首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
山东省2015年PM2.5和O3污染时空分布特征   总被引:1,自引:0,他引:1  
利用中国环境监测总站的城市空气质量自动监测数据,分析了2015年山东省细颗粒物(PM2.5)和臭氧(O3)污染的时空分布特征,并初步探讨了其与气象要素的相互关系。研究发现:山东省PM2.5年均质量浓度和年超标天数的空间分布均呈现由东部向西部递增的趋势,半岛地区的浓度最低,其他地区浓度均较高,年均质量浓度最大值出现在德州(101 μg/m3)。各城市PM2.5的月均质量浓度均呈现出季节性变化,冬季最高,夏季最低。O3-8h年均值和O3年超标天数的空间分布与PM2.5不同,半岛地区污染天数最少,其次为南部地区,中部地区和西北部地区污染最为严重并且各区域的城市之间O3污染情况存在较大差异,具有明显的局地性特征。O3质量浓度在春末夏初最高,超标现象主要出现在5—8月。分析各城市PM2.5污染和O3污染的协同性与差异性发现,虽然不同城市之间两者污染情况存在一定差异,但整体上看,山东省大气复合污染特征明显,全年有10个城市的PM2.5和O3同时超标天数都在20 d以上,并且该现象主要发生在夏季。夏季高温低湿的大陆气团控制更有利于O3和PM2.5叠加共存形成复合型污染。温度≥26℃时,O3-8 h与PM2.5日均质量浓度的相关系数为0.63,相对湿度≤60%时,两者相关系数为0.69。此外,当在大陆气团的控制下发生O3污染时,相对湿度的提高更有利于PM2.5浓度的增加。  相似文献   

2.
为了解宜都市PM2.5与O3的污染特征及潜在来源,利用宜都市2020年3月至2022年2月在线监测数据及气象数据,对宜都市PM2.5与O3质量浓度变化特征、气象影响因素及潜在源区进行了分析,结果表明:宜都市PM2.5质量浓度冬高夏低,日变化呈双峰特征,O3质量浓度夏高冬低,日变化呈单峰特征。高湿、静稳的气象条件以及较强偏北风作用下的区域污染传输对PM2.5污染有重要影响,高温以及中湿度对O3污染过程有重要作用。春、夏、秋季偏南方向气流轨迹占主导,且携带较高的污染物浓度,冬季来自湖北东北及西南方向的气流占比较高且携带的PM2.5浓度较高;宜都市PM2.5、O3的潜在源区具有季节性差异,总体来看,主要分布在河南南部、湖北东部及湖南的北部区域。  相似文献   

3.
西安市环境空气PM2.5污染现状及对策初探   总被引:3,自引:2,他引:1  
文章通过对西安市城市环境空气PM2.5试点监测数据深入分析,初步摸清了区域PM2.5污染水平及分布规律,提出了污染防治对策和建议,对现阶段的环境空气PM2.5污染防治有着重要的参考价值。  相似文献   

4.
利用2018—2021年安徽省空气质量监测数据分析了PM2.5和O3时空分布特征及其引发的健康风险。结果表明:从时间分布来看,2018—2021年安徽省PM2.5年均值下降25.5%,而O3-8 h年均值则保持持平;PM2.5和O3-8 h月均值具有明显的季节变化特征,PM2.5月均质量浓度和超标天数均在冬季达到最大值,O3-8 h月均值和超标天数则在夏季达到最大值。从空间分布来看,PM2.5、O3-8 h年均值和超标天数均为皖北最高,其次为皖中,最后为皖南。夏季O3是主要的健康风险因子,冬季PM2.5是主要的健康风险因子。当PM2.5超标时,除2021年皖北地区外(PM10是主要的健康风险因子),PM2.5均是主要的健康风险因子;当O3-8 h超标时,O3是主要的健康风险因子。  相似文献   

