time of day. The substantial role of long-range transport of pollutants to these increases in concentration was shown using chemical and statistical analysis. It was found that most of the severe episodes occurred when air masses came from a specific site besides it was established that air masses of different origin were characterized by different mixing layer depth. Lower mixing depth was observed in air masses characterized by higher observed concentrations at the measuring site and vice versa. PM2.5 concentrations showed diurnal and seasonal variations whose pattern reflected the regional origin of the aerosol. The regional pollution level was evaluated by the statistical analysis of PM2.5 concentrations. The background annual average of PM2.5 mass concentration for the eastern coast of the Baltic Sea was 15.1 ± 0.8 μg m−3.  相似文献   

7.
In this study, particulate matter (PM) were characterized from a place impacted by heavy-duty vehicles (Bus Station) fuelled with diesel/biodiesel fuel blend (B3) in the city of Londrina, Brazil. Sixteen priority polycyclic aromatic hydrocarbons (PAH) concentrations were analyzed in the samples by their association with atmospheric PM, mass size distributions and major ions (fluorite, chloride, bromide, nitrate, phosphate, sulfate, nitrite, oxalate; fumarate, formate, succinate and acetate; lithium, sodium, potassium, magnesium, calcium and ammonium). Results indicate that major ions represented 21.2% particulate matter mass. Nitrate, sulfate, and ammonium, respectively, presented the highest concentration levels, indicating that biodiesel may also be a significant source for these ions, especially nitrate. Dibenzo[a,h]anthracene and indeno[1,2,3,-cd]pyrene were the main PAH found, and a higher fraction of PAH particles was found in diameters lower than 0.25 μm in Londrina bus station. The fine and ultrafine particles were dominant among the PM evaluated, suggesting that biodiesel decreases the total PAH emission. However, it does also increase the fraction of fine and ultrafine particles when compared to diesel.  相似文献   

8.
In this study, ambient TSP, PM10, and PM2.5 in a residential area located in the northern part of Seoul were monitored every other month for 1 year from April 2005 to February 2006. The monthly average levels of TSP, PM10, and PM2.5 had ranges of 71∼158, 40∼106, and 28∼43 μg/m3, respectively. TSP and PM10 showed highest concentration in April; this seems to be due to Asian dust from China and/or Mongolia. However, the fine particle of PM2.5 showed a relatively constant level during the monitoring period. Heavy metals in PM 10 and PM2.5, such as Cr, As, Cd, Mn, Zn and Pb, were also analysed during the same period. The monthly average concentrations of heavy metal in PM2.5 were Cr:1.9∼22.7 ng/m3; As:0.9∼2.5 ng/m3; Cd: 0.6∼7 ng/m3; Mn:6.1∼22.6 ng/m3; Zn: 38.9∼204.8 ng/m3, and Pb: 21.6∼201.1 ng/m3. For the health risk assessment of heavy metals in ambient particles, excess cancer risks were calculated using IRIS unit risk. As a result, the excess cancer risks of chromium, cadmium, and arsenic were shown to be more than one per million based on the annual concentration of heavy metals, and chromium showed the highest excess cancer risk in ambient particles in Seoul.  相似文献   

9.
Evidence on the correlation between particle mass and (ultrafine) particle number concentrations is limited. Winter- and spring-time measurements of urban background air pollution were performed in Amsterdam (The Netherlands), Erfurt (Germany) and Helsinki (Finland), within the framework of the EU funded ULTRA study. Daily average concentrations of ambient particulate matter with a 50% cut off of 2.5 microm (PM2.5), total particle number concentrations and particle number concentrations in different size classes were collected at fixed monitoring sites. The aim of this paper is to assess differences in particle concentrations in several size classes across cities, the correlation between different particle fractions and to assess the differential impact of meteorological factors on their concentrations. The medians of ultrafine particle number concentrations were similar across the three cities (range 15.1 x 10(3)-18.3 x 10(3) counts cm(-3)). Within the ultrafine particle fraction, the sub fraction (10-30 nm) made a higher contribution to particle number concentrations in Erfurt than in Helsinki and Amsterdam. Larger differences across the cities were found for PM2.5(range 11-17 microg m(-3)). PM2.5 and ultrafine particle concentrations were weakly (Amsterdam, Helsinki) to moderately (Erfurt) correlated. The inconsistent correlation for PM2.5 and ultrafine particle concentrations between the three cities was partly explained by the larger impact of more local sources from the city on ultrafine particle concentrations than on PM2.5, suggesting that the upwind or downwind location of the measuring site in regard to potential particle sources has to be considered. Also, relationship with wind direction and meteorological data differed, suggesting that particle number and particle mass are two separate indicators of airborne particulate matter. Both decreased with increasing wind speed, but ultrafine particle number counts consistently decreased with increasing relative humidity, whereas PM2.5 increased with increasing barometric pressure. Within the ultrafine particle mode, nucleation mode (10-30 nm) and Aitken mode (30-100 nm) had distinctly different relationships with accumulation mode particles and weather conditions. Since the composition of these particle fractions also differs, it is of interest to test in future epidemiological studies whether they have different health effects.  相似文献   

