首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
This study investigates the spatial water quality pattern of seven stations located along the main Langat River. Environmetric methods, namely, the hierarchical agglomerative cluster analysis (HACA), the discriminant analysis (DA), the principal component analysis (PCA), and the factor analysis (FA), were used to study the spatial variations of the most significant water quality variables and to determine the origin of pollution sources. Twenty-three water quality parameters were initially selected and analyzed. Three spatial clusters were formed based on HACA. These clusters are designated as downstream of Langat river, middle stream of Langat river, and upstream of Langat River regions. Forward and backward stepwise DA managed to discriminate six and seven water quality variables, respectively, from the original 23 variables. PCA and FA (varimax functionality) were used to investigate the origin of each water quality variable due to land use activities based on the three clustered regions. Seven principal components (PCs) were obtained with 81% total variation for the high-pollution source (HPS) region, while six PCs with 71% and 79% total variances were obtained for the moderate-pollution source (MPS) and low-pollution source (LPS) regions, respectively. The pollution sources for the HPS and MPS are of anthropogenic sources (industrial, municipal waste, and agricultural runoff). For the LPS region, the domestic and agricultural runoffs are the main sources of pollution. From this study, we can conclude that the application of environmetric methods can reveal meaningful information on the spatial variability of a large and complex river water quality data.  相似文献   

2.
The Hawkesbury–Nepean River (HNR) system in South-Eastern Australia is the main source of water supply for the Sydney Metropolitan area and is one of the more complex river systems due to the influence of urbanisation and other activities in the peri-urban landscape through which it flows. The long-term monitoring of river water quality is likely to suffer from data gaps due to funding cuts, changes in priority and related reasons. Nevertheless, we need to assess river health based on the available information. In this study, we demonstrated how the Factor Analysis (FA), Hierarchical Agglomerative Cluster Analysis (HACA) and Trend Analysis (TA) can be applied to evaluate long-term historic data sets. Six water quality parameters, viz., temperature, chlorophyll-a, dissolved oxygen, oxides of nitrogen, suspended solids and reactive silicates, measured at weekly intervals between 1985 and 2008 at 12 monitoring stations located along the 300 km length of the HNR system were evaluated to understand the human and natural influences on the river system in a peri-urban landscape. The application of FA extracted three latent factors which explained more than 70 % of the total variance of the data and related to the ‘bio-geographical’, ‘natural’ and ‘nutrient pollutant’ dimensions of the HNR system. The bio-geographical and nutrient pollution factors more likely related to the direct influence of changes and activities of peri-urban natures and accounted for approximately 50 % of variability in water quality. The application of HACA indicated two major clusters representing clean and polluted zones of the river. On the spatial scale, one cluster was represented by the upper and lower sections of the river (clean zone) and accounted for approximately 158 km of the river. The other cluster was represented by the middle section (polluted zone) with a length of approximately 98 km. Trend Analysis indicated how the point sources influence river water quality on spatio-temporal scales, taking into account the various effects of nutrient and other pollutant loads from sewerage effluents, agriculture and other point and non-point sources along the river and major tributaries of the HNR. Over the past 26 years, water temperature has significantly increased while suspended solids have significantly decreased (p?<?0.05). The analysis of water quality data through FA, HACA and TA helped to characterise the key sections and cluster the key water quality variables of the HNR system. The insights gained from this study have the potential to improve the effectiveness of river health-monitoring programs in terms of cost, time and effort, particularly in a peri-urban context.  相似文献   

3.
Multivariate statistical techniques were applied to evaluate spatial/temporal variations, and to interpret water quality data set obtained at Alqueva reservoir (south of Portugal). The water quality was monitored at nine different sites, along the water line, over a period of 18 months (from January 2006 to May 2007) using 26 water quality parameters. The cluster analysis allowed the formation of five different similarity groups between sampling sites, reflecting differences on the water quality at different locations of the Alqueva reservoir system. The PCA/FA identified six varifactors, which were responsible for 64% of total variance in water quality data set. The principal parameters, which explained the variability of quality water, were total phosphorus, oxidability, iron, parameters that at high concentrations indicate pollution from anthropogenic sources, and herbicides indicative of an intensive agricultural activity. The spatial analysis showed that the water quality was worse in the north of the reservoir.  相似文献   