5.
利用2013-2017年京津冀区域13个城市PM2.5监测数据,综合探讨了该区域PM2.5浓度的时空变化特征。结果表明:京津冀区域PM2.5污染整体较重,但治理成效显著,2013-2017年区域PM2.5年均质量浓度分别为106、93、77、71、64 μg/m3,完成《大气污染防治行动计划》PM2.5浓度下降25%左右的目标;13个城市PM2.5浓度各百分位数总体呈现下降趋势,且随百分位数增大而下降速率加大,PM2.5年均质量浓度平均每年下降10.6 μg/m3,污染严重的太行山沿线城市邢台、石家庄、邯郸3个城市平均每年分别下降20.3、16.1、13.9 μg/m3;京津冀区域PM2.5重度污染天数比例分别为19.9%、16.6%、9.5%、9.0%、7.0%,呈下降趋势。2013-2017年京津冀区域PM2.5平均质量浓度与非重度污染天相比升高19 μg/m3,PM2.5重度污染天平均质量浓度较非重度污染天时高244.4%。  相似文献   

6.
切割器是PM2.5监测设备的关键部件,其切割性能直接影响PM2.5和PM1等环境空气颗粒物质量浓度监测数据的真实、准确。该研究采用粒径范围为0.6~4 μm的聚苯乙烯微球(PSL)标准粒子、单分散气溶胶发生器、混匀(分流)装置和颗粒物数量浓度测量仪等仪器设备集成搭建了适用于PM1和PM2.5切割器性能测试的通用系统。测试结果表明:该系统发生的PSL粒子能够保持稳定的数量浓度,并在切割气路和非切割气路间具有较好的数量浓度一致性,能在3 h内快速完成一台切割器切割效率的测试。采用该系统测试了1种类型的PM1切割器和3种类型的PM2.5切割器的关键切割性能。结果显示:VSCC型PM2.5切割器D50分别为2.48、2.52、2.48 μm,σg1分别为1.20、1.23和1.15,σg2分别为1.21、1.21和1.16,各项关键性能指标均符合美国和中国相关环境保护标准规范的要求,且优于SCC型和URG型切割器。推荐使用VSCC型切割器开展环境空气中PM2.5质量浓度的监测。SCC型PM1切割器的D50为0.91 μm,σg1σg2为1.20和1.18,结合其他相关研究,建议PM1切割器D50合格标准应为(1.0±0.1)μm,σg合格标准为不超过1.20。  相似文献   

7.
基于北京市PM2.5和PM10质量浓度、组分浓度以及降水数据,利用数理统计、相关性分析等方法分别从降水总量、降水时长和降水前颗粒物浓度3个角度研究降水对PM2.5、PM10的清除作用,同时以一次典型降水过程为例,具体分析降水对颗粒物的影响。结果表明:降水总量的增加有助于促进PM2.5、PM10的清除,随着降水总量增加,PM2.5、PM10的平均清除率提高,有效清除的比例增加;连续降水可增强对大气颗粒物的湿清除作用,连续降水达3d可有效降低PM2.5、PM10浓度;降水对PM2.5、PM10浓度的清除率和大气颗粒物前一日的平均浓度有较好的正相关性。降水对大气颗粒物的清除可分为清除、回升和平稳3个阶段,各个阶段大气颗粒物的变化趋势不同。降水对于大气气溶胶化学组分和酸碱性的改变具有明显作用,对于大气颗粒物各种组分的清除效果不完全相同。对于大气中OC、NO3-、SO42-和NH4+去除率较高,且这4种组分主要以颗粒态形式被冲刷进入降水中,加剧了北京市降水酸化程度。  相似文献   