10.
Surface coal mining creates more air pollution problems with respect to dust than underground mining . An investigation was conducted to evaluate the characteristics of the airborne dust created by surface coal mining in the Jharia Coalfield. Work zone air quality monitoring was conducted at six locations, and ambient air quality monitoring was conducted at five locations, for a period of 1 year. Total suspended particulate matter (TSP) concentration was found to be as high as 3,723 μg/m3, respirable particulate matter (PM10) 780 μg/m3, and benzene soluble matter was up to 32% in TSP in work zone air. In ambient air, the average maximum level of TSP was 837 μg/m3, PM10 170 μg/m3 and benzene soluble matter was up to 30%. Particle size analysis of TSP revealed that they were more respirable in nature and the median diameter was around 20 μm. Work zone air was found to have higher levels of TSP, PM10 and benzene soluble materials than ambient air. Variations in weight percentages for different size particles are discussed on the basis of mining activities. Anionic concentration in TSP was also determined. This paper concludes that more stringent air quality standards should be adopted for coal mining areas and due consideration should be given on particle size distribution of the air-borne dust while designing control equipment.  相似文献   

11.
We report on the CuPbZn content of PM10 and PM2.5 samples collected from three sites (urban T0, suburban T1 and rural T2) during the Mexico City MILAGRO campaign of March 2006. Daytime city centre concentrations of summation operator CuZnPb(PM10) were much higher (T0 > 450 ng m(-3)) than at the suburban site (T1 < 200 ng m(-3)). Rural site (T2) summation operator CuZnPb(PM10) concentrations exceeded 50 ng m(-3) when influenced by the megacity plume but dropped to 10 ng m(-3) during clean northerly winds. Nocturnal metal concentrations more than doubled at T0, as pollutants became trapped in the nightly inversion layer, but decreased at the rural site. Transient spikes in concentrations of different metals, e.g. a "copper event" at T0 (CuPM10 281 ng m(-3)) and "zinc event" at T1 (ZnPM10 1481 ng m(-3)) on the night of March 7-8, demonstrate how industrial pollution sources produce localised chemical inhomogeneities in the city atmosphere. Most metal aerosols are <2.5 microm and SEM study demonstrates the dominance of Fe, Ti, Ba, Cu, Pb and Zn (and lesser Sn, Mo, Sb, W, Ni, V, As, Bi) in metalliferous particles that have shapes including spherical condensates, efflorescent CuZnClS particles, cindery Zn, and Cu wire. Metal aerosol concentrations do not change in concert with PM10 mass, which is more influenced by wind resuspension than industrial emissions. Metalliferous particles can induce cell damage, and PM composition is probably more important than PM mass, with respect to negative health effects, so that better monitoring and control of industrial emissions would likely produce significant improvements in air quality.  相似文献   

