首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Soil water content is a key parameter for representing water dynamics in soils. Its prediction is fundamental for different practical applications, such as identifying shallow landslides triggering. Support vector machine (SVM) is a machine learning technique, which can be used to predict the temporal trend of a quantity since training from past data. SVM was applied to a test slope of Oltrepò Pavese (northern Italy), where meteorological parameters coupled with soil water content at different depths (0.2, 0.4, 0.6, 1.0, 1.2, 1.4 m) were measured. Two SVM models were developed for water content assessment: (i) model 1, considering rainfall amount, air temperature, air humidity, net solar radiation, and wind speed; (ii) model 2, considering the same predictors of model 1 together with antecedent condition parameters (cumulated rainfall of 7, 30, and 60 days; mean air temperature of 7, 30, and 60 days). SVM model 2 showed significantly higher satisfactory results than model 1, for both training and test phases and for all the considered soil levels. SVM models trends were implemented in a methodology of slope safety factor assessment. For a real event occurred in the tested slope, the triggering time was correctly predicted using data estimated by SVM model based on antecedent meteorological conditions. This confirms the necessity of including these predictors for building a SVM technique able to estimate correctly soil moisture dynamics in time. The results of this paper show a promising potential application of the SVM methodologies for modeling soil moisture required in slope stability analysis.  相似文献   

2.
This paper presents the use of both the Water Erosion Prediction Project (WEPP) and the artificial neural network (ANN) for the prediction of runoff and soil loss in the central highland mountainous of the Palestinian territories. Analyses show that the soil erosion is highly dependent on both the rainfall depth and the rainfall event duration rather than on the rainfall intensity as mostly mentioned in the literature. The results obtained from the WEPP model for the soil loss and runoff disagree with the field data. The WEPP underestimates both the runoff and soil loss. Analyses conducted with the ANN agree well with the observation. In addition, the global network models developed using the data of all the land use type show a relatively unbiased estimation for both runoff and soil loss. The study showed that the ANN model could be used as a management tool for predicting runoff and soil loss.  相似文献   

3.
Due to critical impacts of air pollution, prediction and monitoring of air quality in urban areas are important tasks. However, because of the dynamic nature and high spatio-temporal variability, prediction of the air pollutant concentrations is a complex spatio-temporal problem. Distribution of pollutant concentration is influenced by various factors such as the historical pollution data and weather conditions. Conventional methods such as the support vector machine (SVM) or artificial neural networks (ANN) show some deficiencies when huge amount of streaming data have to be analyzed for urban air pollution prediction. In order to overcome the limitations of the conventional methods and improve the performance of urban air pollution prediction in Tehran, a spatio-temporal system is designed using a LaSVM-based online algorithm. Pollutant concentration and meteorological data along with geographical parameters are continually fed to the developed online forecasting system. Performance of the system is evaluated by comparing the prediction results of the Air Quality Index (AQI) with those of a traditional SVM algorithm. Results show an outstanding increase of speed by the online algorithm while preserving the accuracy of the SVM classifier. Comparison of the hourly predictions for next coming 24 h, with those of the measured pollution data in Tehran pollution monitoring stations shows an overall accuracy of 0.71, root mean square error of 0.54 and coefficient of determination of 0.81. These results are indicators of the practical usefulness of the online algorithm for real-time spatial and temporal prediction of the urban air quality.  相似文献   

4.
Complex optical properties, such as non-pigment suspension and colored dissolved organic matter (CDOM), make it difficult to achieve accurate estimations of remotely sensed chlorophyll a (Chla) content of inland turbidity. Recent attempts have been made to estimate Chla based on red and near-infrared regions where non-pigment suspension and CDOM have little effect on water reflectance. The objective of this study is to validate the applicability of WV-2 imagery with existing effective estimation methods from MERIS when estimating Chla content in inland turbidity waters. The correlation analysis of measured Chla content and WV-2 imagery bands shows that the Chla sensitive bands of WV-2 are red edge, NIR 1, and NIR 2. The coastal band is designed for seawater Chla detection. However, the high correlation with turbidity data and low correlation with Chla made coastal band unsuitable for estimating Chla in inland waters. The high-resolution water body images were extracted by combining the spectral products (NDWI) with the spatial morphological products (sobel edge detection). The estimation results show that the accuracy of the single band and NDCI is not as good as the two-band method, three-band method, stepwise regression algorithm (SRA) and support vector machines (SVM). The SVM estimation accuracy was the highest with an R2, RMSE, and URMSE of 0.8387, 0.4714, and 19.11%, respectively. This study demonstrates that the two-band and three-band methods are effective for estimating Chla in inland water for WV-2 imagery. As a high-precision estimation method, SVM has great potential for inland turbidity water Chla estimation.  相似文献   