4.
Water quality information of Beijiang River, a tributary of Pearl River in Guangdong, China, was analyzed to provide an overview of the hydrochemical functioning of a major agricultural/rural area and an industrial/urban area. Eighteen water quality parameters were surveyed at 13 sites from 2005 to 2006 on a monthly basis. A bivariate correlation analysis was carried out to evaluate the regional correlations of the water quality parameters, while the principal component analysis (PCA) technique was used to extract the most influential variables for regional variations of river water quality. Six principal components were extracted in PCA which explained more than 78% and 84% of the total variance for agricultural/rural and industrial/urban areas, respectively. Physicochemical factor, organic pollution, sewage pollution, geogenic factor, agricultural nonpoint source pollution, and accumulated pesticide usage were identified as potential pollution sources for agricultural/rural area, whereas industrial wastewaters pollution, mineral pollution, geogenic factor, urban sewage pollution, chemical industrial pollution, and water traffic pollution were the latent pollution sources for industrial/urban area. A multivariate linear regression of absolute principal component scores (MLR-APCS) technique was used to estimate contributions of all identified pollution sources to each water quality parameter. High coefficients of determination of the regression equations suggested that the MLR-APCS model was applicable for estimation of sources of most water quality parameters in the Beijiang River Basin.  相似文献   

5.
Water samples from selected locations of Nullah Lai and Koh-e-Noor textile mill in the metropolitan city of Rawalpindi and Islamabad, Pakistan, were collected. Physicochemical parameters and heavy metals were determined using standard analytical procedures in comparison with sites, locations and subsequent interval of 3 months. The results of the physicochemical analysis at different locations of Nullah Lai and Koh-e-Noor textile mill with an interval of 3 months were obtained in the following range: pH (7.16–8.29), temperature (17.8–28.8 °C), conductivity (1,005–3,347 μS/m), TDS (754.3–2,519.5 mg/L), turbidity (272.8–487.05 NTU), total hardness (300–452 mg/L), nitrates (10.11–22.95 ppm), calcium (74.31–139.2 ppm), chloride (127.72–396.16 ppm), sulphate (15.97–87.38 ppm), NaCl (210.5–631.1 ppm), Ni (0.30–0.72 ppm), Cd (0.005–0.03 ppm), Cr (0.2–7.4 ppm), Pb (0.12–0.73 ppm), Zn (0.03–0.08 ppm) and Cu (0.01–0.06 ppm). The highest value of physicochemical parameters (compared with Nullah Lai) was obtained in locations of Koh-e-Noor textile mill. The results obtained exceeded the maximum allowable limit set by the World Health Organization for drinking purpose but can be used for irrigation purposes after suitable treatment and purification.  相似文献   

6.
In recent years, groundwater quality has become a global concern due to its effect on human life and natural ecosystems. To assess the groundwater quality in the Amol–Babol Plain, a total of 308 water samples were collected during wet and dry seasons in 2009. The samples were analysed for their physico-chemical and biological constituents. Multivariate statistical analysis and geostatistical techniques were applied to assess the spatial and temporal variabilities of groundwater quality and to identify the main factors and sources of contamination. Principal component analysis (PCA) revealed that seven factors explained around 75 % of the total variance, which highlighted salinity, hardness and biological pollution as the dominant factors affecting the groundwater quality in the Plain. Two-way analysis of variance (ANOVA) was conducted on the dataset to evaluate the spatio-temporal variation. The results showed that there were no significant temporal variations between the two seasons, which explained the similarity between six component factors in dry and wet seasons based on the PCA results. There are also significant spatial differences (p?>?0.05) of the parameters under study, including salinity, potassium, sulphate and dissolved oxygen in the plain. The least significant difference (LSD) test revealed that groundwater salinity in the eastern region is significantly different to the central and western side of the study area. Finally, multivariate analysis and geostatistical techniques were combined as an effective method for demonstrating the spatial structure of multivariate spatial data. It was concluded that multiple natural processes and anthropogenic activities were the main sources of groundwater salinization, hardness and microbiological contamination of the study area.  相似文献   