12.
Concentrations of polycyclic aromatic hydrocarbons (PAHs) in street soil dust from streets in Kumasi Metropolis in the Ashanti Region of the Republic of Ghana have been measured in this study. The concentrations of the various types of PAHs identified in this study are as follows: Naphthalene (m/e 128) – 41,700 μg/kg, Acenaphthylene (m/e 152) – 99,300 μg/kg, Acenaphthene (m/e 154) – 111,200 μg/kg, Fluorene (m/e 166) – 8,900 μg/kg, Carbazole (m/e 167) – 3,500 μg/kg, phenathrene (m/e 178) – 12,900 μg/kg, Anthracene (m/e 178) – 5,400 μg/kg, Fluoranthene (m/e 202) – 16,200 μg/kg, Pyrene (m/e 202) – 15,000 μg/kg, Benzo[a]anthracene (m/e 228) – 13,800 μg/kg, Chrysene (m/e 228) – 33,600 μg/kg, Benzo[k]fluoranthene (m/e 252) – 45,700 μg/kg, Benzo[a]pyrene (m/e 252) – 27,900 μg/kg, Perylene (m/e 252) – 57,200 μg/kg and Benzo[g, h, i]perylene (m/e 276) – 47,000 μg/kg. The results of the study shows that road users, like resident living in buildings within these areas, those engaged in commercial activities like hawking, and the general public are at risk of exposure to the toxic effects of the various types of PAHs from the exhaust of vehicles into the environment. According to these results, there is the potential for exposure to high levels of PAHs for road users and those living in urban environments or along highways.  相似文献   

13.
为了解可吸入颗粒物污染水平与气象因素之间的关系,从2008年9月—2010年2月采集乌鲁木齐市可吸入颗粒物样品,并对其随时间的变化特征及其与气象因素之间的相关性进行了统计分析。结果表明,采样时间内可吸入颗粒物中PM2.5和PM2.5-10的质量浓度的范围分别为38.2~468.7μg/m3和20.8~243.1μg/m3,平均浓度分别为134.2μg/m3和69.2μg/m3。可吸入颗粒物同时受几种气象因素的影响,其浓度与温度、能见度、风速呈负相关,与湿度呈正相关。  相似文献   

14.
The objective of the present study is the exploitation of active sampling personal exposure data in assessing the factors that affect exposure to benzene in combination with the widely accepted scheme of passive sampling—time microenvironment–activity diaries (TMAD). The campaign included personal exposure measurements with both passive and active sampling in several microenvironments, evaluation of TMAD kept by the volunteers, and a variety of environmental data (ambient air benzene determination, traffic and meteorological observations). Due to the relatively elevated benzene traffic emissions, average personal exposure was determined to be equal to 8.9 μg/m3, ranging between 5 and 20 μg/m3, which is a value highly related to the average urban concentration (9.2 μg/m3). The information gained from TMAD was embedded (in terms of spatial and temporal distribution) into three zones respectively, in order to draw statistically significant conclusions about the exposure levels and the activity patterns. The contribution of the activities to the overall amount of exposure was further quantified and refined by active sampling measurements. These data revealed that driving in a traffic-congested road was the main activity leading to elevated exposure levels (up to 70 μg/m3), followed by walking on the roadside of a congested road (up to 35 μg/m3). Indoor exposure to benzene was in general lower than outdoor (indicating that traffic is the dominant source of benzene emissions in the wider area), and it was significantly affected by the presence of environmental tobacco smoke. The higher significance of the regression coefficients obtained by statistical analysis of the active sampling data was fundamental for the development of a regression-based prediction exposure model. The model was evaluated through comparison with the passive sampling data, which were considered as an unknown but realistic data exposure pattern. The model performed very well in terms of expressing the variance of the exposure data with an average score of R 2 equal to 0.935. All of the above indicate that active sampling is a necessary albeit more laborious tool that needs to be used as a complement to passive sampling for precise quantification of the factors determining personal exposure patterns.  相似文献   