5.
Locating and forecasting water needs can assist the location of water in dry regions, and improve the management of reservoirs and the canal network. Satellite, ground data, and agrometeorological data were combined to forecast the volume of irrigation water needed during 1993 and 1994 in an irrigation district of 327 km2 located in the Ebro basin, Spain. The main crops were rice, alfalfa plus forage, winter cereals (barley and wheat), sunflower and maize. Their extent was estimated every year by frame area sampling and a regression estimator with satellite data. Initial crop area statistics were obtained by expansion of the sample areas to the entire study area and then a regression estimator with the multitemporal supervised classification of two Landsat-5 TM images was applied. This procedure improved the precision of the estimates by expansion. Net water requiremets (m3 ha-1) of the above mentioned crops were computed from reference evapotranspiration estimates, crop coefficients and effective precipitation. These computations were performed for an average year, i.e. by using long-term averaged meteorological data. Crop hectarage and net crop water requirements were multiplied to obtain, for the entire study area, the volume (hm3 106 m3) of the net crop water requirements. After subtraction of water taken directly from the rivers and non-productive sunflower, the irrigation water volumes were estimated. The comparison of these forecasts with the volumes of water invoiced by the Ebro Basin Water Authority confirmed the feasibility of forecasting the volume of water applied to an individual irrigation district. This is an objective and practical method for estimating the irrigation water volume applied in an irrigated area.  相似文献   

6.
Artificial neural network modeling of dissolved oxygen in reservoir   总被引:4,自引:0,他引:4  
The water quality of reservoirs is one of the key factors in the operation and water quality management of reservoirs. Dissolved oxygen (DO) in water column is essential for microorganisms and a significant indicator of the state of aquatic ecosystems. In this study, two artificial neural network (ANN) models including back propagation neural network (BPNN) and adaptive neural-based fuzzy inference system (ANFIS) approaches and multilinear regression (MLR) model were developed to estimate the DO concentration in the Feitsui Reservoir of northern Taiwan. The input variables of the neural network are determined as water temperature, pH, conductivity, turbidity, suspended solids, total hardness, total alkalinity, and ammonium nitrogen. The performance of the ANN models and MLR model was assessed through the mean absolute error, root mean square error, and correlation coefficient computed from the measured and model-simulated DO values. The results reveal that ANN estimation performances were superior to those of MLR. Comparing to the BPNN and ANFIS models through the performance criteria, the ANFIS model is better than the BPNN model for predicting the DO values. Study results show that the neural network particularly using ANFIS model is able to predict the DO concentrations with reasonable accuracy, suggesting that the neural network is a valuable tool for reservoir management in Taiwan.  相似文献   

7.
Mine tailings generate significant environmental impacts and contribute to water pollution. The Central Rand goldfield, South Africa is replete with gold mine tailings which have contributed significantly to water pollution as a result of acid mine drainage (AMD). Water quality is affected by mine tailings and spillages, especially from active slimes dams, currently reprocessed tailings, as well as footprints left behind after reprocessing. The release and distribution of uranium from these sites was studied. Correlation matrices show a strong link between different variables as a result of AMD produced. Principal component analysis (PCA) was used to identify very influential variables which account for the pollution trends. Artificial neural networks (ANN) using the Kohonen algorithm were applied to visualise these trends and patterns in the distribution of uranium. High concentrations of this radionuclide were detected in streams in the vicinity of the tailings dumps, active slimes and reprocessing areas. The concentrations are reduced drastically in dams and wetlands as a result of precipitation and dilution effects.  相似文献   

8.
Precipitable water (PW) is an important atmospheric variable for climate system calculation. Local monthly mean PW values were measured by daily radiosonde observations for the time period from 1990 to 2006. Artificial neural network (ANN) method was applied for modeling and prediction of mean precipitable water data in Çukurova region, south of Turkey. We applied Levenberg–Marquardt (LM) learning algorithm and logistic sigmoid transfer function in the network. In order to train our neural network we used data of Adana station, which are assumed to give a general idea about the precipitable water of Çukurova region. Thus, meteorological and geographical data (altitude, temperature, pressure, and humidity) were used in the input layer of the network for Çukurova region. Precipitable water was the output. Correlation coefficient (R2) between the predicted and measured values for monthly mean daily sum with LM method values was found to be 94.00% (training), 91.84% (testing), respectively. The findings revealed that the ANN-based prediction technique for estimating PW values is as effective as meteorological radiosonde observations. In addition, the results suggest that ANN method values be used so as to predict the precipitable water.  相似文献   

