首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In this study, 16 polycyclic aromatic hydrocarbons (PAHs) were detected in sewage sludge samples from four wastewater treatment plants (WWTPs) in Qingdao, China. These WWTPs differ in the type of treatment used and in the origin of the wastewater. The total amounts of PAHs in digested sludges ranged from 1.9645 to 6.5752 mg/kg, which did not exceed the projected European Union cut-off limits (6 mg/kg) for sludge found in farmland, except for the Haibohe WWTP. Significant differences were observed in overall PAH values between WWTPs receiving domestic effluents and those receiving industrial effluents. The total amounts of PAHs in digested sludge from the Licunhe and Haibohe WWTPs, which mainly received industrial effluents, were markedly higher than those of the Tuandao and Huangdao WWTPs, which received only domestic effluents. The distribution of PAH compounds in digested sludges were analysed. At the Tuandao, Huangdao and Licunhe WWTPs, 2-, 3-, 4-benzene rings were predominant, accounting for 100%, 99.8% and 99.0% of the sum concentration of 16 PAHs (∑PAHs), respectively. At the Haibohe WWTP, a large number of high molecular weight PAHs (5-, 6-benzene rings) were observed, accounting for 30% of the ∑PAHs. The sum of seven carcinogenic PAHs (∑PAHs-c) ranged from 0.8694 to 3.0389 mg/kg in four WWTPs. The highest value was found in the Haibohe WWTP. Moreover, the PAH concentrations in sludges from the different treatment processes in the Licunhe and Tuandao WWTPs are discussed.  相似文献   

2.
PAHs Contamination in Bank Sediment of the Yamuna River, Delhi, India   总被引:2,自引:0,他引:2  
This study was performed to elucidate the distribution, concentration trend and possible sources of PAHs in bank sediment of river Yamuna in Delhi, India. The levels of 16 priority polycyclic aromatic hydrocarbons (PAHs) were analyzed during pre-monsoon, monsoon and post-monsoon seasons in the sediment fraction < 53 μm. Reference standards and internal standards were used for identification and quantification of PAHs by HPLC. The sum of 16 PAH compounds ranged from 4.50 to 23.53 μg/g with a mean concentration of 10.15 ± 4.32 μg/g (dry wt.). Among 5 sites studied, the site, Income Tax Office (ITO) was found to be the hotspot attaining highest concentration. Predominance of 2–4 ring PAHs suggests a relatively recent local sources of PAHs in the study area. Moreover, molecular indices based source apportionment also illustrates pyrogenic source fingerprint of PAHs. No significant temporal trend was observed.  相似文献   

3.
Exposure to diesel exhaust was evaluated in summer and winter by measuring vapour and particle phase polycyclic aromatic hydrocarbons (PAHs). Fifteen PAHs were simultaneously determined from the air samples obtained from truck drivers collecting household waste and maintenance personnel at a waste handling centre. The major compounds analysed from the personal air samples of exposed workers were naphthalene, phenanthrene and fluorene. The total PAH exposure (sum of 15 PAHs) of garbage truck drivers ranged from 71 to 2,660 ng m(-3) and from 68 to 900 ng m-3 in the maintenance work. The exposure of garbage truck drivers to benzo[a]pyrene (B[a]P) ranged from the mean of 0.03 to 0.3 ng m(-3) whereas no B[a]P in control samples or in those collected from maintenance workers was detected. A statistically significant difference in diesel-derived PAH exposure between the garbage truck drivers and the control group in both seasons (in summer p = 0.0022, degrees of freedom (df) 70.5; and in winter p < 0.0001, df = 80.4) was observed. Also, a significant difference in PAH exposure between the garbage truck drivers and the maintenance workers (in summer p < 0.0001, df = 50.1; and in winter p < 0.0001, df = 44.2) was obtained.  相似文献   