15.
To analyze polycyclic aromatic hydrocarbons (PAHs) at an urban site in Seoul, South Korea, 24-hr ambient air PM2.5 samples were collected during five intensive sampling periods between November 1998 and December 1999. To determine the PAH size distribution, 3-day size-segregated aerosol samples were also collected in December 1999. Concentrations of the 16 PAHs in the PM2.5 particles ranged from 3.9 to 119.9 ng m−3 with a mean of 24.3 ng m−3.An exceptionally high concentration of PAHs(∼120 ng m−3) observed during a haze event in December 1999 was likely influenced more by diesel vehicle exhaust than by gasoline exhaust, as well as air stagnation, as evidenced by the low carbon monoxide/elemental carbon (CO/EC) ratio of 205 found in this study and results reported by previous studies. The total PAHs associated with the size-segregated particles showed unimodal distributions. Compared to the unimodal size distributions of PAHs with modal peaks at < 0.12 μm measured in highway tunnels in Los Angeles (Venkataraman and Friedlander, 1994), four- to six-ring PAHs in our study had unimodal size distributions, peaking at the larger size range of 0.28–0.53 μm, suggesting the coagulation of freshly emitted ultrafine particles during transport to the sampling site. Further, the fraction of PAHs associated with coarse particles(> 1.8 μm) increased as the molecular weight of the PAHs decreased due to volatilization of fine particles followed by condensation onto coarse particles.  相似文献   

16.
The use of hydrated magnesium carbonate hydroxide (magnesia alba) for drying the hands is a strong source for particulate matter in indoor climbing halls. Particle mass concentrations (PM10, PM2.5 and PM1) were measured with an optical particle counter in 9 indoor climbing halls and in 5 sports halls. Mean values for PM10 in indoor climbing halls are generally on the order of 200-500 microg m(-3). For periods of high activity, which last for several hours, PM10 values between 1000 and 4000 microg m(-3) were observed. PM(2.5) is on the order of 30-100 microg m(-3) and reaches values up to 500 microg m(-3), if many users are present. In sports halls, the mass concentrations are usually much lower (PM10 < 100 microg m(-3), PM2.5 < or = 20 microg m(-3)). However, for apparatus gymnastics (a sport in which magnesia alba is also used) similar dust concentrations as for indoor climbing were observed. The size distribution and the total particle number concentration (3.7 nm-10 microm electrical mobility diameter) were determined in one climbing hall by an electrical aerosol spectrometer. The highest number concentrations were between 8000 and 12 000 cm(-3), indicating that the use of magnesia alba is no strong source for ultrafine particles. Scanning electron microscopy and energy-dispersive X-ray microanalysis revealed that virtually all particles are hydrated magnesium carbonate hydroxide. In-situ experiments in an environmental scanning electron microscope showed that the particles do not dissolve at relative humidities up to 100%. Thus, it is concluded that solid particles of magnesia alba are airborne and have the potential to deposit in the human respiratory tract. The particle mass concentrations in indoor climbing halls are much higher than those reported for schools and reach, in many cases, levels which are observed for industrial occupations. The observed dust concentrations are below the current occupational exposure limits in Germany of 3 and 10 mg m(-3) for respirable and inhalable dust. However, the dust concentrations exceed the German guide lines for work places without use of hazardous substances. In addition, minimizing dust concentrations to technologically feasible values is required by the current German legislation. Therefore, substantial reduction of the dust concentration is required.  相似文献   

17.
Aerosol samples of PM10 and PM2.5 are collected in summertime at four monitoring sites in Guangzhou, China. The concentrations of organic and elemental carbons (OC/EC), inorganic ions, and elements in PM10 and PM2.5 are also quantified. Our study aims to: (1) characterize the particulate concentrations and associated chemical species in urban atmosphere (2) identify the potential sources and estimate their apportionment. The results show that average concentration of PM2.5 (97.54 μg m−3) in Guangzhou significantly exceeds the National Ambient Air Quality Standard (NAAQS) 24-h average of 65 μg m−3. OC, EC, Sulfate, ammonium, K, V, Ni, Cu, Zn, Pb, As, Cd and Se are mainly in PM2.5 fraction of particles, while chloride, nitrate, Na, Mg, Al, Fe, Ca, Ti and Mn are mainly in PM2.5-10 fraction. The major components such as sulfate, OC and EC account for about 70–90% of the particulate mass. Enrichment factors (EF) for elements are calculated to indicate that elements of anthropogenic origins (Zn, Pb, As, Se, V, Ni, Cu and Cd) are highly enriched with respect to crustal composition (Al, Fe, Ca, Ti and Mn). Ambient and source data are used in the multi-variable linearly regression analysis for source identification and apportionment, indicating that major sources and their apportionments of ambient particulate aerosols in Guangzhou are vehicle exhaust by 38.4% and coal combustion by 26.0%, respetively.  相似文献   