7.
Three representative areas (lowland, semi-mountainous, and coastal) have been selected for the collection of drinking water samples, and a total number of 28 physical, chemical, and biological parameters per water sample have been determined and analyzed. The mean values of the physical and chemical parameters were found to be within the limits mentioned in the 98/83/EEC directive. The analysis of biological parameters shows that many of the water samples are inadequate for human consumption because of the presence of bacteria. Cluster analysis (CA) first was used to classify sample sites with similar properties and results in three groups of sites; discriminant analysis (DA) was used to construct the best discriminant functions to confirm the clusters determined by CA and evaluate the spatial variations in water quality. The standard mode discriminant functions, using 17 parameters, yielded classification matrix correctly assigning 96.97% of the cases. In the stepwise mode, the DA produced a classification matrix with 96.36% correct assignments using only ten parameters (EC, Cl???, NO3 ???, HCO3 ???, CO3 ???2, Ca?+?2, Na?+?, Zn, Mn, and Pb). CA and factor analysis (FA) are used to characterize water quality and assist in water quality monitoring planning. CA proved that two major groups of similarity (six subclusters) between 17 physicochemical parameters are formed, and FA extracts six factors that account for 66.478% of the total water quality variation, when all samples’ physicochemical data set is considered. It is noteworthy that the classification scheme obtained by CA is completely confirmed by principal component analysis.  相似文献   

8.
The monitoring of water quality today provides a great quantity of data consisting of the values of the parameters measured as a tunction of bme or as spatial function.In the marine environment, and especially in the suspended material, increasing importance is being given to the presence of particular pollution indices. With the increase in the number of sampling points, the amount of data increases and examining the results and their consequent interpretation becomes more difficult. To overcome such difficulties, numerous chemometric techniques have been introduced in environmental chemistry, such as Principal Component Analysis (PCA).The use of the PCA in this work has been applied to the analysis of twenty three different sampling points in three seasonal sampling cruises in the same year. This led to recognition of the influence and the localisation of wastewaters in the Augusta bay after measuring the water pollution parameters.The PCA made evident the difference between some sampling sites whose data were initially thought to be similar where the presence of hot industrial water discharge or urban wastewater determines the permanent water quality.Furthermore, it has allowed a choice of more significant parameters for monitoring programs and more representative sampling site locations.  相似文献   

9.
Characterizing water quality and identifying potential pollution sources could greatly improve our knowledge about human impacts on the river ecosystem. In this study, fuzzy comprehensive assessment (FCA), pollution index (PI), principal component analysis (PCA), and absolute principal component score–multiple linear regression (APCS–MLR) were combined to obtain a deeper understanding of temporal–spatial characterization and sources of water pollution with a case study of the Jinjiang River, China. Measurement data were obtained with 17 water quality variables from 20 sampling sites in the December 2010 (withered water period) and June 2011 (high flow period). FCA and PI were used to comprehensively estimate the water quality variables and compare temporal–spatial variations, respectively. Rotated PCA and receptor model (APCS–MLR) revealed potential pollution sources and their corresponding contributions. Application results showed that comprehensive application of various multivariate methods were effective for water quality assessment and management. In the withered water period, most sampling sites were assessed as low or moderate pollution with characteristics pollutants of permanganate index and total nitrogen (TN), whereas 90 % sites were classified as high pollution in the high flow period with higher TN and total phosphorus. Agricultural non-point sources, industrial wastewater discharge, and domestic sewage were identified as major pollution sources. Apportionment results revealed that most variables were complicatedly influenced by industrial wastewater discharge and agricultural activities in withered water period and primarily dominated by agricultural runoff in high flow period.  相似文献   

10.
Canonical correlation analysis (CCA), principal component analysis (PCA), and principal factor analysis (PFA) have been adopted to provide ease of understanding: interpretation of a large complex data set in the Gorganrud River monitoring networks, evaluation of the temporal and spatial variations of water quality, and finally identification of monitoring stations and parameters which are most important in assessing annual variations of water quality in the river. In accomplishing the research, 11 surface water quality data related to both of physical and chemical parameters have been collected from seven monitoring stations from 1996 to 2002. In general, our results from CCA method indicated strong relationship between physical and chemical parameters in the Gorganrud River. In addition, analyzing data through the PCA and PFA techniques revealed that all monitoring stations are important in explaining the annual variation of data set. From the point of view of the degree of importance of parameters contributing to water quality variations, further investigations by running two scenarios (rotated factor correlation coefficient value equal to 0.95 and 0.90 for the first and second scenarios, respectively) showed that the important parameters in one season may not be important for another season. For example, unlike in summer, water temperature, total suspended solids, total phosphorous, and nitrate parameters were important, electrical conductivity, and turbidity parameters had been realized as important parameters in spring through the first scenario.  相似文献   