8.
基于2016—2019年全国城市环境空气质量国控监测点位自动监测数据,分析了汾渭平原城市空气质量状况。结果表明:2019年,汾渭平原优良天数比例为61.7%,略高于"2+26"城市,明显低于全国及其他区域,空气污染较重。2016—2019年,汾渭平原超标天数中PM2.5、PM10、O3作为首要污染物的占比较高,PM2.5、PM10仍是影响汾渭平原空气质量的最主要污染物,O3和NO2的影响逐年升高。汾渭平原PM2.5浓度呈夏季低、秋冬季高的特点,2019年与2016—2018年PM2.5均值比较,1、2、4月分别偏高7.5%、36.7%、6.8%,其他月份均偏低,表明1、2、4月空气质量总体恶化,其他月份有所改善。汾渭平原O3浓度呈夏季高、秋冬季低的特点,O3浓度总体呈升高趋势,年平均升高10.3 μg/m3,临汾市年平均升幅最显著(26.7 μg/m3),不同百分位O3浓度均呈升高趋势,且高百分位浓度升幅明显高于低百分位浓度,年平均升幅最高出现在第90百分位浓度。2016—2019年,O3单项污染物超标导致优良天数比例损失分别为5.4个百分点、13.0个百分点、11.1个百分点和14.4个百分点,总体呈上升趋势,表明O3超标对空气质量影响越来越显著。煤炭消耗量、生铁产量、粗钢产量的大幅升高对空气质量有一定影响,建议加大对相关企业污染物的排放量检查,确保超低排放或采取可行的清洁能源替代。温度与O3浓度呈正相关,2017—2019年,温度大于25 ℃的天数中94.2%出现在6—8月,O3-8h超标天数占全部超标天数的81.4%,因此应加强温度较高月份的O3管控。  相似文献   

9.
以2017—2018年安徽省133个空气质量监测站(国控点66个,省控点67个)228万条PM2.5质量浓度数据为基础,基于空间自相关和地统计方法对该区PM2.5浓度的时空分异特征进行分析。结果显示:安徽省年平均PM2.5质量浓度为49.63 μg/m3,88%的监测站点PM2.5质量浓度超过国家环境空气质量标准二级限值;PM2.5浓度呈现明显的冬季高、夏季低、春秋季适中的特征,日变化曲线呈双峰结构,峰值在09:00和22:00前后,低值在16:00—17:00;全省PM2.5浓度全局Moran指数为0.673 6,月度指数为0.389 6~0.745 6,均表现为空间聚集性,且冬季PM2.5浓度的空间聚集性更强;局部空间自相关指数表明全省PM2.5浓度呈西北高-高集聚、东南低-低集聚的特点,低值集聚区稳定在黄山市及其周边;全省PM2.5浓度总体表现为由北向南递减的趋势,但受局部地形的影响,PM2.5浓度在西部大别山和皖南山区出现明显的下降趋势。研究结果综合了国控点和省控点监测数据,更加详细地表征区域PM2.5浓度的时空分异特征,为该区实施有效的环境污染防控提供重要参考。  相似文献   

10.
郑州市大气PM2.5的污染特征及源解析   总被引:4,自引:4,他引:0  
为全面解析郑州市环境空气PM2.5的化学特征及来源,按照城市功能分区的差异,在郑州市沿主导风向选择4个监测点位,采用大流量采样器分别在采暖季和非采暖季采集40个PM2.5样品。监测数据表明,郑州市环境空气PM2.5在采暖季和非采暖季的浓度范围均值高达197、173μg/m3,已属于严重污染;PM2.5成分分析结果表明,Zn、Pb、Cu、Mn等是PM2.5中的主要污染元素,其富集系数分别为110、94.9、10.9和5.0;主成分分析结果表明,建筑扬尘、土壤尘及道路扬尘、汽车尾气、煤炭燃烧是郑州市PM2.5的主要来源,其累计贡献率超过90%。  相似文献   

11.
基于2016—2020年台州市区大气污染物监测数据及气象观测资料,分析了台州市区PM2.5和O3的污染特征及受气象因素影响情况,并探究了不同季节下的PM2.5浓度和O3浓度的相关性及相互作用关系。2016—2020年,台州市区PM2.5年均浓度和超标天数呈显著下降趋势,O3-8 h年均浓度和超标天数总体呈上升趋势。PM2.5浓度在冬季最高,且易发生超标;O3浓度在春、夏、秋季均较高,且均会发生超标。通过相关性分析可知:PM2.5浓度与气温、相对湿度、风速、降水量呈负相关,与大气压呈正相关;O3浓度与气温、风速呈正相关,与相对湿度、降水量呈负相关。不同季节下的PM2.5浓度与O3浓度均呈正相关,两者存在协同增长。在春、夏、秋季,二次PM2.5在总PM2.5中的占比随着O3  相似文献   