9.
This paper examines the application of artificial neural network (ANN) and boosted regression tree (BRT) methods in air quality modelling. The methods were applied to developing air quality models for predicting roadside particle mass concentration (PM10, PM2.5) and particle number counts (PNC) based on air pollution, traffic and meteorological data from Marylebone Road in London. Elastic net, Lasso and principal components analysis were used as feature selection methods for the ANN models to reduce the number of predictor variables and improve their generalisation. The performance of the ANN with feature selection (ANN hybrid) and the BRT models was evaluated and compared using statistical performance metrics. The performance parameters include root mean square error (RMSE), fraction of prediction within a factor of two of the observation (FAC2), mean bias (MB), mean gross error (MGE), the coefficient of correlation (R) and coefficient of efficiency (CoE) values. The input variables selected by the elastic net produced the best performing ANN models. The ANN hybrid produced models performed only slightly better than the BRT models. The R values of the ANN elastic net and BRT models were 0.96 and 0.95 for PM10, 0.96 and 0.96 for PM2.5 and 0.89 and 0.87 for PNC, respectively. Their corresponding CoE values were 0.72 and 0.70 for PM10, 0.74 and 0.76 for PM2.5 and 0.81 and 0.71 for PNC respectively. About 80–99% of all the model predictions are within a factor of two of the observed particle concentrations. The BRT models offer more advantages regarding model interpretation and permit feature selection. Therefore, the study recommends the use of BRT over ANN where the model interpretation is a priority.  相似文献   

10.
以影响太湖入湖河流水质的24个因子值为研究对象,将PSO算法与SVM算法相结合。PSO算法用于优化SVM算法的参数c和g,以利于快速、高效地确定c和g的全局最优值;SVM算法基于最优的c和g,分别以24,21,18,15,12,9和6个因子作为特征向量预测水质的污染程度。结果表明,当特征向量为9个影响因子时预测率最高。其参数c=18.56,g=1.35,对应的预测率为:全局预测率92.59%,重度污染水质预测率88.89%,轻度污染水质预测率94.45%。因此,通过PSO和SVM混合算法,可以确定影响太湖入湖河流水质的主要因子,利用这些主要因子对水质进行预测预警,不但可以节省时间,而且可以得到精确的结果。  相似文献   

11.
Identification and quantification of dissolved oxygen (DO) profiles of river is one of the primary concerns for water resources managers. In this research, an artificial neural network (ANN) was developed to simulate the DO concentrations in the Heihe River, Northwestern China. A three-layer back-propagation ANN was used with the Bayesian regularization training algorithm. The input variables of the neural network were pH, electrical conductivity, chloride (Cl?), calcium (Ca2+), total alkalinity, total hardness, nitrate nitrogen (NO3-N), and ammonical nitrogen (NH4-N). The ANN structure with 14 hidden neurons obtained the best selection. By making comparison between the results of the ANN model and the measured data on the basis of correlation coefficient (r) and root mean square error (RMSE), a good model-fitting DO values indicated the effectiveness of neural network model. It is found that the coefficient of correlation (r) values for the training, validation, and test sets were 0.9654, 0.9841, and 0.9680, respectively, and the respective values of RMSE for the training, validation, and test sets were 0.4272, 0.3667, and 0.4570, respectively. Sensitivity analysis was used to determine the influence of input variables on the dependent variable. The most effective inputs were determined as pH, NO3-N, NH4-N, and Ca2+. Cl? was found to be least effective variables on the proposed model. The identified ANN model can be used to simulate the water quality parameters.  相似文献   

12.
The aim of this study is to estimate the soil temperatures of a target station using only the soil temperatures of neighboring stations without any consideration of the other variables or parameters related to soil properties. For this aim, the soil temperatures were measured at depths of 5, 10, 20, 50, and 100 cm below the earth surface at eight measuring stations in Turkey. Firstly, the multiple nonlinear regression analysis was performed with the “Enter” method to determine the relationship between the values of target station and neighboring stations. Then, the stepwise regression analysis was applied to determine the best independent variables. Finally, an artificial neural network (ANN) model was developed to estimate the soil temperature of a target station. According to the derived results for the training data set, the mean absolute percentage error and correlation coefficient ranged from 1.45% to 3.11% and from 0.9979 to 0.9986, respectively, while corresponding ranges of 1.685–3.65% and 0.9988–0.9991, respectively, were obtained based on the testing data set. The obtained results show that the developed ANN model provides a simple and accurate prediction to determine the soil temperature. In addition, the missing data at the target station could be determined within a high degree of accuracy.  相似文献   