11.
The Chillán River in Central Chile plays a fundamental role in local society, as a source of irrigation and drinking water, and as a sink for urban wastewater. In order to characterize the spatial and temporal variability of surface water quality in the watershed, a Water Quality Index (WQI) was calculated from nine physicochemical parameters, periodically measured at 18 sampling sites (January–November 2000). The results indicated a good water quality in the upper and middle parts of the watershed. Downstream of the City of Chillán, water quality conditions were critical during the dry season, mainly due to the effects of the urban wastewater discharge. On the basis of the results from a Principal Component Analysis (PCA), modifications were introduced into the original WQI to reduce the costs associated with its implementation. WQIDIR2 and WQIDIR, which are both based on a laboratory analysis (Chemical Oxygen Demand) and three (pH, temperature and conductivity), respectively, four field measurements (pH, temperature, conductivity and Dissolved Oxygen), adequately reproduce the most important spatial and temporal variations observed with the original index. They are proposed as useful tools for monitoring global water quality trends in this and other, similar agricultural watersheds in the Chilean Central Valley. Possibilities and limitations for the application of the used methodology to watersheds in other parts of the world are discussed.  相似文献   

12.
Guwahati, the lone city on the bank of the entire midstream of the Brahmaputra River, is facing acute civic problem due to severe depletion of water quality of its natural water bodies. This work is an attempt towards water quality assessment of a relatively small tributary of the Brahmaputra called the Bharalu River flowing through the city that has been transformed today into a city drainage channel. By analyzing the key physical, chemical and biological parameters for samples drawn from different locations, an assessment of the dissolved load and pollution levels at different segments in the river was made. Locations where the contaminants exceeded the permissible limits during different seasons were identified by examining spatial and temporal variations. A GIS developed for the watershed with four layers of data was used for evaluating the influence of catchment land use characteristics. BOD, DO and total phosphorus were found to be the sensitive parameters that adversely affected the water quality of Bharalu. Relationship among different parameters revealed that the causes and sources of water quality degradation in the study area were due to catchments input, anthropogenic activities and poor waste management. Elevated levels of total phosphorus, BOD and depleted DO level in the downstream were used to develop an ANN model by taking total phosphorus and BOD as inputs and dissolved oxygen as output, which indicated that an ANN based predictive tool can be utilized for monitoring water quality in the future.  相似文献   

13.
Multivariate statistical methods, such as cluster analysis (CA), discriminant analysis (DA) and principal component analysis (PCA), were used to analyze the water quality dataset including 13 parameters at 18 sites of the Daliao River Basin from 2003-2005 (8424 observations) to obtain temporal and spatial variations and to identify potential pollution sources. Using Hierarchical CA it is classified 12 months into three periods (first, second and third period) and the 18 sampling sites into three groups (groups A, B and C). Six significant parameters (temperature, pH, DO, BOD(5), volatile phenol and E. coli) were identified by DA for distinguishing temporal or spatial groups, with close to 84.5% correct assignment for temporal variation analysis, while five parameters (DO, NH(4)(+)-N, Hg, volatile phenol and E. coli) were discovered to correctly assign about 73.61% for the spatial variation analysis. PCA is useful in identifying five latent pollution sources for group B and C (oxygen consuming organic pollution, toxic organic pollution, heavy metal pollution, fecal pollution and oil pollution). During the first period, sites received more oxygen consuming organic pollution, toxic organic pollution and heavy metal pollution than those in the other two periods. For group B, sites were mainly affected by oxygen consuming organic pollution and toxic organic pollution during the first period. The level of pollution in the second period was between the other two periods. For group C, sites were mainly affected by oil pollution during the first period and oxygen consuming organic pollution during the third period. Furthermore, source identification of each period for group B and group C provided useful information about seasonal pollution. Sites were mainly affected by fecal pollution in the third period for group B, indicating the character of non-point source pollution. In addition, all the sites were also affected by physical-chemistry pollution. In the second and third period for group B and second period for group C sites were also affected by natural pollution.  相似文献   