4.
The concentrations, distribution and sources of 16 polycyclic aromatic hydrocarbons (PAHs) were determined in 30 agricultural soil and 16 vegetable samples collected from subtropical Shunde area, an important manufacturing center in China. The total PAHs ranged from 33.7 to 350 μg/kg in soils, and 82 to 1,258 μg/kg in vegetables. The most abundant individual PAHs are phenanthrene, fluoranthene, chrysene, pyrene and benzo(b)fluoranthene for soil samples, and anthracene, naphthalene, phenanthrene, pyrene and chrysene for vegetable samples. Average vegetable–soil ratios of total PAHs were 2.20 for leafy vegetables and 1.27 for fruity vegetables. Total PAHs in vegetable samples are not significantly correlated to those in corresponding soil samples. Principal component analyses were conducted to distinguish samples on basis of their distribution in each town, soil type and vegetable specie. Relatively abundant soil PAHs were found in town Jun’an, Beijiao, Chencun, Lecong and Ronggui, while abundant vegetable PAHs were observed in town Jun’an, Lecong, Xingtan, Daliang and Chenchun. The highest level of total PAHs were found in vegetable soil, followed by pond sediment and “stacked soil” on pond banks. The PAHs contents in leafy vegetables are higher than those in fruity vegetables. Some PAH compound ratios suggest the PAHs derived from incomplete combustion of petroleum, coal and refuse from power generation and ceramic manufacturing, and paint spraying on furniture, as well as sewage irrigation from textile industries. Soil PAHs contents have significant logarithmic correlation with total organic carbon, which demonstrates the importance of soil organic matter as sorbent to prevent losses of PAHs.  相似文献   

5.
The concentrations of fifteen PAH compounds in samples of sediment and blue mussel tissue (Mytilus trossulus) were measured. In addition, the biliary polycyclic aromatic hydrocarbon metabolites present in flounder (Platichthys flesus) were analysed. Two methods were used in the analysis of PAH metabolites; high performance liquid chromatography (HPLC) and fixed wavelength fluorescence (FF). The major PAH metabolite which could be measured using the HPLC method was 1-OH pyrene. It was possible to detect 1-OH Phe and 3-OH B[a]P in 70 and 24 samples respectively, of the 87 samples analysed. However, the concentrations of 1-OH Phe and 3-OH B[a]P were below or near to the LOQ (0.002 μg ml(-1) bile). The bile of flounder samples from the Gulf of Gdańsk had 1-OH Pyr concentrations which ranged from 0.019 to 0.066 μg ml(-1) bile. The high linear correlation observed between the quantity of 1-OH pyrene determined by the HPLC-F method and the content of the sum of pyrene-type PAHs obtained by the FF method indicated the FF method of determination of pyrene-type PAH metabolites can be used as a screening method. The content of ∑(15)PAHs in sediments collected in the Gulf of Gdansk, in 2008, ranged from 29.3 to 103 μg kg(-1) dw. In mussel tissue ∑(15)PAHs concentrations were between 173.2 μg kg(-1) dw and 237.7 μg kg(-1) dw. All concentrations measured in the current study, in mussel tissue, were below the OSPAR toxicity threshold values.  相似文献   

6.
The present study proposed to investigate the atmospheric distribution, sources, and inhalation health risks of polycyclic aromatic hydrocarbons (PAHs) in a tropical megacity (Delhi, India). To this end, 16 US EPA priority PAHs were measured in the inhalable fraction of atmospheric particles (PM10; aerodynamic diameter, ≤10 μm) collected weekly at three residential areas in Delhi from December 2008 to November 2009. Mean annual 24 h PM10 levels at the sites (166.5–192.3 μg m?3) were eight to ten times the WHO limit. Weekday/weekend effects on PM10 and associated PAHs were investigated. Σ16PAH concentrations (sum of 16 PAHs analyzed; overall annual mean, 105.3 ng m?3; overall range, 10.5–511.9 ng m?3) observed were at least an order of magnitude greater than values reported from European and US cities. Spatial variations in PAHs were influenced by nearness to traffic and thermal power plants while seasonal variation trends showed highest concentrations in winter. Associations between Σ16PAHs and various meteorological parameters were investigated. The overall PAH profile was dominated by combustion-derived large-ring species (85–87 %) that were essentially local in origin. Carcinogenic PAHs contributed 58–62 % to Σ16PAH loads at the sites. Molecular diagnostic ratios were used for preliminary assessment of PAH sources. Principal component analysis coupled with multiple linear regression-identified vehicular emissions as the predominant source (62–83 %), followed by coal combustion (18–19 %), residential fuel use (19 %), and industrial emissions (16 %). Spatio-temporal variations and time-evolution of source contributions were studied. Inhalation cancer risk assessment showed that a maximum of 39,780 excess cancer cases might occur due to lifetime inhalation exposure to the analyzed PAH concentrations.  相似文献   