12.
中国城市细颗粒物(PM_(2.5))空气质量达标率低,且城市间的污染程度差异较大。为了整体改善PM_(2.5)空气质量,需要针对不同污染程度的城市,制定分阶段改善目标加以考核和管理,研究探讨了城市PM_(2.5)空气质量改善目标体系及不同污染程度城市各阶段目标值。首先运用文献综述法、国内外对比分析法梳理评述了WHO、欧美等发达国家PM_(2.5)的空气质量标准和达标要求,提出中国城市PM_(2.5)空气质量改善的考核目标体系,包括PM_(2.5)浓度目标值或下降率、严重污染天数上限、达标天数下限等指标。通过历史数据分析法研究了2000—2013年美国、日本一些城市和2013—2016年中国74个环保城市PM_(2.5)年均浓度的变化趋势,推论出中国城市PM_(2.5)年均浓度年均下降5%~8%是可能实现的;结合环境保护部及各省市PM_(2.5)污染防治规划,提出PM_(2.5)空气质量改善目标的设定原则和达标天数的回归计算方法;以2014年114个城市PM_(2.5)年均浓度为基数,计算得出不同污染程度城市2020、2025、2030年PM_(2.5)年均浓度年下降率和达标天数的目标值。  相似文献   

13.
基于环渤海地区2017—2021年各城市空气质量指数(AQI)、污染物浓度与社会经济数据,利用数理统计、克里金插值法对环渤海地区AQI与污染物浓度的时空变化特征进行分析,运用皮尔逊相关性分析方法探讨AQI与污染物浓度、社会经济因素的相关关系,采用时间序列预测模型对2022年6月—2023年12月空气质量及污染物浓度进行预测。结果表明:环渤海地区AQI及污染物浓度大致呈逐年降低的趋势。AQI的逐月变化呈"W"形,O3浓度的年内变化呈倒"V"形,其余污染物则呈现与O3相反的变化趋势。AQI大致呈现西南高、东北低的空间分布特点,而污染物浓度分布具有明显的空间差异。环渤海地区5个代表性城市的AQI类别以良好为主,冬季首要污染物主要为PM2.5、PM10,夏季首要污染物以O3为主。人口数量是影响AQI的主要因素,城市园林绿地面积对AQI具有一定影响。预测结果显示,未来环渤海地区AQI、主要污染物浓度(O3除外)均呈现出随时间的推移逐渐下降的变化趋势。  相似文献   

14.
基于2018—2020年合肥、芜湖和马鞍山3个城市国控站点的PM2.5逐日监测数据和同期地面气象观测资料,利用Kolmogorov-Zurbenko(KZ)滤波对PM2.5日浓度的原始时间序列进行分解,获取短期分量、季节分量和长期分量,并进行多元线性逐步回归构建各分量与气象因子的模型,最后依据短期分量和基线分量的回归模型和残差分析,对序列进行重建,获取消除气象条件影响的PM2.5长期分量。KZ滤波分析结果表明:2018—2020年气象条件对江淮区域PM2.5污染改善影响存在波动,在2018—2019年为负贡献,而在2020年秋冬季则变为正贡献;江淮地区3个城市2018年和2020年PM2.5修正后的长期分量均值表明气象条件对各市PM2.5改善影响存在差异较大,气象条件对合肥PM2.5改善的贡献仅为1.0%,芜湖为7.8%,马鞍山为21.0%;NAQPMS数值模式情景分析结果显示,减排措施对江淮之间PM2.5浓度改...  相似文献   

15.
基于江苏省重污染天气监测预报预警系统多模式预报结果,分析了不同数值模式对江苏省13个城市细颗粒物(PM2.5)和臭氧(O3)的预报偏差特征,发展了多模式集合预报算法,并对其进行了评估。结果表明,相较于单一数值模式,集合预报算法显著改善了PM2.5和O3预报的准确率,其对江苏省PM2.5和O3空气质量分指数等级的预报准确率超过了80%。就江苏省整体而言,PM2.5集合预报的准确率相比最优单一数值模式提升了6%。O3浓度较低时,集合预报能有效改善各模式存在的高估现象。但受限于目前的校正策略,出现高浓度O3污染时,集合预报对预报效果的提升相对有限。  相似文献   