14.
An investigation covering 12 districts of Baghdad city was conducted over 2 yr to monitor the effect of domestic storage practice on the quality of drinking water. Water storage tanks are widely used in Iraq as an additional water source. Tap and stored waters were tested for their chemical constituents i.e. Ca, Mg, Na, K, Cl, Zn, Fe, Pb, Cd, and total hardness (T.H.). All the tested elements were within the permissible limits. However, statistical analysis showed a significant variation between the different districts for T.H., Cu, Mg and chloride for both tap and stored waters. Seasonal variations have a significant effect on the levels of some elements. The quality of stored water was not affected by storage practice. Zinc, Pb and Fe were the only elements that showed some variation in the stored waters. This was attributed to the effects of corrosion of the tank metal and the migration of metals from the distribution system.  相似文献   

15.
The Qaraaoun Reservoir (impoundment of the River Litani) is the only artificial surface water body in the country, Lebanon. Earlier study on the water quality of the Qaraaoun Reservoir identified three water quality zoning with a central distinct zone suitable for multipurpose water usage. The objective of this study was to extend the earlier work by considering the total metal content of reservoir bed sediments and hence to evaluate factors that control metal deposition or capture. Water samples were collected from 15 sampling sites and sediment samples were simultaneously collected from 9 sites. Water parameters analyzed were pH, Eh, DO and temperature. Sediment samples were dried and sieved and sediment < 75 μ m was retained for analysis. Sediments were subjected to a stepwise heating process with aqua regia to extract the metals, and their content in sediments determined by ICP-MS. The sediment data revealed higher metal contents where the river entered the reservoir which matched higher concentrations of water parameters at the influx site. Regression analysis of total metals in sediments with distance from the river Litani influx point to the dam revealed a log trend for Fe, Cr and Ni, whereas, the concentrations of Cu, Zn, Cd, Pb were better described by a polynomial regression. Three sediment zones were identified: entrance, oxidation (central) and reducing (near dam) zones. Sediment contents of Zn, Cu and Pb correlated with organic content, whereas sediment Cr and Ni were associated with iron. It was concluded that sediments act as a sink for metals and the deposition of metals is primarily related to sediment organic content and the level of dissolved oxygen in water.  相似文献   

16.
Water quality and bacterial diversity in the surface water of Rawal Lake was investigated for a period of 8 months to evaluate the pollution load from anthropogenic effects of surrounding areas. Rawal Lake in Islamabad, Pakistan is an artificial reservoir that provides the water needs for the residents of Rawalpindi and Islamabad. Grabbed water samples were collected according to standard protocols from ten different locations of the lake and tributaries keeping in view the recharge points from adjacent areas. Temperature, pH, electrical conductivity, dissolved oxygen, total dissolved solids, hardness, alkalinity, and turbidity of water samples were determined to study the water quality characteristics. The physicochemical parameters showed higher values at the tributaries as compared to the sampling locations within the lake such as values of hardness and alkalinity were 298 and 244 mg/L, respectively, at the tributary of the Nurpur stream. Bacterial strains were isolated by streaking on differential and selective growth media by observing colony morphology and other biochemical tests such as Gram reaction, oxidase, and catalase test. Template DNA was prepared from pure cultivated bacteria and 16S rRNA gene analysis was performed using universal primers for bacteria. Sequencing was performed by using BigDye terminator cycle sequencing kit. Sequences of nearest relative microbial species were identified by using basic local alignment search tool and used as reference sequences for phylogenetic analysis. Phylogenetic trees were inferred using the neighbor-joining method. Sequencing and phylogenetic characterization of microbes showed various phylotypes, of which Firmicutes, Teobacteria, and Proteobacteria were predominant.  相似文献   