7.
Biodegradation has been identified as a major loss process for organic contaminants in soils and, as a result, microbial strategies have been developed for the remediation of contaminated land. Prediction of the biodegradable fraction would be important for determining bioremediation end-points in the clean-up of contaminated land. The aim of this study was to investigate the ability of a cyclodextrin extraction to predict the extent to which polycyclic aromatic hydrocarbons (PAHs) would be degraded microbiologically in field contaminated soils; further testing the robustness and reproducibility of this extraction in chemically complex systems. Dichloromethane and hydroxypropyl-beta-cyclodextrin (HPCD) extractable fractions were measured together with the PAH biodegradable fraction in each of the six field contaminated soils. The amounts of PAHs degraded by the catabolic activity of the indigenous microflora in each of the soils were correlated with HPCD-extractable PAH concentrations. The regressions showed that the amounts of lower molecular weight PAHs extracted by the HPCD were not significantly (P > 0.05) different to the amounts that were degraded. However, higher molecular weight PAHs that were extracted by HPCD did differ significantly (P < 0.05) from the amounts degraded. Although the HPCD extraction did overestimate the microbially degradable fraction of the higher molecular weight PAHs, overall the correlations between the HPCD extractable fraction and the microbially degradable fraction were very close, with mean values of the slope of line for the six soils equalling 1. This study further describes the robust and reproducible nature of the aqueous-based soil extraction technique reliably measuring the extent to which PAHs will be microbially degraded in soil.  相似文献   

8.
Particle-bound PAHs were measured at three sites in southeastern Spain (an urban background location, a suburban-industrial site in the vicinity of two cement plants and a rural area) in order to investigate the influence of the type of location on PAH concentrations. A clear influence of cement production on particulate PAH levels could not be established since for the urban background and suburban-industrial sites the average concentrations of total PAHs in the PM2.5 fraction were very similar (1.085 and 1.151 ng m(-3), respectively), with benzo[b+k]fluoranthene and chrysene as the predominant compounds. Diagnostic ratios, used to identify PAH emission sources, pointed to traffic as the main source of particulate PAH at both locations. As expected, PAH levels at the rural site were significantly lower (0.408 ng m(-3) in the PM10 fraction) due to increasing distance from the emission sources. PAH seasonal variations at the urban background and suburban-industrial sites were the same as reported in many previous studies. Average winter to summer ratios for total PAHs were 4.4 and 4.9 for the urban background and industrial sites, in that order. This seasonal cycle could be partially explained by the higher temperature and solar radiation during summer enhancing PAH evaporation from the particulate phase and PAH photochemical degradation, respectively. The study of PAH distribution between the fine and coarse fraction at the urban site revealed that on average around 80% of total PAHs were associated with fine particles.  相似文献   

9.
A maar lake is an excellent ecosystem to study the atmospheric deposition of pollutants, as its contaminants are primarily by atmospheric deposition. In this study, a sediment core from Sihailongwan Maar Lake, Northeast China, was collected and the historical atmospherically deposited polycyclic aromatic hydrocarbons (PAHs) were analyzed. The concentrations of TPAHs (the sum of the US EPA proposed 16 priority PAHs, excluding naphthalene and pyrene) ranged from 473.9 to 2289 ng g(-1) with a slow increasing stage in the deeper sediments and a sharp increasing stage in the upper sediments. The input rate of TPAHs, especially that of PAH(9) (the sum of fluoranthene, benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, indeno(1,2,3-cd)pyrene, dibenzo(ah)anthrathene, and benzo(ghi)perylene), correlated well to the Chinese historical socioeconomic data. This indicates that sediment PAHs were mainly derived from human activities and PAH(9) can be regarded as a better indicator of the local socioeconomic development. Source identification suggested that PAHs were originated primarily from mixed sources (e.g., coal and biomass burning and petroleum combustion), except for perylene which was mostly of diagenetic origin. In addition, the down-core PAHs profile clearly illustrated that PAHs sources in Northeast China experienced a transformation from low- and moderate temperature to high-temperature combustion processes, especially after the late 1980s. Additionally, an ecological risk assessment using two redefined biological thresholds (TEQ(ERL) and TEQ(ERM)) indicated that most of the PAHs measured in the present sediment core would not cause an immediate toxic effect; only FLU and PHEN are a potential source of concern for biological impairment.  相似文献   