13.
开展国家水环境质量预报预警工作是生态环境治理能力现代化的重要部分,是统筹山水林田湖草系统治理的重要抓手。文章介绍了国内外水质模型的研究进展,并概述了国内外水质预报预警系统研究进展,在此基础上分析目前我国水质预报预警方面存在的不足,并提出了国家水环境质量预报预警业务发展的初步思路。我国水质预报预警体系建设要以技术体系和业务体系为保障,以水质模型和面源污染模型为支撑,依托水环境质量预报预警决策支持平台,开展环境监管业务化应用、治理决策精细化支撑、污染事故科学化处置和数据产品社会化服务4种业务应用,逐步建成架构统一、业务协同、资源共享、上下游联动的全国-流域-省级-城市四级水环境质量预报预警网络。  相似文献   

14.
The concept of time stability has been widely used in the design and assessment of monitoring networks of soil moisture, as well as in hydrological studies, because it is as a technique that allows identifying of particular locations having the property of representing mean values of soil moisture in the field. In this work, we assess the effect of time stability calculations as new information is added and how time stability calculations are affected at shorter periods, subsampled from the original time series, containing different amounts of precipitation. In doing so, we defined two experiments to explore the time stability behavior. The first experiment sequentially adds new data to the previous time series to investigate the long-term influence of new data in the results. The second experiment applies a windowing approach, taking sequential subsamples from the entire time series to investigate the influence of short-term changes associated with the precipitation in each window. Our results from an operating network (seven monitoring points equipped with four sensors each in a 2-ha blueberry field) show that as information is added to the time series, there are changes in the location of the most stable point (MSP), and that taking the moving 21-day windows, it is clear that most of the variability of soil water content changes is associated with both the amount and intensity of rainfall. The changes of the MSP over each window depend on the amount of water entering the soil and the previous state of the soil water content. For our case study, the upper strata are proxies for hourly to daily changes in soil water content, while the deeper strata are proxies for medium-range stored water. Thus, different locations and depths are representative of processes at different time scales. This situation must be taken into account when water management depends on soil water content values from fixed locations.  相似文献   

15.
As the health impact of air pollutants existing in ambient addresses much attention in recent years, forecasting of airpollutant parameters becomes an important and popular topic inenvironmental science. Airborne pollution is a serious, and willbe a major problem in Hong Kong within the next few years. InHong Kong, Respirable Suspended Particulate (RSP) and NitrogenOxides NOx and NO2 are major air pollutants due to thedominant diesel fuel usage by public transportation and heavyvehicles. Hence, the investigation and prediction of the influence and the tendency of these pollutants are ofsignificance to public and the city image. The multi-layerperceptron (MLP) neural network is regarded as a reliable andcost-effective method to achieve such tasks. The works presentedhere involve developing an improved neural network model, whichcombines the principal component analysis (PCA) technique and theradial basis function (RBF) network, and forecasting thepollutant levels and tendencies based in the recorded data. Inthe study, the PCA is firstly used to reduce and orthogonalizethe original input variables (data), these treated variables arethen used as new input vectors in RBF neural network modelestablished for forecasting the pollutant tendencies. Comparingwith the general neural network models, the proposed modelpossesses simpler network architecture, faster training speed,and more satisfactory predicting performance. This improvedmodel is evaluated by using hourly time series of RSP, NOx and NO2 concentrations collected at Mong Kok Roadside Gaseous Monitory Station in Hong Kong during the year 2000. By comparing the predicted RSP, NOx and NO2 concentrationswith the actual data of these pollutants recorded at the monitorystation, the effectiveness of the proposed model has been proven.Therefore, in authors' opinion, the model presented in the paper is a potential tool in forecasting air quality parameters and hasadvantages over the traditional neural network methods.  相似文献   

16.
Specific surface area (SSA) is one of the principal soil properties used in modeling soil processes. In this study, artificial neural network (ANN) ensembles were evaluated to predict SSA. Complete soil particle-size distribution was estimated from sand, silt, and clay fractions using the model by Skaggs et al. and then the particle-size distribution curve parameters (PSDCPs) and fractal parameters were calculated. The PSDCPs were used to predict 20 particle-size classes for a soil sample’s particle size distribution. Fractal parameters were calculated by the model of Bird et al. In addition, total soil-specific surface area (TSS) was calculated using the above 20 size classes. Pedotransfer functions were developed for SSA and TSS using ANN ensembles from 63 pieces of SSA data taken from the literature. Fractal parameters, PSDCPs, and some other soil properties were used to predict SSA and TSS. Introducing fractal parameters and PSDCPs improved the SSA estimations by 12.5 and 11.1 %, respectively. The improvements were even better for TSS estimations (27.7 and 27.0 %, respectively). The use of fractal parameters as estimators described 44 and 92.8 % of the variation in SSA and TSS, respectively, while PSDCPs explained 42 and 6.6 % of the variation in SSA and TSS, respectively. The results suggested that fractal parameters and PSDCPs could be successfully used as predictors in ANN ensembles to predict SSA and TSS.  相似文献   