17.
Multivariate statistical techniques, such as cluster analysis (CA), principal component analysis, and factor analysis, were applied for the evaluation of temporal/spatial variations and for the interpretation of a water quality data set of the Behrimaz Stream, obtained during 1 year of monitoring of 20 parameters at four different sites. Hierarchical CA grouped 12 months into two periods (the first and second periods) and classified four monitoring sites into two groups (group A and group B), i.e., relatively less polluted (LP) and medium polluted (MP) sites, based on similarities of water quality characteristics. Factor analysis/principal component analysis, applied to the data sets of the two different groups obtained from cluster analysis, resulted in five latent factors amounting to 88.32% and 88.93% of the total variance in water quality data sets of LP and MP areas, respectively. Varifactors obtained from factor analysis indicate that the parameters responsible for water quality variations are mainly related to discharge, temperature, and soluble minerals (natural) and nutrients (nonpoint sources: agricultural activities) in relatively less polluted areas; and organic pollution (point source: domestic wastewater) and nutrients (nonpoint sources: agricultural activities and surface runoff from villages) in medium polluted areas in the basin. Thus, this study illustrates the utility of multivariate statistical techniques for analysis and interpretation of data sets and, in water quality assessment, identification of pollution sources/factors and understanding temporal/spatial variations in water quality for effective stream water quality management.  相似文献   

18.
A comprehensive monitoring program was conducted during 2005-2007 to investigate seasonal variations of hydrologic stability and water quality in the Yeongsan Reservoir (YSR), located at the downstream end of the Yeongsan River, Korea. A principal component analysis (PCA) was performed to identify factors dominating the seasonal water quality variation from a large suite of measured data--11 physico-chemical parameters from 48 sampling sites. The results showed that three principal components explained approximately 62% of spatio-seasonal water quality variation, which are related to stratifications, pollutant loadings and resultant eutrophication, and the advective mixing process during the episodic rainfall-runoff events. A comparison was then made between YSR and an upstream freshwater reservoir (Damyang Reservoir, DYR) in the same river basin during an autumn season. It was found that the saline stratification and pollutant input from the upstream contributed to greater concentrations of nutrients and organic matter in YSR compared to DYR. In YSR, saline stratification in combination with thermal stratification was a dominant cause of the longer period (for two consecutive seasons) of hypoxic conditions at the reservoir bottom. The results presented here will help better understand the season- and geography-dependent characteristics of reservoir water quality in Asian Monsoon climate regions such as Korea.  相似文献   

19.
The paper presents the results of determinations of physico-chemical parameters of the Ma?a We?na waters, a river situated in Wielkopolska voivodeship (Western Poland). Samples for the physico-chemical analysis were taken in eight gauging cross-sections once a month between May and November 2006. To assess the physico-chemical composition of surface water, use was made of multivariate statistical methods of data analysis, viz. cluster analysis (CA), factor analysis (FA), principal components analysis (PCA), and discriminant analysis (DA). They made it possible to observe similarities and differences in the physico-chemical composition of water in the gauging cross-sections, to identify water quality indicators suitable for characterising its temporal and spatial variability, to uncover hidden factors accounting for the structure of the data, and to assess the impact of man-made sources of water pollution.  相似文献   

20.
The growing population, pollution, and misuse of freshwater worldwide necessitate developing innovative methods and efficient strategies to protect vital groundwater resources. This need becomes more critical for arid/semi-arid regions of the world. The present study focuses on a GIS-based assessment and characterization of groundwater quality in a semi-arid hard-rock terrain of Rajasthan, western India using long-term and multi-site post-monsoon groundwater quality data. Spatio-temporal variations of water quality parameters in the study area were analyzed by GIS techniques. Groundwater quality was evaluated based on a GIS-based Groundwater Quality Index (GWQI). A Potential GWQI map was also generated for the study area following the Optimum Index Factor concept. The most-influential water quality parameters were identified by performing a map removal sensitivity analysis among the groundwater quality parameters. Mean annual concentration maps revealed that hardness is the only parameter that exceeds its maximum permissible limit for drinking water. GIS analysis revealed that sulfate and nitrate ions exhibit the highest (CV?>?30%) temporal variation, but groundwater pH is stable. Hardness, EC, TDS, and magnesium govern the spatial pattern of the GWQI map. The groundwater quality of the study area is generally suitable for drinking and irrigation (median GWQI?>?74). The GWQI map indicated that relatively high-quality groundwater exists in northwest and southeast portions of the study area. The groundwater quality parameter group of Ca, Cl, and pH were found to have the maximum value (6.44) of Optimum Index factor. It is concluded that Ca, Cl, and pH are three prominent parameters for cost-effective and long-term water quality monitoring in the study area. Hardness, Na, and SO4, being the most-sensitive water quality parameters, need to be monitored regularly and more precisely.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号