10.
The fate of micropollutants throughout wastewater treatment systems is highly dependent on their sorption interactions with sludge matter. In this study, both the sorption and desorption kinetics of polycyclic aromatic hydrocarbons (PAHs) in activated sludge were shown to be very rapid in comparison to biodegradation kinetics. It was concluded that PAH transfer does not limit their biodegradation and that their fate is governed by the sorption/desorption equilibrium state. The effect of contact time between sludge and PAHs was also investigated. It was shown that aging did not influence the sorption/desorption equilibrium although PAH losses during aging suggest that sequestration phenomena had occurred. This implies that for PAH sorption assessment within treatment processes there is no need to include a contact time dimension. As a consequence, thanks to an innovative approach taking into account sorption equilibria and sequestration, this work has demonstrated that studies in the literature which, in main, deal with micropollutant sorption in sewage sludge with only a short contact time can be extrapolated to real systems in which sorption, desorption and aging occur.  相似文献   

11.
Concentrations of 16 priority polycyclic aromatic hydrocarbons (PAHs) were measured in 28 surface soils samples collected from Urumqi, northwest China, for examination of distributions, source contributions, and potential health effects. The results indicated that the sum of 16 PAHs concentration ranged from 331 to 15,799 μg?kg?1 (dw) in soils, with a mean of 5,018?±?4,896 μg?kg?1 (n?=?28). The sum of seven carPAHs concentration ranged from 4 to 1,879 μg?kg?1 (dw; n?=?28). The highest ∑PAHs concentrations were found at roadsides and industrial sites, followed by those at parks, rural areas, and business/residential areas. Coal combustion, emission of diesel and gasoline from vehicles, and petroleum source were four sources of PAHs as determined by PMF analysis, which contributed 51.19, 19.02, 18.35, and 11.42 % to the PAH sources, respectively. Excellent coefficients of correlation between the measured and predicted PAHs concentrations suggested that the PMF model was very effective to estimate sources of PAHs in soils. Incremental lifetime cancer risk values at the 95th percentile due to human exposure to surface soils PAHs in Urumqi were 2.02?×?10?6 for children and 2.72?×?10?5 for adults. The results suggested that the current PAHs levels in soils from Urumqi were pervasive and moderately carcinogenic to children and adults.  相似文献   

12.
Polycyclic aromatic hydrocarbon (PAH) analyses of surface sediments from the Cross River estuary by gas chromatography–mass spectrometry indicated natural diagenetically derived PAHs in the upper estuary, with minor and variable amounts of petrogenic and combustion-derived PAHs from human activities (lower estuary). The occurrence of significant amounts of perylene (average 23% of all PAHs) with the diagenetic natural PAHs in the middle estuary bordered by mangrove forests supports its origin from terrestrial organic matter. The natural PAHs represent the highest percentage (average 76%) of the total PAHs in this tropical environment. The traditional geochemical parameters, including the petrogenic PAHs, confirmed trace petroleum contamination in the estuary. Specific PAH ratios such as Fl/Py and Fl/(Fl+Py) also support this source contribution.  相似文献   

13.
Surface sediment samples were collected in He-Ping Harbor and the nearby He-Ping Estuary from 2005 to 2006 to examine spatial and temporal variability in polycyclic aromatic hydrocarbon (PAH) concentrations. The sum of the 16 USEPA priority pollutant PAHs varied from 8 to 312 ng/g dry weight, which was relatively low compared to values obtained from other studies in the world. Regarding temporal changes in the PAH profile, total PAH concentrations in the wet season were lower than during the dry season in He-Ping Harbor. However, the concentration of PAHs exhibited no significant difference in the four seasons in the He-Ping Estuary. PAH concentrations in He-Ping Harbor were higher than those in the He-Ping Estuary. In comparison with sediment quality guidelines, PAH concentrations of sediments in this study were lower than those outlined in the criteria, which suggests no evident adverse biological effects due to PAHs around the He-Ping coast. Ratios of specific PAH compounds calculated to assess the possible sources of PAHs reflect that PAHs in He-Ping Harbor may mainly be from pyrogenic coal combustion.  相似文献   