18.
Simultaneous indoor and outdoor PM10 and PM2.5 concentration measurements were conducted in seven primary schools in the Athens area. Both gravimetric samplers and continuous monitors were used. Filters were subsequently analyzed for anion species. Moreover ultrafine particles number concentration was monitored continuously indoors and outdoors. Mean 8-hr PM10 concentration was measured equal to 229 ± 182 μg/m3 indoors and 166 ± 133 μg/m3 outdoors. The respective PM2.5 concentrations were 82 ± 56 μg/m3 indoors and 56 ± 26 μg/m3 outdoors. Ultrafine particles 8-h mean number concentration was measured equal to 24,000 ± 17,900 particles/cm3 indoors and 32,000 ± 14,200 particles/cm3 outdoors. PM10 outdoor concentrations exhibited a greater spatial variability than the corresponding PM2.5 ones. I/O ratios were close or above 1.00 for PM10 and PM2.5 and smaller than 1.00 for ultrafine particles. Very high I/O ratios were observed when intense activities took place. The initial results of the chemical analysis showed that accounts for the 6.6 ± 3.5% of the PM10 and for the 3.1 ± 1.4%.The corresponding results for PM2.5 are 12.0 ± 7.7% for and 3.1 ± 1.9% for . PM2.5 indoor concentrations were highly correlated with outdoor ones and the regression line had the largest slope and a very low intercept, indicative of no indoor sources of fine particulate . The results of the statistical analysis of indoor and outdoor concentration data support the use of as a proper surrogate for indoor PM of outdoor origin.  相似文献   

19.
Particles in a dental office can be generated by a number of instruments, such as air-turbine handpieces, low-speed handpieces, ultrasonic scalers, bicarbonate polishers, polishing cups, as well as drilling and air sprays inside the oral cavity. This study examined the generation of particles during dental drilling and measured particle size, mass, and trace elements. The air sampling techniques included both continuous and integrated methods. The following particle continuous measurements were taken every minute: (1) size-selective particle number concentration (Climet); (2) total particle number concentration (PTRAK), and; (3) particle mass concentration (DustTrak). Integrated particle samples were collected for about 5 h on each of five sampling days, using a PM2.5 sampler (ChemComb) for elemental/organic carbon analysis, and a PM10 sampler (Harvard Impactor) for mass and elemental analyses. There was strong evidence that these procedures result in particle concentrations above background. The dental procedures produced number concentrations of relatively small particles (<0.5 μm) that were much higher than concentrations produced for the relatively larger particles (>0.5 μm). Also, these dental procedures caused significant elevation above background of certain trace elements (measured by X-ray fluorescence) but did not cause any elevation of elemental carbon (measured by thermal optical reflectance). Dental drilling procedures aerosolize saliva and products of drilling, producing particles small enough to penetrate deep into the lungs. The potential health impacts of the exposure of dental personnel to such particles need to be evaluated. Increased ventilation and personal breathing protection could be used to minimize harmful effects.  相似文献   

20.
Aerosol size distributions, trace gas, and PM(2.5) concentrations have been measured in urban Jinan, China, over 6 months in 2007 and 2008, covering spring, summer, fall, and winter time periods. Number concentrations of particles (10-2,500 nm) were 16,200, 13,900, 11,200, and 21,600 cm(?-3) in spring, summer, fall, and winter, respectively. Compared with other urban studies, Jinan has higher number concentrations of accumulation-mode particles (100-500 nm) and particles (10-2,500 nm), but lower concentrations of ultrafine particles (10-100 nm). The number, surface and volume concentrations, and size distributions of particles showed obvious seasonal variation and are also influenced by traffic emissions. Through correlation analysis, traffic emissions are proposed to be a more important contributor to Atkien-mode and accumulation-mode particles than coal firing. Around midday, the presence of nanoparticles and new particle formation is limited to pre-existing particles from traffic emissions and the mass transport of particles from suburban and rural areas. Compared with other studies in urban areas of Europe and the USA, the variation of particle number concentration and related gas concentration in Jinan between weekdays and weekends is smaller and the reasons has been deduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号