16.
西宁市城区冬季PM2.5和PM10中有机碳、元素碳污染特征   总被引:1,自引:0,他引:1  
2014年11月—2015年1月对西宁市冬季开展PM_(2.5)和PM_(10)的连续监测。利用DRI 2001A型热光碳分析仪(美国)对有机碳和元素碳进行分析,结果表明:西宁市冬季PM_(2.5)和PM_(10)中碳气溶胶所占比例分别为33.13%±6.83%、24.21%±6.27%,说明碳气溶胶主要集中在PM_(2.5)中;OC/EC值均大于2,说明西宁市大气中存在二次污染;SOC占PM_(2.5)和PM_(10)的质量浓度比例分别为46.50%和57.40%,PM_(2.5)中SOC浓度占PM_(10)中SOC浓度的61.88%,说明SOC主要存在于PM_(2.5)中,且SOC形成的二次污染和直接排放的一次污染都是西宁市碳气溶胶的主要来源;与其他城市比较发现,西宁市冬季PM_(2.5)中的碳气溶胶含量普遍高于其他城市,PM_(10)中OC质量浓度相对其他城市较高,EC质量浓度偏低;OC和EC的相关性不显著,说明来源不统一;进一步对OC和EC各组分质量浓度进行分析知,西宁市冬季碳气溶胶主要来源于机动车汽油排放、燃煤和生物质燃烧。  相似文献   

17.
利用山西省11个地级市大气环境监测站的PM2.5、PM10和O3浓度数据,分析了2015—2020年山西省PM2.5、PM10和O3浓度时空变化特征,采用空间计量模型和岭回归方法,分析了空气污染对公众健康的空间影响。结果表明:PM2.5和PM10年均质量浓度总体下降,两者在2017年最高,2020年最低;O3年均浓度总体增加。在季节尺度上,PM2.5和PM10质量浓度在冬季的12月和1月最高,夏季的8月最低;O3浓度在6月最高。空间上,相较2015年,2020年山西省各地级市PM2.5污染程度均有改善,其中长治改善效果最好;2020年山西各地级市PM10污染兼有加重和减轻的情形,所有地级市PM2.5和PM10污染水平均超过国家二级污染浓度限值;2020年山西多数地级市O3浓度升高。山西公众健康水平具有明显的空间离散特征,PM2.5和PM10浓度的局部空间自相关特征高度一致,呈现"南高北低"的格局,O3浓度分布呈"南部高,中北部低"的格局。大气环境质量和经济发展水平均对医疗机构诊疗人数和健康体检人数的变化有正向影响,每万人卫生技术人员数量和公共财政支出比例对公众健康均有负向影响,其中经济发展水平和大气环境质量的影响最显著。山西省PM2.5治理取得一定成效,但大部分城市PM2.5和PM10达标率较低,O3浓度有持续升高的趋势,PM10和O3污染改善缓慢,深度减排仍面临挑战。PM2.5和PM10是危害山西公众健康的主要大气污染物,未来需要加强PM2.5、PM10和O3的精细化管理及协同治理。  相似文献   

18.
分析2012年采暖季和非采暖季郑州市、洛阳市和平顶山市大气细颗粒物(PM_(2.5))样品中22种无机元素含量和污染特征,采用富集因子法、因子分析法研究当地PM_(2.5)中无机元素来源。结果表明:3个城市PM_(2.5)中无机元素总量在采暖季均高于非采暖季,不同季节占PM_(2.5)质量浓度的比例为1.7%~3.6%。Al、Na、Ca等地壳元素在PM_(2.5)中占比与PM_(2.5)浓度呈负相关关系,而Zn、Pb、Cu等人为源元素的占比随PM_(2.5)浓度增加无明显下降趋势。3个城市PM_(2.5)中Se、Cd、Br的富集因子高于1 000,Pb、Zn、Cu的富集因子为100~1 000,Co、Sc、Cr、Ni、As、Mn、Ba的富集因子为10~100,说明这些元素主要来源于人为源。13种人为源元素质量浓度在22种元素中占比为18.9%~26.3%,K、Fe、Ca、Al等4种元素占比为67.9%~76.1%。因子分析结果表明:3个城市无机元素来源组成有很大相似性,主要来源于燃煤、机动车、扬尘和建筑尘等,但Ni、Co、Sr、Ba还有来自其他排放源的贡献。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号