14.
This study was performed to elucidate the distribution, concentration trend and possible source of polycyclic aromatic hydrocarbons (PAHs) in surface water and bed sediments of the Hungarian upper section of the Danube River and the Moson Danube branch. A total of 217 samples (water and sediments) were collected from four different sampling sites in the period of 2001–2010 and analysed for the 16 priority US Environmental Protection Agency PAHs. Concentrations of total 16 PAHs (∑PAHs) in water samples ranged from 25 to 1,208 ng/L, which were predominated by two- and three-ring PAHs. The ∑PAH concentrations in sediments ranged from 8.3 to 1,202.5 ng/g dry weight. Four-ring PAHs including fluoranthene and pyrene were the dominant species in sediment samples. A selected number of concentration ratios of specific PAH compounds were calculated to evaluate the possible sources of PAH contamination. The ratios reflected a pattern of pyrogenic input as a major source of PAHs. The levels of PAHs determined were compared with other sections of the Danube and other regions of the world.  相似文献   

15.
We studied the profiles, possible sources, and transport of polycyclic aromatic hydrocarbons (PAHs) in soils from the Longtang area, which is an electronic waste (e-waste) recycling center in south China. The sum of 16 PAH concentrations ranged from 25 to 4,300 ng/g (dry weight basis) in the following order: pond sediment sites (77 ng/g), vegetable fields (129 ng/g), paddy fields (180 ng/g), wastelands (258 ng/g), dismantling sites (678 ng/g), and former open burning sites (2,340 ng/g). Naphthalene, phenanthrene, fluoranthene, pyrene, chrysene, and benzo[b]fluoranthene were the dominant PAHs and accounted for approximately 75 % of the total PAHs. The similar composition characteristics of PAHs and the significant correlations among individual, low molecular weight, high molecular weight, and total PAHs were found in all six sampling site types, thus indicating that PAHs originated from similar sources. The results of both isomeric ratios and principal component analyses confirmed that PAHs were mainly derived from the incomplete combustion of e-waste. The former open burning sites and dismantling sites were the main sources of PAHs. Soil samples that were taken closer to the point sources had high PAH concentrations. PAHs are transported via different soil profiles, including those in agricultural fields, and have been detected not only in 0- to 40-cm-deep soil but also in 40 cm to 80 cm-deep soil. PAH concentrations in soils in Longtang have been strongly affected by primitive e-waste recycling, particularly by former open burning activities.  相似文献   

16.
The purpose of this study was to characterize the polycyclic aromatic hydrocarbon (PAH) contamination in the sediments of stormwater detention ponds in coastal South Carolina. Levels of the sum of PAH analytes were significantly higher in the sediments of commercial ponds compared to that of reference, golf course, low-density residential, and high-density residential ponds. Isomer ratio analysis suggested that the predominant source of PAHs were pyrogenic; however, many ponds had a PAH signature consistent with mixed uncombusted and combusted PAH sources. PAH levels in these sediments could be modeled using both pond drainage area and pond surface area. These results demonstrate that the sediment from most commercial ponds, and a few residential and golf course ponds, were moderately contaminated with PAHs. PAH levels in these contaminated ponds exceeded between 42% and 75% of the ecological screening values for individual PAH analytes established by US EPA Region IV, suggesting that they may pose a toxicological risk to wildlife.  相似文献   