17.
基于集合经验模态分解和支持向量机的溶解氧预测   总被引:1,自引:0,他引:1  
应用集合经验模态分解(EEMD)和支持向量机(SVM)相结合的方法,建立一种天然水体溶解氧浓度预测模型。首先,利用EEMD方法将溶解氧时序分解成不同频段的分量,以降低序列的非平稳性;然后,根据各序列分量的自身特征建立合适的SVM预测模型,此过程通过相关分析确定各分量输入量;最后,将各子分量预测值合成得到最终的预测结果。使用该模型对嘉陵江北温泉段的溶解氧浓度进行预测,结果表明,与传统单一的SVM和BP神经网络模型相比,该模型能有效提高预测精密度,具有良好的应用前景。  相似文献   

18.
Emissions of soil CO2 under different management systems have a significant effect on the carbon balance in the atmosphere. Soil CO2 emissions were measured from an apricot orchard at two different locations: under the crown of trees (CO2-UC) and between tree rows (CO2-BR). For comparison, one other measurement was performed on bare soil (CO2-BS) located next to the orchard field. Analytical data were obtained weekly during 8 years from April 2008 to December 2016. Various environmental parameters such as air temperature, soil temperature at different depths, soil moisture, rainfall, and relative humidity were used for modeling and estimating the long-term seasonal variations in soil CO2 emissions using two different methods: generalized linear model (GLM) and artificial neural network (ANN). Before modeling, data were randomly split into two parts, one for calibration and the second for validation, with a varying number of samples in each part. Performances of the models were compared and evaluated using means absolute of estimations (MAE), square root of mean of prediction (RMSEP), and coefficient of determination (R2) values. CO2-UC, CO2-BR, and CO2-BS values ranged from 11 to 3985, from 9 to 2365, and from 8 to 1722 kg ha?1 week?1, respectively. Soil CO2 emissions were significantly correlated (p?<?0.05) with some environmental variables. The results showed that GLM and ANN models provided similar accuracies in modeling and estimating soil CO2 emissions, as the number of samples in the validation data set increased. The ANN was more advantageous than GLM models by providing a better fit between actual observations and predictions and lower RMSEP and MAE values. The results suggested that the success of environmental variables for estimations of CO2 emissions using the two methods was moderate.  相似文献   

19.
The capabilities of third world countries in dealing withenvironmental problems are often limited by available resources and the tremendous costs of environmental monitoring.This paper attempts to introduce a newmethodology that can be used to derive information aboutenvironmental quality in its spatial and temporal dimensions.This methodology, based on an inquiry-feedback network of 8,000families and iteration with controlled-feedback of expertcommunity, has been first tested in Shanghai, China andprocedurally can be divided into two steps: Base-year evaluationand forecasting. Fuzzy pattern recognition is introduced for thesubjective assessment of the citizens' feelings theirperceived environment and a four-round Delphi-Cross Impactanalysis is conducted for forecasting the environmental changesup to 2000. Results show that the base-year environmentalsituations were poor. In the foreseeable future, the conditionsfor housing, social services, public health, greenspace anddrinking water will be substantially improved. Due to the rapidgrowth of manufacturing, the city will continue its deteriorating trend of air and water quality into the next century according to the forecast.  相似文献   

20.
This paper describes the development of artificial neural network (ANN) based carbon monoxide (CO) persistence (ANNCOP) models to forecast 8-h average CO concentration using 1-h maximum predicted CO data for the critical (winter) period (November–March). The models have been developed for three 8-h groupings of 10 p.m. to 6 a.m., 6 a.m. to 2 p.m. and 2–10 p.m., at two air quality control regions (AQCRs) in Delhi city, representing an urban intersection and an arterial road consisting heterogeneous traffic flows. The result indicates that time grouping of 2–10 pm is dominantly affected by inversion conditions and peak traffic flow. The ANNCOP model corresponding to this grouping predicts the 8-h average CO concentrations within the accuracy range of 68–71%. The CO persistence values derived from ANNCOP model are comparable with the persistence values as suggested by the Environmental Protection Agency (EPA), USA. This work demonstrates that ANN based model is capable of describing winter period CO persistence phenomena.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号