17.
The concentrations of 27 polycyclic aromatic hydrocarbons (PAHs) were determined in bottom sediments and starfish from Mohang Harbor (MH) in Taean peninsula, South Korea. In December 2007, crude oil washed ashore from the M/V Hebei Spirit and was subsequently cleaned up within a few months of the incident. The ecological risk, bioaccumulation factor (BAF), and composition of the 27 PAHs were examined. The PAH concentrations in the bottom sediment ranged from 24 to 366 μg/kg dried weight, and the ecological risk was determined as minimal (mERL-Q?<?1). Total PAH concentrations in Asterina pectinifera (inside seawall) and Asterias amurensis (outside seawall) were 1,226 and 1,477 μg/kg dry weight (d.w.), respectively. The total BAFs (∑BAF) for A. amurensis was 3.8 times higher than that of A. pectinifera, and the PAH concentrations of 5–6 log K OW were highest in the two starfish species. Further, PAH fingerprint analysis (nine alkyl-substituted PAHs fraction, low molecular weight (LMW)/high molecular weight (HMW), Phe/Ant, and Flu/Pyr), and principal component analysis (PCA) based on three crude oil samples from the M/V Hebei Spirit showed no remaining influence of crude oil.  相似文献   

18.
Ambient gas and particle phase samples were collected during two sampling periods from a residential area of an industrialized city, Kocaeli, Turkey. The sampling occurred during winter months when structures were being heated, and summer months when structures were not being heated. Σ(13)PAH (gas + particle) concentrations ranged between 6.2 ng m(-3) (DahA) and 98.6 ng m(-3) (Phe) in the heating (winter) period and 3.0 ng m(-3) (BaA) and 35.1 ng m(-3) (Phe) in the non-heating (summer) period. Phe, Flt and Pyr were found to be at high concentrations in both sampling periods. Winter time to summer time concentration ratios for individual ambient PAH concentration ratios ranged between 1.2 (DahA) and 17.5 (Flu), indicating the effect of the emissions from residential heating on measured concentrations of PAHs, but great industrial plants and the only incinerator facility of Turkey are other important pollution sources around the city. Temperature dependence of gas phase PAHs was investigated using the Clausius-Clapeyron equation. A high slope obtained (5069.7) indicated the effect of the local sources on measured gas phase PAHs. Correlation of the supercooled vapor pressure (P) with the gas particle partitioning coefficient (K(p)) and particle phase fraction was also evaluated. The relationship between the meteorological parameters and individual PAH (gas + particle) concentrations was investigated further by multiple linear regression analysis. It was found that the temperature had a significant effect on all of the measured PAH concentrations, while the effects of the wind speed and direction were not significant on the individual PAHs. On the other hand, PAH concentrations showed a strong linear relationship with the ventilation coefficient (VC) which showed the influence of local sources on measured PAHs. Benzo[a]pyrene toxic equivalent (BaP(eq.)) concentrations were used for health risk assessment purposes. The winter period risk level (2.92 × 10(-3)) due to the respiratory exposure to PAHs was found to be almost 3 times higher than in the summer period (1.15 × 10(-3)).  相似文献   

19.
To estimate the severity of polycyclic aromatic hydrocarbon (PAH) contamination in the upper sediment of the Beijiang River, 42 sediment samples were analyzed for the presence of 16 key PAHs using gas chromatography–mass spectrometry. The concentrations of PAH in the sediment ranged from 44 to 8,921 ng g?1 dry weight. The four- to six-ring PAHs, contributing >50 % to PAHs in 34 of the 42 sites, were the dominant species. Based on a principal component analysis, combined with multivariate linear regression, it became clear that the most important contributors of PAH were fossil fuel combustion (48 %), diesel emissions plus oil spillage (33 %), and coke combustion (19 %). The surface sediments of Beijiang River were grossly contaminated by PAHs mainly derived from combustion.  相似文献   

20.
Polycyclic aromatic hydrocarbons (PAHs) were quantified in sediment, soil, and plant material from Hanoi, Vietnam, and an aquatic production system in peri-urban Hanoi. The sum of the concentration of 16 US-EPA priority PAHs ( summation PAH16) ranged between 0.44 and 6.21 mg kg(-1) dw in sediment and between 0.26 and 1.35 mg kg(-1) dw in soil, with decreasing concentrations from the urban area to the peri-urban area, indicating contributions from urban and industrial sources. Double plots of diagnostic source ratios indicate that PAHs originate from mixed petrogenic and pyrogenic sources, the latter being predominant. The predominance of low molecular weight (LMW) PAHs in the sediment samples suggests that petrogenic sources are more prevalent in the water environment than in the soil. In contrast, high molecular weight (HMW) PAHs dominated in water spinach which probably reflects the plant's uptake of particle-bound PAHs that originate from pyrogenic sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号